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PREFACE

This monograph deals with the analysis of random processes in multiphase service
systems operating in critical regimes. Multiphase systems are widely met in practice.
They play an important role in queueing theory and have been the subject of research
for a long time. As a rule, in this class of systems, it is impossible to obtain explicit
formulas for the operation parameters as functions of the distribution of the control
sequence elements.

Usually, computer simulation is applied in these cases. However, in operation
regimes close to the critical one, this approach shows low efficiency. At the same time,
analytical methods provide explicit analytic formulas in a limit corresponding to the
critical mode.

The material of the book is arranged in two parts. In the first part (Chapter I
and Chapter II), we study waiting time processes in heavy traffic and their diffusion
approximations. In the second part (Chapter III), we consider queue length processes
and departure flows of customers in multiphase systems.

The operation of multiphase systems is described by random processes in polyhedral
cones with reflections at their faces. The corresponding construction, which generalizes
the well-known Lindley equation, is presented in the first chapter of the monograph.
Systems satisfying the Kleinrock condition on the independence of service times in
different phases, as well as systems with identical service, are considered uniformly
using the processes with reflections.

In heavy traffic, processes with reflections are approximated by diffusion processes.
To validate the corresponding limit in multiphase systems, we use the theory of weak
convergence of random processes, and, in particular, the Donsker-Prohorov invariance
principle.

The unified treatment has certain advantages, at the cost of disregarding some
approaches, however. In particular, the martingale approach is not considered in the
book although it appears to be very effective in many cases.

The second part of the book deals with the queue length processes and departure
flows in multiphase systems. This part is a kind of survey. There are two reasons that
made us choose the survey style. The first reason is that the queue length processes
are very close to the waiting time processes. The second reason is that the results
associated with the approximation of a departure flow in heavy traffic have not yet
received a conventional treatment in the modern literature.

The theory of heavy traffic in service systems accumulates the efforts of many
mathematicians. Unfortunately, we are in no position to give a full list of specialists
in the field and to appreciate their individual contributions to the development of the
theory. Here we mention only Donsker, Prohorov, Borovkov, Harrison, Reiman, and
Whitt.



X PREFACE

The results of our studies in the field have been presented many times at seminars
given by B. Gnedenko, Yu. Belyaev, and A. Soloviev at the Moscow State University
and at seminars given by R. Dobrushin and Yu. Suhov at the Institute for Problems of
Information Transmission. We are deeply grateful to the participants of the seminars
for valuable remarks and criticism.

The work on writing and translating the book was inspired by S. Gindikin and
S. Gelfand. We are very glad to commend the work of A. Vainshtein, which cannot
be overestimated. We are also very grateful to the American Mathematical Society for
their attention to this project.

F. I. Karpelevich
A. Ya. Kreinin
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FREQUENTLY USED NOTATION

Integer d-dimensional lattice

Space of all m times differentiable bounded functions on X
Space of all continuous functions on X

Space of all left continuous on X functions having right limits
The matrix transposed to A

Projection to R¥

Weak convergence of measures
Convergence in probability of stochastic elements

Convergence in distribution of random variables
Mean value of a random variable &

Variation of a random variable &

o-algebra of a process with discrete time
Conditional expectation of a stochastic process &,
Infinitesimal operator of a process &
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APPENDIX I

WEAK CONVERGENCE IN FUNCTION SPACES

In this appendix, several important facts of the weak convergence theory of sto-
chastic processes are collected. This theory is presented in many monographs (see, e.g,
[11], [108]).

§1. Convergence in distribution
Let X be a complete and separable metric space. Let &* be a family of random
points of X’ depending on a parameter 4 > 0. We say that the family £* converges in
distribution to a random point £° as 1 — 0 (and denote this convergence by i»),

d

(Al1.1.1) 8 as 10,

if for each bounded continuous function f: & — R,

(A1.1.2) }%Ef(fi) =Ef(¢9).

Observe that we want relation (A1.1.2) to be satisfied for real-valued functions f.
On the other hand, if & —%» &0, then (A1.1.2) is satisfied also for complex functions
f. If, for instance, X = R, that is, &* is a random variable, then using the function
f(x) = €''*, we obtain the convergence of the characteristic functions (c.f.) of the
random variables & to that of &0,

Let P* (1 > 0) be the distribution of a random point &* of the space X' (or the
measure corresponding to &*).

DEerFINITION. The measures P4 (4 > 0) are said to be weakly convergent to the
measure P as 1 — 0,
P}t L PO

if &4 4, 80 (1 5 0).

Clearly, we can rewrite (A1.1.2) in the following form:

(A1.1.3) hm/f )P4 (dx) /f )P (dx).

A—0

We mention here some features of the convergence introduced above. A brilliant
systematic presentation of the theory of weak convergence is given in [11].

89



90 APPENDIX I. WEAK CONVERGENCE IN FUNCTION SPACES

TaeoreM Al.1.1 ([11, Theorem 2.1]). If condition (A1.1.2) is satisfied for all
bounded and uniformly continuous functions f on X, then it provides the convergence of
(A1.1.1).

~ We denote by do(x.y) the distance in the space X'. Assume that random points
¢* and n*, 4 > 0, are defined on the common probability space. Then the random
variable dy(&*. ") is also defined on the same probability space.

TueorREM Al.1.2 ([11. Theorem 4.1]). If&* -5 &0 and do(E*, n*) —= 0as A — 0,
then n — &0,

Consider a family of stochastic elements ¢4, ¢* € X' defined on the common prob-
ability space with support X depending on two parameters A > 0, T > 0. Let X be a
metric space with distance d.

THEOREM Al.1.3 ([11, Theorem 4.2]). Assume that for each T > 0, &% A, &% as

A — 0, and &Y 40 T - o Let for each e > 0 there exist Ty > 0 and Ay > 0
such that for all T > Ty and for each A € (0, 4)

(Al.1.4) Pr{do(¢5. ") > e} <e.

Then &* A, Eas i —0.

Let X’ be a metric space and ¢: X — X’ a measurable mapping. Denote by 4
(A4 € X) the discontinuity set for the map . Then A is a Borel set (see [11]).

Tueorem Al.1.4 ([11.85]). Let &*. A > 0. be random points in the space X. and
gt 20 IFPr{E0 € A} = 0. then (&) —5s (&0).

Let (L. L) be a measurable space (not necessarily a metric space). and let o be
a random element of (L. £) defined on some probability space. If f is a measurable
function on L, then the random variable f () is defined on the same probability space.

THEOREM Al.1.5. Assume that o is a random element in the space (L. L) and {f }.
T > 0. is a family of measurable functions that converge at any point of the space L to

the function f as T — oo. Then f1(a) N f (o).

ProOF. Let P, be the distribution of the random element a and ¢ be a continuous.
bounded. real-valued function on R. If 7 = fr(a). then

Eo(&r) = /L hr () Po(d1).

where hr(l) = @(f7(1)). The functions A7 are uniformly bounded on T and converge
to h(l) = o(f(I)) as T — oo. Therefore. passing to the limit and integrating in the
latter formula. we get

Jim Bo(&r) = [ AU)Pa(d1) = Ep(®).

L

and the proofis completed. O
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§2. Convergence in the space D
Let T be an arbitrary interval [0, T'], or the nonnegative half-line ¢ > 0.

DerFNITION. The space D™ (T) = D™ (T, R™) is the set of left continuous functions
x: T — R™ having finite right limits.

The distance in the space D™ ([0, T']) is introduced in the following way (see [11],
§14). Let A = A(0, T') be the set of increasing continuous functions on T, 4: [0, T] —
[0, T, with A(0) = 0, A(T) = T. For every two functions x|, x, € D" ([0, T]). put

AeANogigT 0<s<t KT

where [x| = /377 (x1)2 x = (x',....x") € R".

With respect to this metric, the space D™ ([0, T]) is complete and separable. The
corresponding topology is equivalent to the Skorohod topology.

Observe ([11], §14) that the space C™ ([0, T']) = C ([0, T], R™) of functions continu-
ous on [0, T] is contained in D™ ([0, T']). The metric defined by (A1.2.1) and the usual
uniform metric induce equivalent topologies on the space C™ ([0, T']).

For each ¢+ € T and an arbitrary Borel set B € R™, let I'(z, B, T) be the set of
functions in D™ (T) satisfying the inclusion x(¢) € B.

Denote by D"(T) the minimal o-algebra of subsets I'(¢, B, T). where ¢t € T and B
runs over all Borel sets in R™.

() = A(s)

t—s

In

(A12.1) d(xl,xz)Zjnf<sup () — 11 (A(0)) + sup

THEOREM Al1.2.1 ([11, Theorem 14.5]). The o-algebra of Borel sets of the space
D™ ([0, T) coincides with the a-algebra D™ (T).

Consider a random process & on the time interval T taking values in the space R”.
Assume that the sample paths of this process belong to the space D™ (T) almost surely.
Then we can consider the process £ as an element of the space D™ (T).

Let T = [0. T] and &* (4 > 0) be a family of such random processes on the space
D”([0. T1). The family &* is called weakly convergent to the process &0, if the corre-
sponding family of random points in the space D" ([0. T]) converges in distribution
to the random point £°. The weak convergence of random processes is denoted as
follows:

L0 A0,

Thus. & -5 &0 if for each bounded functional f: D" ([0. T]) — R the relation

imEf (%) = Ef(S°)

A—0

holds.

The Skorohod topology on the space D™ is generated by the metric (Al.2.1).
Besides. we use the uniform metric defined by

(A1.2.2) p(xi.x2) = sup |xa(t) — xi(2)].
0<I<T



92 APPENDIX I. WEAK CONVERGENCE IN FUNCTION SPACES

where xi, x; are functions belonging to D”. It is clear that
(A1.2.3) d(x1.x2) < plx1.x2).
For each function A € A = A(0. T') we can define the operator
4: D"([0.T]) — D™([0. T)).

acting as a time change: Ax(z) = x(4(¢)). x € D™([0. T]). We denote the set of these
operators by A.

We say that a map 4: D" ([0. T]) — D"([0. T]) commutes with time changes (or,
briefly, commutes with A), if AL = AA for any 4 € A. Therefore, A commutes with
A if (4(Jx))(¢) = (4x)(A(¢)) for each function 2 € A. Below we provide several
examples of such operators.

A trivial one is generated by an arbitrary continuous function ¢: R” — R":

(A1.2.4) Ax(t) = p(x(2)).

Another example is provided by the following map. Consider the map S that trans-
forms a bounded function x on T = [0, T'] by the formula

(A1.2.5) Sx(t) = sup x(s). teT.
0<s<T

Let us show that S takes the space D!([0, T]) to D'([0, T']). and that this operator
commutes with A. Indeed, if y = Sx, x € D'([0, T]). then y is a nondecreasing
and bounded function on T. Hence, this function has finite right limits and is left
continuous on T. Since the function x(¢) is right continuous, the function y is right
continuous as well. Therefore, S takes D' ([0, T]) to D'([0. T']). Finally, the relation

(S(x))(1) = sup ix(s) = sup x(i(s)) = sup x(s) = (S(x))(4(r))

0<s<t 0<s<t 0<s<Ar)

implies the commutativity property for the operators .S and A. Obviously, the operator
I defined by

(A1.2.6) Ix(t) = inf x(s). teT.

0<s <t

also takes D' ([0. T]) to D'([0. 7]) and commutes with A.

The set of operators commuting with A is an algebra: linear combinations and
products also belong to the set of operators commuting with time changes. Therefore,
combinations of the operators S and I with the operators (A1.2.6) provide new exam-
ples of such operators. Consider, for instance, the operator B: D3([0, T']) — D'([0, T'])
defined by

Bx(t) = B(x'.x2.x*) = S(S(x* = x*) + x> = x").

Observe that for this functional

(A1.2.7) Bx(t) = sup (x2(s1) — x'(51) + x*(52) — x2(52)).

0<m < <1
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THEOREM A1.2.2. Ifamap A: D" ([0. T]) — D*([0, T]) commutes with time changes
and is continuous with respect to the uniform metric, then A is continuous in the metric
defined by (A1.2.1) in the space D™ ([0, T1).

Proor. We have to show that if d(x,,xq) — 0 (x, € D"([0,T]). » = 0,1,...)
asn — ooand y, = Ax,, n = 0,1,..., then d(y,.y9) — 0. Choose € > 0. Since
A is continuous in the uniform metric, there exists 6 > 0 such that the inequality
p(Ax. Axy) < € holds whenever p(x, xy) < 6.

Choose an integer ny > 1. For each n > ng there exists a function 4 € A satisfying
the following inequality:

sup |xo(¢) — x,(A(¢))| + sup

01T 0<s<t<T

Therefore, p(4,x,., xo) <& for n > ny. Hence,

(A128) p(Adxn y0) <e.

The relation A4,x, = A,Ax, = A,n, together with inequality (A1.2.8), means that
sup [yo(2) — ya(4a(2))] < &.

0T
On the other hand,
Sup ln M < 5
0<s<t<T s—1

Without loss of generality, we can assume that § < €. Then d (3¢, y») < 2¢, and the
proofis completed. [J

§3. The Invariance Principle

et B ... B4 ... > e a sequence of independent identica istribute
Let fi.....Bi... (A > 0) be a seq f independent identically distributed

random vectors in R”. Denote by #* the random vector in this space having the same
distribution as f;. Assume that

(A1.3.1) Ep* = Aa + o(2?). Dp* = 22d +0(4?) as A—0,

where a = (a'.....a™) € R”, Df* is the matrix of the second central moments of the

vector f* (or the covariance matrix), and d is a positive definite and symmetric matrix
of order m.
Denote by P” the distribution of the vector . We also assume that this distribution

satisfies the Lindeberg—Feller condition:
(A1.3.2) / |x|2P*(dx) = o(42).
X|>€
Put : .,
Si= 38
i=1

(We assume that if the lower limit is greater than upper limit, then the corresponding
sum is equal to 0.) .
Consider the stochastic process w” on the space D™ ([0. T']) defined by the formula

w* =S8 for n=[t/A’]. 0<t<T.
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THEOREM Al.3.1 (The Donsker—Prohorov Invariance Principle, [11], [95]). If con-
ditions (A1.3.1), (A1.3.2) are satisfied, then the family of processes w” converges weakly
to the process

w(t) = hB(t)+ta, 0Kt <T,

as A — 0, where B is a Brownian motion in R™, and the matrix h is given by the relation
d = hh'.



APPENDIX I

WEAK CONVERGENCE OF FUNCTIONALS
OF STOCHASTIC PROCESSES

§1. Approximated functionals

Let us consider the space D™([0,00)). Restricting the domain of a function x €
D™([0, 0o)) to the interval [0, T'], we obtain a function xr € D™ ([0, T']). The function
xr is called the restriction of the function x to the interval [0, T]. We denote the
restriction operator by IT7. Thus, x7 = IIrx.

Let &4, 1 > 0, be a family of stochastic elements of the space D" ([0, 00)). Each
of them can be considered as a stochastic process with sample paths belonging to the
space D" ([0,00)). Let us choose T > 0 and consider the restriction ¢4 = IIr&2,
Assume that

(A2.1.1) &L 10,

forall T > 0. The following question arises naturally in the weak convergence theory:
when do the processes £* converge weakly on the whole half-line to the process £%?

If the sample paths of the processes &* have finite limits as ¢ — oo, then there is an
opportunity to apply Theorem Al.1.3.

However, in a large number of applications, the limits of paths are infinite or do not
exist at all. For this reason, we present here another approach to the problem of weak
convergence.

The scheme of the proof of (A2.1.1) discussed in this appendix provides a useful tool
for proving weak convergence results for different stochastic models. The construction
does not depend on the form of the limit process and on the form of the processes &;.

To establish the convergence ¢* —- &0 on the half-line. we introduce a class of
functionals, which we call approximated functionals, or simply, A-functionals. For this
class of functionals. (A1.1.4) and several other conditions provide the convergence in
distribution.

Assume that the paths of the processes &* (4 > 0) belong to some subspace D C
D™([0.00)). Let D7 = I17D. We assume that Dr is closed in the space D™ ([0. oo)) for
all T > 0. Introducing the metric (A1.2.1). we turn D7 into a complete and separable
space. The o-algebra D7 of the Borel sets coincides with the g-algebra of the sets
AN Dy where 4 € D"([0.T]).

The natural g-algebra D of the subsets of the space D consists of the sets 4 N D.
where 4 € D™. Clearly. if B € D.then I1+B € Dr.

A real-valued functional f: D — R is called measurable. if f~'(B) € D for all
Borel subsets B € R.

95



96 APPENDIX II. WEAK CONVERGENCE OF FUNCTIONALS

We say that a functional f7 on D depends only on the restrictions of functions, if
there exists a functional f7 on the space D7 such that

(A2.1.2) fr(x) = frixr)

forall x € D.

Let us denote by @7 the set of functionals depending only on the restrictions to the
interval [0, T]. Observe that a functional f7 € @7 is measurable if and only if the
corresponding functional f 7 1s measurable on the space Dr.

DEFINITION. A functional f on D is said to be approximated (or an A-functional)
if there exists a family of functionals { f7}. f7 € ®r, on D such that

(A2.1.3) Tligloofr(x) = f(x)

for each x € D. The family {fr} is said to be an approximating family for the
functional f.

The set of A-functionals is denoted by Ag. Observe that if f are measurable for all
T > 0, then the functional f is also measurable, as a limit of measurable functionals.
Let us consider some useful examples of A-functionals. The functional

(A2.1.4) f(x) =supx(¢), xe€D,

>0

belongs to the class Ag, provided D is the space of upper bounded functions in
D'([0. cc]). An approximating family is given by

fr(x) = sup x(2).

0T

If ¢ is an arbitrary real bounded Lebesgue measurable function on R and p €
L'[0, c0), then the functional

Flx) = /0 T o p(r)di. x € D'([0. s0]).

belongs to the class Ag. The corresponding approximating family is given by

T
frix) = /0 o(x(0)p(t)dt. x € D'([0.00)).

If ¢ is a bounded Lebesgue measurable function on R? and p € L'[0, 00), then the
functional on D' ([0, c0)) given by

@)= [ el x(1/0)ple) di
0
also belongs to the class Af, and the corresponding approximating family is represented
by
T
Frix) = / o (x(0).x(1/0)p(e) dt.
1

/T
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§2. Unapproximated functionals

Here we give an example of a functional that does not belong to the class of
approximated functionals. This functional f ¢ A is defined on the space D' ([0, 00)).
Let us consider the functional

0, if lim,_, x(¢#) exists and is finite,

fulo) = {

1. otherwise.

PrROPOSITION A2.2.1. The functional f . does not belong to the class Ay.

PROOF. Assume, to the contrary, that . € Ap. Let { f7} € ® be an approximating
family. Consider the function x;(z) = 6(¢), ¢ > 0, where 6 is the indicator function of
the set [0, 00). Thus, 8(¢z) = 1for ¢t > 0 and (¢) = 0 for t < 0. Clearly, f.(x;) = 0.
Therefore, there exists 77 > 1 such that f7,(x;) < 1/3. Let

x(t) = (1 =6(t — T1))x,(t) + 0(t — T}) cos(2nt).

Observe that x,(¢) is a continuous function on the half-line [0, 00). We prove the
proposition by induction. Assume that a finite sequence of functions x|, x3, ..., x,,
(n > 2) satisfying the conditions below is constructed. The conditions are as follows:

(1) All the functions in the sequence are continuous on [0, co).
(2) There exist nonnegative integers Top = 0, T)..... T, T >1+T,_,, i =
1,2.....n—1,such that x;(t) = x;_(¢) fort € [0, T;_1].i = 2.3.....n.
(3) Ifi = 21+ 1, then x;(¢t) = 1fort > T,y (1 <i < n). Ifi =2l then
xi(t) = cos(2nt) fort > T, (1 <i < n).
(4) Ifi = 21+ 1. then f7 (x;) < 1/3.1 <i <n—1.Ifi = 2. then f7.(x;) > 2/3.
1<ig<n—-1.
The functions x,. x; and the number T} satisfy these conditions. Now we are going to
construct the number T, and the function x,, ;.
Let n be an even number. Then the function x,(¢) coincides with cos(2rt) for
t > T,_, and does not have a limit as ¢ — oo. Therefore. f(x,) = 1. Then, there
exists T, > T,_; + 1 such that f7, (x,) > 2/3. The function x,, is defined by the
relation
xpi1(t) = (1= 0(t = T,))x,(t) +6(t — T,).

Let n be an odd number. Then x,(¢) = 1fort > T,_, and f(x,) = 0. Hence.
there exists 7, > T, + 1 such that fr,(x,) < 1/3. The function x,, in this case is
defined by

xpi1(t) = (1 = 0(t — T,))x,(t) + 6(t — T,) cos(2nt).

Clearly. the function x,.(¢) is continuous and satisfies. together with the number
T,,. conditions (1)—(4).
Now let us consider the function

xo(t) = x,(t) for te[T,.,.T,). n=12.....

It follows from condition (2) that x(¢) = x,(¢) for t € [0. T,,). Therefore. we see that
X0 is continuous on [0. T,,]. Hence. x,,(t) = xo(t). t € [0. T,,]. The function xo(¢) does
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not have a limit as ¢ — oco. Hence, f(xo) = 1. Therefore, limr_o, f7(xg) = 1. On
the other hand, for odd n we have fr,(xo) = fr1,(x,) < 1/3, which contradicts the
assumption f, € Ap. The proposition is proved. [J

Observe that the property of a functional to be approximated depends on the space
D where the functional is defined. If D coincides with the set of functions x(z) having
limits as ¢ — oo, then f, € Ar. However, if this functional is defined on the space
C ([0, 00)). then, as it was shown, f. ¢ Af.

§3. Convergence in distribution for approximated functionals
Let us consider a family of random elements fiT. Assume condition (A2.1.1):
& =& A0,

where ¢4 = &2

DEerINITION. We say that a functional fr € ®p is admissible, if the following
conditions are satisfied:

(1) The functional f7 is measurable.
(2) The family of random variables X7 = f7(&*) converges in distribution to the
random variable X2 = f7(&9).

A simple property of admissible functionals is provided by the following statement.

PrOPOSITION A2.3.1. Let &4 = Tpéh, A > 0, and & 5 &Y as 1 — 0. Assume
that f 1 is measurable on Dt and A is the set of its discontinuity points. If

Pr{c) ed} =0
then the corresponding functional defined by (A2.1.2) belongs to ®7 and is admissible.

ProoF. Clearly, the functional f, is measurable. Relation (A2.1.2) implies X7 =
f1(&%). Now condition (2) follows from Theorem Al.1.4. O

THEOREM A2.3.1. Assume that condition (A2.1.1) is satisfied and the functional
f € Ag on D can be approximated by a family {f 1}. where fr1 is admissible for each
T 2 0. Let for any € > 0 there exist Ty > 0 and Ay > 0 such that the inequality

(A23.1) Pr{ifr(e) - fE)>e} <e
holds for all T > Ty and /. € (0, Ay). Then
FE) -5 7 as i—o.

Proor. Consider the random variables X7 = f7(&%) and X* = f (&) for 4 > 0.

Since the functionals { /7} are admissible for each T > 0, we get X —— X%, Next,
relation (A2.1.3) and Theorem A1.1.5 with a = &* imply

. d .
X; — X asT —

forany 4 > 0. Now th_e assertion of the theorem follows fr0m~The0rem Al.1.3 with
the random variable X7 used instead of é;l and X; instead of &%, A > 0. O



APPENDIX III

AUXILIARY RESULTS

¢1. Bounds for semimartingales

Here we have gathered several auxiliary facts not related directly to the subject of
the book.

LemMMa A3.1.1. Assume that a nonnegative process & = {&,} with discrete time
n=0,1,..., N can be represented as the sum of two processes n = {n,} and{ = {{,},
& = n +{, such that one of them, say n, is a supermartingale, while the other, {, a
submartingale. Then the inequality

(A3.1.1) Pr{ sup &, > R} < %(Eno +Ely)
0<n<N

holds for any number R > 0.

ProoF. The proof of the lemma is similar to the proof of the Kolmogorov inequality
for nonnegative semimartingales. Namely, let 7 be the moment when the process &
exceeds the level R for the first time,

t=min(n: 0<n <N, &, > R).

Ifé, < Rforalln =0,...,N,wesetz = N. Evidently,

Pr{ sup &, > R} =Pr{¢, > R}.
0<n<N

By the Chebyshev inequality for nonnegative variables,

1 1
2 < K& = —(En, 7)
Pr{c. > R} < zE& = - (En. + EL.)
Since 7 is a stopping time, and 0 < © < N, well-known inequalities for semimartingales
imply E#, < Ezo and E{; < E{y, and thus (A3.1.1) follows. O

§2. Bounds for processes with special structure

Other necessary auxiliary results involve processes with a special structure described
below.

Let {F,} (n = 0,1,...) be a sequence of nondecreasing o-algebras, F, C F,1. A
process U = {U,} (n = 0.1,...) is said to be consistent with the sequence {F,} if

99
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each random variable U, (n = 0,1,...) is measurable with respect to the o-algebra
Fo.

Let us consider an arbitrary process X = {X,,} with X, = 0 that is consistent with
the sequence {F,}. Assume that X is represented as the sum of m processes consistent
with the sequence {F, }:

m—1
(A3.2.1) X=v+) 7.
i=1

LEMMA A3.2.1. Let there exist positive numbers a, Dy, and D, such that for the
process X the following conditions hold with probability 1:!

(1) E(Y,, l]'—,,_]) — Yn,| L —a,n= 12,

(2) E[(Y, —E(Y, | Fo))? | Falll < D1n=1,2,...;

(3) E(L, | Fao1) < Dy+ L, 1,n=1.2,..., where

m—1

L, =Y (Z})

i=1

Then the following inequalities hold for any natural N, any R > 0, and any C €
[0,a(N +1)):

mND
(A3.2.2) Pr{ sup X, > R} < R
0<n<N
(N +1)2mD
A3.23 Pr{ sup X, > —-C; < .
(A3.2:3) { e b < r T er
2V2mD
(A3.2.4) Pr{ sup X, > R} ¢ W2mD
0<n<oo aR
where D = Dy + D,.
ProOF. Let us put
Y, = (E(Y; | Fi) =Y, ). n>21. Yo=0.
Jj=1
(A3.2.5)
Y,=) (Y, —E(Y; | Fj_1)).n>1. Yy=0.

Jj=1

I'Those readers who are acquainted with the modern martingale theory (see. e.g.. [86]) will undoubtedly
see that conditions 1 and 2 are restrictions imposed on the compensator and the quadratic characteristic of
the process Y. However. since in what follows we do not use these notions. we do not discuss the relations
of the result stated to this deep and advanced theory.
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Then Y = Y + Y. Condition (1) of the lemma implies Y < —na; hence,

m—1
X, < —na+ Y, +> Z.
i=1

Therefore,
Pr{ sup X, >R} gPr{ sup (f’ ZZ,’,) > }
(A3.2.6) 0<n<N 0<n<N
<Pr{ sup &, > Rz/m}

0<n<N
and

1 gl c

Pri{supX, > -C S <Pr{sup—|(7Y, + Z') >a—

[ TR P E s

where &, = Y2 + L,.

Relation (A3.2.5) implies ¥, — Y, | = Y, — E(Y, | F,_1). The variable ¥, is
measurable with respect to the o-algebra F, ;. Therefore, E(Y, | F,_|) = Y,_i.and
thus

E[(Y, - Y,_)? | Furll = E(Y] | Fusy) — Y2,

Taking into account conditions (2) and (3) of the lemma. we infer E(Y? | F,_;) <
D] Y2 1 and

(A3.2.8) E(, | Foo1) SD+E, .

Now let us consider the processes #, = &, — nD and {, = nD. Evidently, the
process {{,} is a submartingale. Relation (A3.2.8) for the process {7, } implies

E("]n |fn—|) = E(én —nD |fn—l) S ‘fn—l + (n - I)D

Therefore. the process {7,} is a supermartingale with respect to the sequence {F,}.
Applying Lemma A3.1.1 (with R replaced by R?/m) and taking into account the

relation 9 = 0. we get
R? DN
{ ap 55 K} <20

The latter inequality together with (A3.2.6) yields (A3.2.2).
To prove (A3.2.3). we consider the process

oo
Uy = &+ z%
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Relation (A3.2.8) implies
1 = 1 1 = 1
E(U, | Foo1) < ?(D +&)+D Y ol LR +DZﬁ S Up-r.
r=n+1 r=n
Therefore, the process U, is a supermartingale with respect to the sequence {F,}.
Relying on the Kolmogorov inequality for nonnegative supermartingales, we infer
1

Pr{sup —&n 2 R(a,m,N, C)} < Pr{sup U, > R(a,m,N, C)}

n>N N n>N

< EUy
= R(la.m,N,C)’

(A3.2.9)

2
where R(a,m.N,C) = %(a— 5

Now let us bound EUy ;. It follows from (A3.2.8) that E¢, < D + E&,_;. Taking
into account that & = 0, we get E€x 1 < (N + 1)D, and thus

D =1 2D
< — E — <
EUN+1\N+1+D I

Introducing this to (A3.2.9) and taking into account (A3.2.7), we get inequality
(A3.2.3).
To prove inequality (A3.2.4), let us choose an arbitrary natural N. Since

sup X, = max( sup X,,,supX,,),

n>0 0<nEN n>N

we have

Pr{supX,, > R} < Pr{ sup X, > R} +Pr{suan > R}
n>0 0N n>N

< Pr{ sup X, 2> R} +Pr{supX,, > 0}.
0<n<N n>N

The first term in the right-hand side is estimated with the help of (A3.2.2), and the
second one with the help of (A3.2.3) (with C = 0); thus, we get

N 2
P X, 2R, <mD| —=+ —— ).
f{i‘;ﬁ } " (R2 (N+1)a2)

To get (A3.2.4). it suffices to set N = [v/2R/a] in the latter inequality. The proof is
completed. O



§2. BOUNDS FOR PROCESSES WITH SPECIAL STRUCTURE 103

CoroLLARY A3.2.1. Letny,.... T, . .. be a sequence of independent identically dis-
tributed random variables, and

n
d,,=Z7zj, n=1, o9=0.
Jj=1

If En, = —a < 0, then the following inequalities hold for any natural N, an arbitrary
R > 0, and an arbitrary C € [0, (N + 1)a):

(A3.2.10) Pr{ sup o, = R} < Q

0<n<N R

2D(N + 1)
A32.11 > _C ’
(A3.2.11) Pr{:gga } GV 1D C)
2
(A3.2.12) {supa,, > R} ‘fD
n>0

where D = Dmn,,.

PrOOF. Let us put Y, = g, and m = 11in (A3.2.1). In this case, all the processes
Z' disappear, and L, vanishes. Condition (3) of Lemma A3.2.1 holds for D, = 0.
The g-algebra generated by n;, j = 1,...,n, is regarded as the o-algebra F,. Let us
verify conditions (1) and (2) of Lemma A3.2.1. Evidently, 6, = =, + 0,_;. Therefore,

E(Un | -7:n~1) = Enn + Op-1 — —a + Op—1,

and, hence, condition (1) holds. Condition (2) holds as well, since 5, —E(o,, | F,_1) =
n, — En, and
E[(o, — E(o, | Fu-1))* | Fari]l = D, = D.

Applying now Lemma A3.2.1, we get (A3.2.10), (A3.2.11), and (A3.2.12) from
(A3.2.2), (A3.2.3), and (A3.2.4), respectively. O

Observe that inequality (A3.2.12) implies the following
COROLLARY A3.2.2. Under the assumptions of Corollary A3.2.1,

Pr{ sup g, < oo} =1.
0<n<oo
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APPENDIX 1V

TANDEM QUEUES IN HEAVY TRAFFIC

In this appendix we solve problem (2.4.12)—(2.4.15) for tandem queues. We find
an explicit formula for the joint limit distribution function of waiting times in heavy
traffic.

§1. Reduction to a boundary value problem

The equation describing the stationary joint distribution of waiting times is an ellip-
tic equation with constant coefficients. Relations (2.4.12)-(2.4.15) provide a problem
with obligue derivative for a two-dimensional elliptic differential equation. Similar
problems have been studied by numerous authors; however, our case seems to be dif-
ferent from those analyzed in the literature (see Gakhov [35], Gakhov and Chersky
[36)).

Below we find a solution using the reduction to a certain boundary value problem
for functions of a complex variable.

To simplify the notation, we use the functions ®(x) and ®(x, y) instead of the func-
tions u;(x) and uy(x), respectively. Recall (see Chapter II, §4 and also Introduction)
that the limit waiting time distribution ®(x) at the first phase of our queueing system
satisfies the equation

2
-—ald—q) + l(d‘i‘dl)d o

dx 3 WZO, —‘OO<X<O,

and the boundary conditions

lim ®(x) = 1, lirgl ®(x) = 0.
It is obvious that
{ 0, if x >0,
d(x) = 2a;x .
l-expm, 1fx<0.

Now we reformulate problem (2.4.12)—(2.4.15) for the case of tandem queues.

BASIC TWO-DIMENSIONAL PROBLEM. Find a function ®(x, y) that is continuous on
the entire plane and satisfies the following conditions:

(1) ®(x.y) =0if x > 0;
(2) ®(x.y) does not depend on x for x < y, x < 0;

105
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(3) for y < x < 0, the function ®(x, y) is a solution of the elliptic differential

equation
(A4.1.1) L®(x.y) =0,
(A4.1.2) oP(x.x) _
dx
(A4.1.3) ®(0,y) =0;

(4) the following relations holds on the entire plane uniformly in x:

(Ad.1.4) lim (®(x,y) - d(x)) =0,
y——0o0
where
oD oo 1 o*D 0’D o’®

Observe that the drift coefficients and the elements of the diffusion matrix satisfy
the inequalities

(A4.1.5) a>0 (i=12). dd+dd +d)>0.

In what follows. we refer to the problem defined by relations (A4.1.1)-(A4.1.4) as
problem (BP).

To solve the problem, we must rewrite the equation and the boundary conditions
in the invariant metric. This metric is defined by the scalar product (x.y) = xD =17,
where D is the d:ffusion matrix. This metric is called invariant, since the scalar
product of vectors is preserved under linear transformations diagonalizing the matrix
of the operator L. Therefore, the angles between vectors do not change under these
transformations.

ProrosITION A4.1.1. In an appropriate coordinate system xi. x; with the invariant
metric, problem (BP) is transformed to the following one: in terms of the angle

0<xycosa < x;sina. 0<a<n/2
find a function P (xi. x,) such that

A‘I’+2a—\P =0. ¥Y(x,.0)=0. o¥ =0.
de(y)

and
lim (¥(x;.x2) — (1 —exp(—2sinx,))) =0
X — 00
uniformly in x,, where | is the ray defined by the equation x;cosa = xsinea, and
e(p) = (cosp.sinp). The angles a. B.y satisfy the inequalities

-n/2<f<0. O0<y—-f<n a-p=2n/2
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Proor. Consider the diffusion matrix
~ (d+d, d
b= ( d  d+ d;_) :

The inverse matrix is given by

1 (d+d —d
a1 )
b _A< —d d+d1>’

where
A =detD = d\d> +d(d1 +d2) > 0.

The problem for the function @ is described by the vectors
=(1.0). k=(L1), r=(0.-1). g=(-a,—a)

The vector e corresponds to the reflecting direction at the line defined by k. The vector
r corresponds to the second side of the angle. The drift of the process is given by the
vector g.

The lengths of these vectors are as follows:

Alel> = (1.0)D~'(1.0)" = d, +d.
Ak* = d, +d,.

Alr> =d, +d.

Alg)* = (a) — ay)* + ajd, + did,.

The scalar products of the vectors satisfy the relations

< g> (az—al)d—(llda.

Alk.g) = —(aydy + axd)).
Alr.g) = —(ad) + d(ay — ay)).
Alk.e) = d,.
Ale.r) =d.
Alk.r) =

Then. for the angle between the vectors k and r we have

k.r)
IK]Ir|”

cos(mn —a) = —cosa =

Therefore.
d,

>0
V{d +d)(d,+ dy)

cosa =
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and 0 < a < /2. For the angle between the vectors e and r we have

d >0
Vd+d)d+d)

cosf =

Therefore —n/2 < f < 0. It is not difficult to show that

cosa <cosf. ifd <d,.
cosa =cosfi., ifd =d,.
cosa >cosf, ifd >d,.

The scalar product of the vectors g and k is not positive. Therefore, 0 <y —f <zn. O

§2. Solution of the boundary value problem (BP)

Passing to a new unknown function ¥y(x) = exp(e(y). x)¥(x), we get the following
problem:

(A4.2.1) AY, = P,

(A4.2.2) ¥o(x1,0) =0,

(A4.2.3) (% _ e,e(y))‘l’()) =0

(A824)  Jim (¥ols1.x2) - exple(y). ) +explel—7). )4 =0

where e = e(f).

The main idea of the solution is to represent the function ¥y as the sum Wy(x) =
U(x) + V(x), where U(x) is a linear combination of exponential functions, and V (x)
has an explicit integral representation. Below we consider three cases:

l.y <7 +24; 2.y >n+2p; 3.y =n+2p.
2.1. Case 1: y < n + 2B. We assume first that (= — y)/(2c) is not an integer, and
put
_|r=7
m= [ - ]

Fork =0.1..... m, we introduce the sequences of vectors

g, = e(y + 2ka). g =e(—y —2ka).

Observe that the vectors g; are obtained by the reflection of the vectors g, with respect
to the x;-axis.
Let us put

U(x) = Z Gy (e(8%) — oleex)y,
k=0
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Then the function U(x) satisfies (A4.2.1) and (A4.2.2). If C; = 1, then

lim (U(x;.x;) —exp(e(y). x) + exp(e(—y).x))e €)X = 0.

X]—00

Let us denote g = e(y) and consider the expression (AU /9e — (e.g)U) |, . We have

m

— (.U =) G((ge) - (g.€)e™¥ —((g.e) — (g.€)e&),

k=0

ou
Oe

It is not difficult to verify that (g¢.x) |; = (g _,.x)|;. Therefore,
ouU
== _(eg)U
( 5c 8 )

= e®(Clze —g.e) — Ceoi(gh_ —g.€) | — Culg), —g.e)e® .
k=1

l

Let us set
(A4.2.5) Cr(g —g.¢) = Croi(g,_, —g.e);

it follows from the condition y < = + 2§ that (g, — g.e) # Ofork = 1,...,m. Then
(A4.2.5) and the condition Cy = 1 define the function U (x) uniquely, with

k /
., —g.e
G-T[%%  oiim

o (gr—ge)
and oU
- _ U = A4e'8nX)
( Oe (e.g) ) 1 ‘
where A = —C,,(g), — g.€). The second term in the representation of the solution, the
function V' (x), satisfies the equation
(A4.2.6) AV =V
with the boundary conditions
(A4.2.7) V(x;.0) = 0.
V /
(A4.2.8) (6— - (e.,e(y))V) A,
Oe ;
and
(A4.2.9) lim e~ &Yy (x) =0

X —00
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uniformly in x,. The function V (x|, x,) is sought in the form
(A4210) V(X],Xg) = / f(S)eXp(—lel +t2+ix21)ds,

where the variables s and ¢ satisfy the relation + = sinh(2c/m arcsinhs), while the
function f (s} is continuous, odd. and satisfies the inequality

(A4.2.11) /oo It f(s)|ds < .

It is not difficult to verify that the function V' defined in this way satisfies (A4.2.6),
(A4.2.7), and (A4.2.9). Condition (A4.2.8) can be rewritten in the form

(A4.2.12) /oo F()0(s)e ") = ge=r4 . p >0,

where

O(s) =cos(f—y)+V1+1t2cosf —itsinp.

p =/ xi+xi. a=—(ela).g,).

L 2a s
{(s) =VvV1+t2cosa — itsina = cosh — arccosh -,
7 i

and

where the principal branch of the function arccosh is assumed.
Let us consider the function {(s) as a point in the complex plane x| + ix,. When s
varies from —oo to oo. the point {(s) runs over the right branch of the hyperbola

2 2
X X3

(A4.2.13) cos2a sina

while the point Q(s) runs over the right branch of the hyperbola

x? —cos(f —v) X3
21 i _ X
(A4.2.14) cos?ff sin? 8
Observe that « = —(g/,.e(a)) > cosa. and hence the point (a.0) lies inside the

area bounded by the right branch of hyperbola (A4.2.13). The function {(s) is analytic
in the interior of the right branch of the hyperbola (A4.2.13). Therefore. (A4.2.12) is
satisfied if the product f(s)Q(s) is represented as

Y. (s)

(A4.2.15) f($)Q(s) = e

where W (s) is the boundary value of a function analytic in the upper half-plane and
increasing as s — oo at most as a power function of s.
T arccosa

T
= cosh — arccosha = cos ——— > 0.
p 2a 2a
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and ¥ (ip) = —A4/(2=i). Using the fact that the function f(s) is odd, we get

o(s) _ ¥i(s)lip+s)

o(=s)  Wi(s)lip—s)

It is easy to see that Q(—s) = Q(s). Therefore, denoting by ¢(s) the continuous
branch of Arg Q(s), Ims = 0, determined by the condition lim,_ ., p(s) = —f, we
can rewrite the latter equation as

_pRiels) — ¥, (5)(’1’ + S).

(A4.2.16) ¥, (s)(ip —s)

The condition y < n+2f guarantees that the vertex of the right branch of the hyperbola
(A4.2.14) is located on the positive real semi-axis. Therefore, the function ¢(s) is odd,
and

(A4.2.17) lim o(s) = B.

§——00

Let us put

_s—ip [¥ p(o)
pils) = 5 /_Oo (J_S)(U_ip)do for Ims >0,

_s—ip [* (o)
p_(s) = i [m(a—s)(a—ip)da for Ims <0.

The functions ¢ and p_ are analytic in the half-planes Ims > 0 and Ims < 0,
respectively, and ¢ (ip) = 0. Using the fact that the function ¢ () is odd, one gets that
w_(0) = p+(—0) for Imo < 0. Therefore, according to the Sokhotsky formula (see.

e.g. [35]).

(A4.2.18) @i (s) —pi(—s) = p(s).

(A4.2.19) 0 (s) + s (=s) =2 —.ip /°° (o)

i J_o (0 —5)o— ip)da

for Im s = 0. where the integral is understood in the sense of principal value. It follows
easily from (A4.2.17) that ¢, (s) = glog |s| ass — oo (Ims > 0).
Relation (A4.2.18) implies

_e2f<p(.\‘) _ Se-’z’.‘Pb (‘) .
(—=5)2ip4(—s)
Therefore. we can take
Ai selie )
¥o(s) = 2

n ip+s
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in (A4.2.16). Indeed, since p(ip) = 0, we have ¥(ip) = —5& . and |, (s)| = O(|s|F)

2ni®

ass — oo (Ims > 0), where By = 288/n. Therefore, (A4.2.15) yields

A selivils)

Finally, it follows from the asymptotic behavior of ¥ (s) that |¢ f (s)| = O(|s|®~') as
s — o0o. Therefore, relation (A4.2.13) is satisfied.
It follows from (A4.2.18)—(A4.2.20) that

A set) 1

where

N S—ip [* ¢(o) .
W0 =2 [ e

Observe that the expression for the function g(s) can be rewritten as follows:

g(s) = © /°° (plo) —pls)os +p2) ,

(A4.2.22) ) B P Tt

Indeed, we have

s—ip/oo pla)do _l/oo (o) 1 o p J
n o o—ip)o—s) = _oocpa c—s or+p? gl4p? 7

and therefore, since the function ¢ () is odd,

1) = [ olo)( 525 ~ s Jdo

e | o
—_——_— d —
/_oo<a—s 0'2+p2> ’

in the sense of principal value, we get (A4.2.22).

Relations (A4.2.12), (A4.2.21), and (A4.2.22) provide a representation for the
function ¥ (x) in the case when (7 — y)/(2a) is not an integer.

If the number (n — y)/(2«) is integer, then p = 0. The function V(x) is again
determined by relations (A4.2.12) and (A4.2.21), and the integral in (A4.2.22) is
understood as its limit value as p — 0+.

Since

2.2. Case2: y > n+2f. Alongwith the sequences of vectors g; and g, , we consider
the sequences r; and rj, where

1, =e2r +28 —y — 2ka). 1, =e(y —2r—28 —2ka), k=01....
We assume that

n—y y-n=28 n+B-y
200 2a ' 2
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are not integers, and put

T—y y—2f—m
m = R n=\|—,-/—|.
20 | 2a
Observe that the vectors r;, are obtained by reflection of the vectors r; with respect to

the x-axis.
Let us put

m n

(A4.2.23) U(x) = Y Cle®) — e®)) 4 37Dy (o) — o)),
k=0 k=0

Then the function U(x) satisfies (A4.2.1) and (A4.2.2). If C; = 1, then

lim (U(x;.x;) —exp(e(y).x) + exple(—y).x))e €% = 0.

x| —00

Observe that (g.e) = (rg, e). Therefore, if the constants C, are given by

k /
. —g.e
C, = H (_gf_—'__g_) k=1..... m,
o (g —ge)
and Dy, satisty the equation
(A4.2.24) Dy(ry —g.e) =D;_(r,_, —ge). k=12.....n
then oU
— — (e g)U) = (Ae®™) + BenX)y |, |
< de /
where

A=—-C,(g, —ge). B=-D,(r, —g.e).

and Dy are given by

The constant Dy will be determined later.
The second term in the representation of the solution. the function ¥ (x). satisfies
the equation AV = V with the boundary conditions

V(x1.0) = 0.

= - (e-e(y))V> = —(4e®"Y) 1 B V) |,.

(A4.2.25) <3V

li

As before. the function ¥ (x). x3) is sought in the form

Vi(x).xy) = /OO f(s)exp(—x V1 + 2+ ixat)ds.
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where the variables s and ¢ satisfy the relation ¢ = sinh(2a/r arcsinh s), while the
function £ (s) is continuous and satisfies the inequality

/ [tf(s)|lds < .
According to (A4.2.25),
(A4.2.26) / F(5)0(s)e O ds = de=ra + Be~rP. p >0,

whereb = —(r/, e(a)). Observe that the points (a, 0), (b, 0) lie inside the area bounded
by the right branch of the hyperbc a

2 2
X )

cosla  sina

Then equation (A4.2.26) is satisfied, provided

1 1
f(5)0(s) =¥ (s)- . :
ip—siq—s
where

7 7L arccos a

= cosh — ha = ittt
p = cos e arccosha = cos o >0,

b
g = cosh % arccoshb = cos % >0,

and W, (s) is the boundary value of a function analytic in the upper half-plane and
increasing as s — oo at most as a power function of 5. Moreover,

Y. (ip) = —%(q -p). Yilig) = —%(p -q).

Let us consider once more the function { (s) as a point in the complex plane x; +ix,.
Since the function f(s) is odd, one can rewrite equation (A4.2.16) in the form

_2ivls) Y. (s)(ip+s)(ig+s)

(A4.2.27) ¥, (s)(ip —5)(ig —s)

It follows from the condition y > = + 2 that the origin is located within the right
branch of the hyperbola (A4.2.14). Therefore, the function ¢(s) in this case is not
odd, but instead satisfies the equation ¢(s) + ¢(—s) = —2x. Since

/Zmd”:"
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for Ims > 0, the function ¢(s) satisfies, for Im s > 0, the relations
o(s) —pi(=s) = p(s) + 7.

A42.28 s—ip [% orr
( ) pi(s) +pi(=s) = m'lp/_ (¢ f(S)zfj— ip)

where the integral is understood in the sense of principal value. Since
lim (p(s) +7) = £(8 +7),
§— 100

do,

it is easy to show that

pi(s) = n;;ﬁ log|s| as s — oo (Ims > 0).
Thus, we see that one can take
2,2 2ip.(s)
(A4.2.29) p,(s) = A" =P ¢

in S(ip+s)(iq+s)
in (A4.2.27). Obviously, | (s)| = O(|s|fo*!), s — oo, where fiy = 2f8/n. Therefore,
equation (A4.2.11) is satisfied.

Now let us determine the constant Dy. It follows from (A4.2.29) that

\P+(lq) — _A(q _p)e2i<p*(iq).

2n
On the other hand,
. B
Y. (iq) = 5, - q).
Therefore, we get
(A4.2.30) Dy = oot AP+ ) (r;—ge

(r,—g.e) L1 (rj_ —ge)

=
We point out that
. g—p [% p(o) a-p [  ¢lo)+m
pulig =12 [ B8 gk [ Lt
! 2 J_o (0 —ig)(o —ip) 2 J o (0 —ig)(o —ip)
The function ¢(o) + = is odd. Hence, we can rewrite the latter relation as
i(¢*> - p?) /°° ap(o)
2n ) (62 +¢%)(0? +p?)
Therefore, the constant Dy is real. Finally, for the function f (s) we obtain the following
expression:

a.

piliq) = do.

A(g* + p?) sedls) 1

(A4.2.31) S = = T s 06T

where g(s) is determined by

o(s) = 1 /°° (plo) —l(s))(os +p2)da_

1) (0-s)02+p?)

The cases when
=y y—n—28 n+f—y
2a 2a ’ 2a
are integers are considered using passages to the limit as p — 0+, g — 0+, p — ¢,
respectively.
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2.3. Case 3: y = 2§ + . In this case the right branch of the hyperbola (A4.2.14)
passes through the origin. The argument of the function Q(s) is discontinuous at
the point s = 0. The solution in this case can also be obtained by passing to the
limit. Taking, for example, ¢(0—) = —=n/2, »(0+) = =/2, which corresponds to
the limit value for y < 7 + 28, we find that the solution Wq(x;. x») is expressed as
¥o(x) = U(x) + V(x), where the function U is given by the formula

= Z Cr(e®X) _ o),
k=0

k ’
., —g.e
Ck:H(gLI_L)’ k=1.....m.

o (gi—ge)

and the function V is given by the formula

V(x1.x2) / f(s)exp(—x1V1+ 2 +ixat)ds.
A sed) 1
Sls) = 17zp2—|—52 0(s)
N (p(a) —p(s))(os + p?)
0= [ e

7[

Observe that the function f(s) has a singularity as s — 0: f(s) = O(s~'). The
integral in the formula for the function ¥ (x;. x;) must be understood in the sense of
principal value. Since f is odd. we can rewrite V" in the form

o0

Vix|.x2) = Zi/ f($)e ™V sintxad s,
-0

§3. Solutions of the problem in particular cases

Let f = —ko. where k is an integer. Then the term ¥ (x,.x;) vanishes. and the
function ¥ is given by

k
(A4.3.1) Yo(x) = Z Cj(e® — (&),

Jj=0

where the constants C; satisfy the relation

I(/ _
g, | —ge
C, = == 2 l=1..... k.
! H (g_,-—g.e)

j=1
and Cy = 1. Indeed. it is not difficult to verify that the function ¥ satisfies the
equation A¥y = W¥,. the boundary condition ¥y(x;.0) = 0. and the asymptotic
relation
lim (Wo(x;.x2) —exple(y). x) + exple(—y). x))e €)X =,

X|—o00
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while it follows from C;(g; — g.e) = C;_1(g)_, — g. ) that
o¥
(52 - o)

k
= ®Y(Ci(g; —ge) - Ciilg,_ —g.e)|, — Culgr —g.e)
j=1

1

= —C(cos(y + f + 2ka) — cos(f — 7).

However, cos(y + B + 2ka) = cos(f — y). Therefore, ¥, satisfies the relation

(ﬁ - (e, g)‘*‘o)

e =0.

!

The case k = 1 was indicated in [42], [58] and corresponds to a queueing system
with identical coefficients of variation of the arriving flow and service time at the first
phase. This condition is necessary and sufficient for a solution to have a product
form (for the joint limit distribution function of waiting times to have independent
components). In the case k > 1, the probabilistic meaning of the arising relations is
unclear. For example, for k = 2,

where v, v, and v, are the coefficients of variation of interarrival times and service
times at the first and second stations, respectively. In this case the solution is also
found explicitly, showing that the density of the sojourn distribution is not separable
in general.

Observe that solutions similar to (A4.3.1) appear also in problems for Reflected
Brownian Motions with a constant drift vector and a constant diffusion matrix in
planar regions of various shapes (see [47], [48]. [59]).

Finally, we observe that tandem queues provide the simplest example of a queueing
network, so any analytical insights obtained for tandem queues should be valuable for
analytic approaches to heavy traffic approximations of general networks.



This page intentionally left blank



APPENDIX V

JOINT DISTRIBUTIONS IN POISSONIAN TANDEM QUEUES

In this appendix a tandem queueing system M /M /1/ooc — M/1/cc is considered.
We study the joint stationary distribution of the waiting times W; (i = 1,2) of the
customer at the ith station and the joint stationary distribution of the number of
customers at the arrival epoch. Our aim is to prove Theorem 2.5.3.

The appendix is arranged as follows. In §1 we describe the queueing system we are
interested in. In §2 we introduce a birth-and-death process describing the behavior of
the second station and study its characteristics. The relation between this process and
the joint stationary distribution of the queue lengths at the arrival epochs is given in
the same section. The generating function of the joint queue length distribution at the
arrival epochs is treated in §3. The waiting time and the sojourn time distributions are
considered in §4. The heavy traffic transient behavior is considered in §5.

§1. Description of the queue

Consider a pair of single server queues arranged in series. We assume that customers
arrive individually from outside and queue up for service at the first station. Having
completed service there, they proceed to a queue in front of the second station, and
after completing service at the second station they depart the system. Service discipline
is FIFO at each station.

We assume that the sequences of interarrival times and service times form three
mutually independent sequences of identically distributed (i.d.) random variables.
The interarrival times /; have the exponential distribution with parameter 1

Pr{l; <t} =1—exp(—4t). t>0,

and service times at the ith station (i = 1,2) have the exponential distribution with
parameter u;. As usual, we denote the traffic intensities by p; = 4/u; and say that the
system is stable if and only if p; < 1 fori = 1,2.

Tandem queues are the simplest among the systems having the product form of the
stationary queue length distribution. We reformulate the corresponding result, usually
called the Jackson Theorem [55], in the form adapted to our particular case.

Let P(ny, ny) denote the stationary probability distribution

P(l’l],}’lz) = PI‘{N} = nl,Nz = I’lz},

where N, is the number of customers at the ith station (; = 1,2). Then N, and N, are
independent random variables and

(A5.1.1) P(ni,ny) = qiqpy' py’,

whereq; =1 —p;, i = 1,2.

119
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Let L; be the number of customers at the ith station (i = 1, 2) at the arrival epoch.
It was shown by Reich [11] that in the stationary regime

Myt u
PI‘{L] 0, Lz 0} Pr{L1 0} PI'{LZ O}/ll +,u2 i

It is clear that these random variables are dependent and the joint distribution of L,
and L, does not have the product form. It was also shown by Burke [21] and Loynes [87]
that the stationary waiting times W; of the customer at the ith station are dependent
(this follows from the equality Pr{L, = 0,L; = 0} = Pr{W, = 0, W, = 0}), while
the sojourn times U}, U, are independent. The output streams from the first and from
the second service units are Poisson (see also Kelly [68] and Yashkov [134]).

§2. Auxiliary process X (¢) and second queue behavior

Consider a “birth-and-death” process X (¢) with birth intensities x, and death
intensities 4, at each state m of the process X (¢), m = 0,1,.... We assume that the
initial distribution of the process X (¢) is given by

(A5.2.1) Pr{X(0) = m} = (1 — p2)p¥". =0,1,2.....

This process describes the stationary regime of the second station of the system during
a busy period of the first service unit.
Let
Pi(t)=Pr{X(t) = k.Y () =i}.

where Y (t) is the number of births during the time interval [0. ¢] for the process X (¢).
Our aim is to obtain a relation that relates the characteristics of the process X (¢)
and the stationary distribution of the vector (L,,L,). We denote this stationary
distribution by 7, 4: 7, = Pr{L) = i.Ly = k}.
The following lemma establishes the relation between the probabilities P; ;(¢) and
T k-

LemMMmA AS.2.1. Ifpy < land p; < 1, then

(A5.2.2) T k =mq1p{/ Pii(t)dt.
0

Proor. It is more convenient to introduce the conditional probabilities
Qix(t) =Pr{X(t) =k | Y(t) =i}.
Observe that

(A5.2.3) P (1) = Q,-,A-(t)e‘/‘"(”;_!’)i'

The probability 7, ;, can be represented as the product 7;, = p;c,(i). where p; is
the probability of finding i customers at the arrival epoch at the first node and ¢, (i)
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is the conditional probability of finding k£ customers at the arrival epoch in the second
node. However, (A5.1.1) implies

pi=qpi and ¢ (i) =Pr{l, =k|L, =i} :/ Qi.k(t)/lle_mlg:."tld
0 .

Therefore,

—yt(lult)i
e T

o0 o0
T k Zﬂlqlﬂi/ Qi () dt qulpi/ Pix(t)dt,
0 0

as required. [

We define the generating functions

oo oo
n(z1,z2) = z1 22 :E g mixzizk,

i=0 k=0

Pi.k(t)zfzéc,

]38
e

P(213227t) =

I
[=)
x~
I

i 0

where |z;| < 1, j = 1,2. Then it follows from Lemma AS5.2.1 that

(A5.2.4) n(z1,22) = mq1 P(p121, 22, 0),

where -
P(z, 22,5) = / e *'P(zy,25,8)dt.
0
Our next step is to find the Laplace transform of the function P(zy, z5, ¢).
LEMMAa AS5.2.2. The Laplace transform P(z1.22.5) of the generating function

P(zy,25,t) is given by

#2(1 = 22)P(21,0,5)(1 — pa23) — q222

A5.2.5 P(z1,2,s
( ) (z1.22.5) = (/412122 (w1 o+ 8)z2 +p2)(1 = paza)’

Proor. It is not difficult to show that the following relations hold for all # > 0:
Pii(t) = —(uy +p2) Pis(8) + paPige1 (6) + i Py i1 (1)

fori >0,k >0,
Pio(t) = —u1Pio(t) +paPi (1) fori >0,
Pox(t) = —(u1 +u2)Pox (1) + paPosr1 (1) fork >1

(A5.2.6)

Then, by (A5.2.6), the generating function P(z;, z;, t) satisfies the relation

BP(ZI,Zz, I)

% = — (w1 + u2)P(z21,22. 1) + ;Zl—jP(ZuZz, 1) +pu1z12P(z1, 23, 1)

o0
+pa(1 — zz_l)ZP,-_O(t)zl
i=0
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Taking the Laplace transforms, we get

sP(z).25.5) =P(z1.22,0) + P(z1. 22, 5)R(z1. 22)

(A5.2.7) -
+u3P(z1,0,5)(1 — 1/z,),
where p
R(z.23) = ,—j — My — Mo+ 212
Observing that
P(z,.2,.0) = Poi(0)zF = 7
(21.22.0) kZ:O 04 (0)z2 .

we get (AS5.2.5). O

§3. The joint queue length distribution

Let us denote
0(z1.22.5) :,ulzlzzz —(uy +up +85)z +po.

The generating function 7(z. z5) is described by the following

THEOREM AS5.3.1. Letn(z.z) = E(z{'z)?), |zi| < 1.i = 1.2. Then

)_,ﬂdl—mﬂl—mXA—aﬁU—pﬁﬁQ

AS5.3.1 n(z1.z2) = .
( ) @122 Q(p121.22.0)(1 — z.)(1 = p2z.)(1 = p222)
where =, = z,(z1) and z* = z*(z1) are the roots of the equation

(A5.3.2) 2122 = () +pa)z +up = 0.

These roots are continuous functions of =\ and satisfy the inequalities

7| < 1. |z"]> L

PrOOF. By (A5.2.4). we should find the Laplace transform P(p,z;.z,.0). Using
the Rouché theorem. we see that the equation

(A533) Q(.’_‘].:’z..\") =0

has a single root in the unit disk D., = {z3: |z2] < 1} when s > O and |5;] < 1. We
denote this root by z,. Note that this root depends on z; and s: z, = z,(z1.5). We
denote the second root of equation (A5.3.3) by =* = z*(zy.s). |z*| > 1. If s > 0 and
|z1] < 1 are fixed. then P(z1.z5.5) is an analytic function of -, in the disk D.,. and
Lemma AS5.2.2 yields

4oz
pa(l =z )(1 = paz.)

(A5.3.4) P(z1.0.5) =
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From (A5.3.4) and (A5.2.5) we get

> _ 42(1 “P:Z*Zz)(z* — )
(A535) P(Z],Zz,S) = Q(Zl,zz,s)(l — z*)(l —pzz*)(l ——p222)'

Observe that for s = 0 the roots of equation (A5.3.3) satisfy the relations

(A5.3.6) 2z =T
H12)
(A5.3.7) 2tz = 22
MH12]
and thus we get P(z;, 25, 0).
Observe that
5 q2(1 — prz.22) (2, — 22)
P(piz1,22,5) = ,
iz1228) = G )T = 20— paza) (L= pomd)

where z, € D, is the root of the equation Q(p;z,z3,5) = 0.

Setting s = 0 in the formula for P(p;z;,z,,0) and using (A5.2.4), we find that
the joint generating function n(z|,z;) satisfies (A5.3.1). Theorem AS5.3.1 is thus
proved. O

CoroLLARY AS5.3.1. The generating function of L, is given by

(A5.3.8) n(z) = —2
1 —paz

ProOF. Substituting z; = 1 in (A5.3.2) we get rather easily that

. Mt
A __l .
e M2
oz, 3
Besides. u
1- Zx 1 - Zx) &= —1 po
( )1 = pz.) e
and

-k

prza(z" —22) = 1 = przaca.
Substituting these terms in (A5.3.1). we obtain (A5.3.8). O

COROLLARY AS5.3.2. The covariance of the random variables L and L, is given by

~0

(A539) COV(L].LZ) = E(L]Lz) — EL]ELz = Z_———l—)—,
Zo— 1)*

where

it + V() — 4
20 = 57 .
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ProoOF. The proof of the corollary is based on formulas (A5.2.5), (A5.3.5)—(A5.3.9).
Setting z; = z; = 1, s = 0in (A5.2.5), we find

(A5.3.10) P(p1,1,0) =1,
P(p;,1,0 1
(A5.3.11) 0Pl 1.0) _ 1
0z, gy
.1
(A5.3.12) 0P(p1.1.O) _ _pr
0z, 119192
Let us denote
1 *
Az, z) = v 2 P2 ,
zx—zy  l—przo 1= przrz,
1 * X
B(zy,22) = 0 P2 0

(z* =202 0z, (1= prz22.)? 8z,

Then it follows from (A5.3.8) that

(A5313) 20 (e 2.0) = Az 22020 g, ) OPE220)
0z 0z, 0z 0z,

Setting z; = p;, z = 1in (A5.3.5) and (A5.3.6), we find that
(A5.3.14) O On _ it

321 621 H1p7

oz* oz* 1

AS5.3.15 — et —zF = ——.
( ) 0z, z 3222 P1p2

Now from (A5.3.10)—(A5.3.15) we derive a formula for the second derivative of the
generating function:

o 0 ) P2 M2

A5.3.16 ——P(p;,1,0) = + .
( ) 0z 0z, (s wqgt  Aqize(zx —1)?

Observe that

EL, =7 i=12
qi

Hence, (A5.3.9) follows from (A5.3.16) and (A5.2.4). O

COROLLARY AS5.3.3. The stationary probability nyy = Pr{L, = 0,L, = 0} is given
by
Ry

A5.3.17 oo = —_
( ) W= qg

Proor. The probability 7o satisfies the relation 7oy = 7(0,0). The root z, of
equation (A5.3.2) is given by
(A5.3.18) 7, = 12
M1+ U

for z; = 0. Substituting z; = 0, z; = 0 and (A5.3.18) in (AS5.3.1) we obtain
(A5.3.17). O
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¢4. Waiting and sojourn times distributions

In this subsection we consider the joint distribution of the waiting times W) and
W, and also the sojourn time distribution in the M/M/1/oo — M/1/oo queueing
system. The second main result of this appendix is given by

THEOREM AS5S.4.1. Lett; > 0, t; > 0. Then the Laplace transform
¥(1), 1) = Ee~"Wi=0W
of the joint stationary waiting time distribution is given by

Ay Aus Ay )
+
gttt ma+n o g+ 6)eg + 1)

(A541) \I"(tl, tz) =mo +4g (
where 7%
=1-p, =1 - p,, dg = ———.
q P 42 P2, and q PR

Proor. The proof of this theorem is arranged as follows. We introduce the station-
ary distribution of the process (L, L, S (D, w,). After that, we establish the relations
between this process and the probabilities P; (¢) introduced in Lemma A5.2.1.

Let us denote

P,-k(sl,s) = Pr{L1 =i, L= k, S(l <s, W < Sl}

where S() is the service time at the ith service station (i = 1,2). Let

2p.
Pik(sl»s):a—%éiﬂ, i>0, k>0,
1
and, fori = 0,
POk(S)zg)%a(S#S—), s>0, k=20
S

If i = 0, then the waiting time W, vanishes. Thus, all the probabilities Py (s1,s)
vanish for s; < 0 and are independent of s, for s; > 0.

The number of customers L; at the second station at the arrival epoch leads to the
distribution of the waiting time at the station. We have

Pr{Wl I S], Sz} = lim E E P,k S1, 8 Hk(Sz)
§—=200
i=0 k=0

He(t) = Pr{zk: s < z}

=1

where

and Sj(-z) is the residual service time of the jth customer at the second station. It is not

difficult to observe that all the random variables Sj(.z) are mutually independent and
have the exponential distribution with parameter x,. Then

Hi(x)=1—exp( —,uzx)z('uzx x>0, k>1

Now we can establish a relationship between the densities p;x (s, ) and the probabilities
P;;(t) introduced in Lemma AS5.2.1.
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LeMMA AS5.4.1. The probabilities P (t) and the densities pi(s1,s) are related as
Sollows:

(A5.4.2)
<) i+1—k
) _ 2 i . X —(+ 2)-“%
pik(s1.5) = uiqipi Z Piyj(s)e Z GEiR)
j=k—1
for iz21, k>1;
(A5.4.3)
] 0o . oo s
pio(Sl,S) :#%qlpi ZPivl_j(sl)e"(ﬂlﬂtz)A Z (/"’Zn')
j=0 m=j+1 ’
for i>=21;
(A5.4.4)
po(s) = miq1qap5 exp (—(uy +uz — A)s)
for k>1;
(A5.4.5)

poo(s) = piqr exp(—u1s)(1 — prexp(—(u2 — A)s)).
Proor. We start the proof of the lemma with equality (A5.4.2). Fork > 1,i > 1

we have

Pr{L, =i, Ly=k, s< SO <s+ds. 51 < Wy < sy +ds}

& (uas) 1
= q1p| Z P,-wl_j(sl)/udsl,ulexp(—ﬂls)dsexp(—,uzs)m.
j=k=1 e a

(A5.4.6)

where the term g p] represents the probability of the event {L; = i}; P;_; ;(s1) is the
probability that (i — 1) customers being served during time s; and the ith customer finds
J others at the second service station; u;ds; is the probability that the ith customer
finishes its service time during time ds,

Pr{s < S < s +ds} = uyexp(—us)ds.
and

(uas) 1+

exp(—,uzs) (] F1_ k)‘

is the probability of the event {N, = j + 1 — k}, where N, is the number of customers
that received their service during time s at the second station. One the other hand.

Pr{Li =i Ly=k.s< SO s+ds. sy < Wy <s1+dsi} = pilsi.s)dsds.

Now (A5.4.2) follows from this equation and (A5.4.6). Formulas (A5.4.3) and
(A5.4.4) are proved similarly.
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The next step is to find the distribution of the vector {L,, L,, W}, S (')}. To do this,
we define, for |z| < 1, |z2] < 1, the joint generating function

I(Z,7) = E(zf' 212 exp(—1tSW — 1, w))),

where 2 = (z1,z3), £ = (¢,11), t > 0, t; > 0, and denote the Laplace transform of the
densities p; (s1, s) by

o0 o0
pik(t, 1) =/ / e Sty (s1,s)dsdsy fork >0, i>1,
o Jo

por(t) = / e ' po(s)ds for k > 0.
0
Then
(A547) H(Z_':F) :Zzzizéﬁ,k(l,tl)-FZZé(ﬁgk(t)
i=1 k=0 k=0

LEMMA AS5.4.2. Fort 20,4 >0, |z1| < 1, |z2]| < 1 one has

-~ M1 maq1q p2z2
Iz r) = +
mrtutttu—A i tttu— Al —pz;
2
Hik291p12) M2
4 + -P plzl.i,h)
(A548) (;41+t)(/11+t+/42) ( M+t u;
2
“iqipiz) 2
+ \ a— Bz 2. 1),
(wy + ) (uy +t +up) 25 — gz

where

M2 M2
Z1.29.1 ::P Z1.29.t _4}) -, — 1 .
PB(z1.22.11) = 2P(piz1. 22 1) ntitm (Pl I P 1)

ProOF. We use the Laplace transforms of relations (A5.4.2)-(A5.4.5) to prove
formula (A5.4.8) and to compute directly the generating function I1(Z. ). It can be
easily seen that the waiting time at the second station is given by

L>
Wa =357
Jj=1

Let us put ¥(¢,. 1) = Eexp(—t, W) — ;W5); then

L
) = - W, — @) — 1. £ 0.4 ).
\P(h tz) Eexp( Hw I‘Z;SJ ) H(l htm 0.1
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It follows from (A5.2.5), (A5.3.4), and (A5.3.5) that

92
A549 Pp1,.25, 1) = .
( ) (1. 22.11) (1= poza)(uy + 1y = 4)

Using (A5.4.9), we derive by direct calculations that

o A 1
I'I(Z,t) = 700 + izqwz - s /11‘1142 - P222
— — — — Pz
(A5410) lul ﬂ2 :ul 1 Iul #2 PZ 2
mgid @n 1
it =4 l—pzp+t -4
Setting
_
Iy = ——
M+ 1
in (A5.4.10), we obtain
Ay Atz A
Y(t, 1) = mgo + ( + .
1) 1 gt g+t (g +0)(pagr + 1)

The theorem is thus proved. O

Let us consider a series of tandem queues depending on a parametere. Let A = A(g),

Hi :#i(i),and
i —A=ae+ole), a >0 1i=12

These conditions define the heavy traffic regime in our queueing system as e — 0 and
pPi — 1.

CoROLLARY AS5.4.1. The limit joint distribution of the waiting times is given by

lim Pr{i(e) < x, Wa(e) <y} = (1 - e=)(1 = =)

This statement can be proved by passing to the limit in (A5.4.1) ase — 0.

It can be easily seen that stationary waiting times are asymptotically independent
in heavy traffic. It was shown by Harrison [42], [43] and by Karpelevich and Kreinin
[58] (see also Appendix IV) that the random variables W(e), W,(e) are independent
in heavy traffic if and only if the variation coefficients of the service time and the
interarrival time are equal at the first station. It follows from this fact that the stationary
sojourn times in GI /M /1/ — M /1 /oo queues are dependent, because sojourn times
are asymptotically equivalent to waiting times in heavy traffic.

§5. Heavy traffic transient behavior

In this section, we find the generating function describing the transient behavior of
the tandem queue in the heavy traffic regime. Assume that initially the second queue
is empty and M customers are placed at the first queueing system. Our aim is to
determine the queueing length distribution of the second service station at the arrival
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epoch of the Mth customer. In terms of the transient distribution, we are going to
study the probabilities

nM(k) = Pr{Lz(‘[) =k ] Ll(O) = M,Lz(O) = 0},

where T = tj(é) is the arrival moment of the Mth customer at the second queue. The

heavy traffic regime in the queueing system is defined by the relation u; = up; = u.
Thus, the intensity of the departure flow from the first node is equal to the service
intensity at the second node.

PROPOSITION AS5.5.1. The generating function of the distribution s (k),

n(zy,22) = Z ZHM(k)lezé‘,
M

=0k=0

is given by the relation
1
21(ze = 22)(1 = 2%)

where z, and z* are the roots of the quadratic equation
q q

n(z21,22) =

5z2=2z+1=0.
These roots are continuous functions of z| and satisfy the inequalities
lz.] <1, |z¥| > 1.

The average queue length at the arrival epoch of the Mth customer at the second node
satisfies the relation

1
EM)~ —vVM.
(M) Tl
PrOOF. Let us consider the process X (). ¢ > 0, with birth intensities 4, = u and
death intensities 4, = u at each state m of the process X (¢).m = 0.1..... We assume

that the initial distribution of the process X (¢) is given by Pr{X(0) = 0} = 1. This
process describes the second queue behavior on the busy period of the first node. Let

Oumi(t) =Pr{X(t) =k | Y(t) = M. X(0) = 0}.
The probabilities 7y (k) satisfy the relation
0o t M
(k) :/0 QMk(’)/lé‘_”’%—d’

:#/w Pr{X(r) = k. Y(t) = M|X(0) = 0}dt.
0

where Y (¢) is the number of births during the interval [0.¢]. ¢ > 0. for the process
X(1).



130 APPENDIX V. JOINT DISTRIBUTIONS IN TANDEM QUEUES

The probabilities Py (1) = Pr{X(¢) = k, Y(t) = M | X(0) = 0} satisfy the
equations

AS5.5.1

( PZl,k(t) = —2uPpi(t) + uPprsr1(t) + uPi 1 x—1(t) for M >0, k >0,
Paro(t) = —puParo(t) +pPiy (1) for M >0,
Por(t) =0 for k> 1,
Poo(t) = —uPoo(t)

We introduce the generating function

c© oo ]
P(Z],Zz,t) = ZZPiAk(t)Zizf’

i=0 k=0

where |z;| < 1, j = 1,2. Then it follows from equations (A5.5.1) that this generating
function satisfies the relation

O0P(z1,25,1)

at :—Zﬂ(P(Zl,Zz,t)—P(Zl,O,l))—/IP(Z],O,t)

+E(Pz1.22.0) = P(21.0.0)) +uz12:P(21.22.1).
2

which can be rewritten in the form
OP(z1,22,1)

(A5.5.2) ot

As above, let us denote by P(z1, 2, s) the Laplace transform of the generating function
P(Zl , 22, t)I

P(z1,22.5) = /000 e *'P(zy, 25, t)dt.
Taking the Laplace transform, we obtain from (A5.5.2) that
(A5.5.3) sP(z1,z2,5) = 1 = uP(z1,22,5)R(z1,22) + uP(z1,0,5)(1 = 1/23),
where :

)

R(z1,z5) = —2+z12;.

1t follows from (A5.5.3) that

(A5.5.4) Plzy.zps) = M7 2P0 05) — 2

unzi — Qu+s)zm+u’
Using the Rouché theorem, we see that the equation

(A5.5.5) uz1z2 — Qu+s)zz+u =0
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has a single root in the unit disk D., = {z3: |z2] < 1} whens > 0and |z;| < 1.

We denote this root by z,. The second root of equation (A5.5.5) is denoted by z*,
|z*| = 1. If s > 0 and |z;| < 1 are fixed, then P(z1, 25, s) is an analytic function of z,
in the disk D., and, setting z; = z, in equation (A5.5.4), we get

Zx

P - _
(21,0,5) PO
where z, and z* depend on z| and s. Finally, we obtain

. B 1
(A5.5.6) Perns) = o e -

Note that for the roots of equation (A5.5.5) we have

1 2u+s
¥+ z, = —, z¥z, = “rs
z 1z

The generating function n(zi, z;) satisfies the relation n(zy,z;) = uP(z1,2,,0).
Hence, it follows from (A5.5.6) that

1
zi(ze — 22)(1 = z*)°

n(z1.23) =

This relation proves the first assertion of the proposition.
Let us consider the function

M
E(M) = kny(k), M=12...,
k=0
and denote by E(z) the generating function of this sequence:
E(z) = Y EM)M, |z|<1.
M=0
Then we have

1
o 2(l=z) (1 =z)

o=

For s = 0, z; = z the roots of equation (A5.5.5) satisfy the relations

1-+v1-z 1+ V1I-z

z
z z

*

and
(1 - Z*)(Z* - 1)

Il

N | o=
|
[
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Therefore, we get

- 1 _ (-2t
(A5.5.7) E(z) = z(1—z9)(1 -2z,)? 1+ Vi—z'

The asymptotic behavior of the sequence {E (M)} is related to the behavior of the
generating function for this sequence. A fundamental result in this area is the Tauberian
theorem in [33] (see also [130]), which implies

}iir}E(z)(l -z =T+ 1)&@@%.

In our case, f = 3/2. Therefore,

1
E(M) ~ W/z)m'

This relation completes the proof of the proposition. O
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Chapter 1.

This chapter contains basic results related to processes with reflection. The process
X was studied by Klimov [75], Harrison [42], Glynn and Whitt [39], Karpelevich
and Kreinin [58-61], Reiman [101], Harrison and Reiman [48], [49]. Lemma 1.1.1
was stated (in different notation) in [58]. Lemma 1.1.2 and Corollary 1.1.1 were
proved in [61]. The representation of the infinitesimal operator (1.2.17) is borrowed
from [60] (see also Harrison [43]). The process X is deeply related to the Skorohod
Reflection Problem. This problem was considered by Reiman [101] and by Anisimov
and Chabanuk [4] for Jackson networks of queues. The convergence to the process &
is provided by limit theorems in function spaces presented in Appendix II. Conditions
(1.3.3), (1.3.4), and (1.4.11), (1.4.12) generalize the corresponding relations for the
waiting time process (see [58]. [60]). Proposition 1.5.1 is new. Theorem 1.5.2 on the
convergence of the processes &4 is new as well. The uniform convergence in probability
to the process &(x,,_) (see Theorem 1.6.1) is proved for the waiting time process in
tandem queues in [59], [60].

Chapter II.

Many queues in series were considered by Glynn and Whitt [39], Harrison [42],
[46], Jackson [55], Karpelevich and Kreinin [58], [61], Kelbert et al. [63], Kella and
Whitt [68], Kipnis [73], Szczotka and Kelly [112]. Lemma 2.1.1 was proved in [5],
[61]. Theorem 2.2.1 is borrowed from [59]. For the case of tandem queues it was
proved in [58]. Theorem 2.3.3 is new. The proof is based on the approach to the weak
convergence theory presented in Appendix II. Theorem 2.4.1 is new. The case k = 1
is well known (see [15]. [40]. [58]).

Theorems 2.5.1 and 2.5.2 were proved in [59], [60]. Theorem 2.5.3 is borrowed from
[62]. The dependence of sojourn times on service times in tandem queues was studied
by Cao [132].

Queues with identical service and Poisson input flow were studied by Boxma [19].
Vinogradov [120], [121]. Makarichev [88]. The heavy traffic limit theorems for queues
with identical service were proved in [120]. [121] for the Poisson input flow. Systems
with general distributions of interarrival times were studied in [61]. Lemmas 2.6.1-
2.6.4 were borrowed from [61]. Theorem 2.6.2 was also proved in [61]. Theorem
2.7.1is due to Karpelevich and Kreinin [61]. The proof given is new. Theorem 2.7.3,
Theorem 2.7.5. and Lemma 2.7.3 were proved in [61] by using martingale techniques.
The proof of Theorem 2.7.5 is based on the approach to the weak convergence theory
presented in Appendix II.

More precise asymptotic relations for queues with identical service were obtained
by Vinogradov [120]. [121]. Unlike systems satisfying the Kleinrock condition. the

133
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stationary waiting time for systems with identical service in heavy traffic is described
by a degenerate process. For “rough” normalizations, as the one assumed in §§4—
6 of Chapter II, the stationary sojourn time for the phases 2,....m tends to zero
in probability. However, more delicate normalizations exists, such that the limit
distribution becomes nondegenerate.

The first results in this direction are due to Vinogradov [120] and apply to systems
with Poisson input flow. As initial point of this study, he used the following integral
relation involving the joint distribution of the sojourn times at the first phase and at

phases indexed by 2,3,...,k + 1. Let us denote
Fi(z,x) =Pr{U; <z, V; < x},

where U, is the sojourn time at the first phase, and V is the sojourn time of the same
customer at the phases 2, ...,k + 1. Besides, we denote

®(g. x) = / 1 dPHS <1}, algx.k)— / e~ dF,(z.x).
0 0
Let 1 be the parameter of the Poisson input flow. Then the following relation holds
(see [120]):

oo

a(q.x. k) = alg. x/k. l)exp(—(k _) /X/k q;(t)dt)

_ (1= A)(g. x/k)(gi(x/k) — ) 0
T A—q - a(q.x/k) exP(—k / N qm)dt),

where g;(x) > 0 is the unique root of the equation
A—q—®P(q,x) =0.
Let us introduce the marginal distribution
Fi(x) = Pr{V; < x}.

Then

oo

Flx) = F (x/k)exp(—<k -n [ ) (1)

_ U= AB&/Kagix/k) ([
= TBCe/k) e p( k/x/k qA(t)dt>

with B(x) = 1 — B(x) = Pr{S > x}.

Relying on these relations, the following asymptotic results were obtained for the
system with Poisson input flow in heavy traffic. Let us consider a family of multiphase
systems depending on parameter 4. Assume that the input flow is Poisson with
parameter A, mean service time equal to 1, and 4 — 1. Let us introduce the random
variables

Ur() = (-0, V) = %2
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Then the joint distribution converges weakly to the random vector

(U (4). Vi (4) P (Uy. V).

In certain cases, it is possible to write down the limit distribution of the vector
(Uy(4), V£ (4)) and to find the asymptotics of ¥} ;. For instance, let B(x) = e™*,
k = 2; then

2
1+V1+4e—>

It was shown in [121] that for 2 — 1 and B(x) = e~ one has

lim Pr{ V2, +2log(1 - 4) < x} =

EVi, ~ —klog(l — 2)%.

One can see that the limit behavior of the variables Vj ; for systems with identical
service differs significantly from that for systems satisfying the Kleinrock condition.

Several stones are left unturned. For instance, the problems of heavy traffic in-
terchangeability considered by Tsoucas and Walrand [117] for -/M/1/0o0 queues in
tandem and the stochastic ordering of tandem queues are unsolved. The comparison
problem for tandem queues with dependent and independent service times was studied
by Pinedo and Wolff [94], but the general situation was not considered. Rare events
for queues in series were studied by Tsoucas [116].

Chapter I11.

Heavy traffic approximations for queue length processes in systems with single
server were studied by Reiman [101], Harrison [42—44], Harrison and Reiman [48],
[49], Anisimov and Chabanuk [4]. The normalization condition (3.1.7) is very close to
conditions (2.3.1). Such conditions have been used in heavy traffic limit theorems for
queueing networks (see Reiman [101]), for queues with vacations (see Kella and Whitt
[65]. [66]), and for several other models. Theorem 3.1.2 is due to Reiman [101].

Departure moments from many queues in series were studied by Glynn and Whitt
[39]. Theorem 3.2.1 was proved in [39]. The strong approximations given in Theorem
3.2.2 were based on the results of Csorgo, Komlos [25]. Strong approximations have
been used previously to study queues with vacations [38], as well as other stochastic
models.

Hydrodynamic limits have been studied in physical probability models and in queue-
ing theory (see De Masi and Presutti [27], Liggett [83], Andjel [2], Andjel and Kipnis
[3], Benassi and Fouque [9], Kipnis [73]). Theorem 3.2.3 was proved in [39]. The proof
given in [39] is based on the ergodic theorem for subadditive processes and on the
theory of stochastic ordering of associated random variables (see Stoyan [110], Barlow
and Proschan [8], Baccelli and Makowski [6], Liggett [83], Berenstein et al. [10], Chang
[23], Kijima [71]).

The function y(x) describing the hydrodynamic limit satisfies the relation y(x) =
x7y (1/x) and the inequalities y(x) > 1, y(x+y) —y(x) > y. These results were proved
by Glynn and Whitt [39].

Strong approximations can be used to study the rate of convergence of waiting time
processes in heavy traffic. Bounds for the average waiting time and for the waiting time
distribution can be used to estimate the quality of approximations ( see Kreinin [79],
Stoyan [110]).
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Theorem 3.3.1 and relation (3.3.4) were proved by the authors (unpublished). The-
orem 3.3.2 is due to Glynn and Whitt [39]. The role of the max-scheme in the theory
of many queues in series is extremely important. As it is shown in Chapters I and
I11, a combination of the max-scheme and the addition of random variables describes
departure moments from multiphase queues. The max-scheme has been studied in
many papers. Rachev and Ruschendorf [98] studied the rate of convergence for sums
and maxima and doubly ideal metrics. Zolotorev and Rachev [137] studied the rate
of convergence in limit theorems for the max-scheme. A survey of modern results
can be found in Zolotorev [137]. We also mention here the monograph by Leadbeter,
Lindgren, and Rootzen [81] devoted to extremes of random sequences, and Feller’s
course on probability theory [33] as well.

Appendix L

Appendix I contains a brief review of the theory of weak convergence of stochastic
processes. This theory is presented in many monographs (see, for example, Billingsley
[11]. Skorohod [108]). The ideas and basic theorems of the theory of weak convergence
in function spaces were given by Prohorov [95]. Theorem Al.1.5 on the convergence
in distribution is used for the proof of weak convergence of functionals.

The convergence in the space D([0, T]) was considered by Skorohod [107]. The
distance (A1.2.1) in the space D ([0, T']) was introduced by Lindvall [84]. The corre-
sponding topology is equivalent to the Skorohod topology.

Other topologies have also been used in queueing theory (see [38]. [65]). The set
of operators A introduced in this section is new. The algebra of operators commuting
with A is given in this appendix for the first time. Theorem A1.2.3 is new.

The Donsker—Prohorov invariance principle is treated in a number of books and
papers [11], [95]. Several modern results can be found in Wacker [122].

Appendix II.

The weak convérgence of functionals on the half-line is considered in Appendix II.
The approach presented provides a new point of view on the theory of weak con-
vergence of functionals defined on the half-line. The circle of ideas is very close to
Borovkov [14]. The scheme of the proof of the convergence discussed in this appendix
gives a useful tool for proving weak convergence results for various stochastic models.
The construction does not depend on the form of the limit process and on the form
of the processes &;. The definition of the family of approximated functionals is given
here for the first time.

An example of a functional that does not belong to the class of approximated
functionals is based on the so-called diagonal process. The notion of an admissi-
ble functional is new. Proposition A2.3.1 containing several important facts about
admissible functionals is new as well.

Appendix IIL

Several important technical results are contained in Appendix III. Lemma A3.1.1
is borrowed from [S8]. The corresponding inequality is a generalization of the
Kolmogorov inequality for semimartingales. Inequalities (A3.2.10)~(A3.2.12) were
proved in [58]. [61].
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Appendix IV.

The general theory of boundary value problems for elliptic equations is presented
in Bitsadze [12]. The reduction to a boundary value problem given in this section is
rather standard. This technique is presented in Gakhov [35], Gakhov and Chersky [36]
and is used in many problems for partial differential equations. Very similar problems
were studied by Harrison [43], [44] for tandem queues and queues in series. Such
problems also appear for Brownian models of queueing networks with heterogeneous
populations (see Harrison [45]) and for Brownian models of open queueing networks
with homogeneous customer populations (see Harrison and Williams [50]).

Proposition A4.1.1 was given in [58] without proof. Nonseparable exponential
solutions were discovered in [58]. The solution of the boundary value problem is
borrowed from [58]. The generalizations to many queues in series were considered
by Harrison [42], Karpelevich and Kreinin [59], [60], but the problem of stationary
distribution in such systems is still unsolved when the number of phases is greater
than 2.

On the other hand, the progress achieved in this area stimulated the study of sta-
tionary distributions of the reflected Brownian motion in planar and multidimensional
regions (see Harrison, Landau, and Shepp [47], Harrison and Reiman [48], [49], Har-
rison and Williams [50], and Varadhan and Williams [119]).

Appendix V.

The general theory of joint distributions in tandem Poisson queues is borrowed
mainly from [62]. Jackson’s theorem for queueing networks was proved in [55]. Queues
with multiplicative form of the stationary queue length distribution have been studied
by many authors (see Borovkov [17], Kelly [68]). The ergodicity conditions for tan-
dem queues were proved by Loynes [87]. For queueing networks the corresponding
ergodicity theorem was proved by Foss [34] and by Rybko and Stolyar [105]. The joint
stationary distribution of the number of customers at the arrival epoch was studied by
Reich [99], [100] and Burke [21]. Exit times were studied for series of Jackson networks
by Massey [89]. Besides, Massey suggested an operator analytic approach to the study
of the stationary and transient behavior of queueing networks [90].

Theorems AS5.3.1 and A5.4.1 were proved in [62]. The heavy traffic transient be-
havior of tandem queues is discussed in section A5.5. The proof of the asymptotic
formula (A5.5.8) is based on Tauberian theorems borrowed from [33]; see also Widder
[130].

Proposition AS5.5.1 is new. Similar problems for the relaxation time in tandem
queues were studied by Blanc [13]. Yakushev [133] tried to find the joint distribution
of queue lengths for tandem queues with Poisson input flow and general service times.
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