Translations of
MATHEMATICAL
MONOGRAPHS

Volume 140

Traveling Wave Solutions of Parabolic Systems

Aizik I. Volpert
Vitaly A. Volpert
Vladimir A. Volpert

American Mathematical Society
Selected Titles in This Series

140 Aizik I. Volpert, Vitaly A. Volpert, and Vladimir A. Volpert, Traveling wave solutions of parabolic systems, 1994
139 I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, 1994
138 Yu. P. Razmyslov, Identities of algebras and their representations, 1994
137 P. I. Karpelevich and A. Ya. Kreinin, Heavy traffic limits for multiphase queues, 1994
136 Masayoshi Miyanishi, Algebraic geometry, 1994
135 Masaru Takeuchi, Modern spherical functions, 1994
134 V. V. Prasolov, Problems and theorems in linear algebra, 1994
133 P. I. Naumkin and I. A. Shishmarev, Nonlinear nonlocal equations in the theory of waves, 1994
132 Hajime Urakawa, Calculus of variations and harmonic maps, 1993
131 V. V. Sharko, Functions on manifolds: Algebraic and topological aspects, 1993
130 V. V. Vershinin, Cobordisms and spectral sequences, 1993
129 Mitsuo Morimoto, An introduction to Šato’s hyperfunctions, 1993
128 V. P. Orevkov, Complexity of proofs and their transformations in axiomatic theories, 1993
127 F. L. Zak, Tangents and secants of algebraic varieties, 1993
126 M. L. Agranovskii, Invariant function spaces on homogeneous manifolds of Lie groups and applications, 1993
125 Masayoshi Nagata, Theory of commutative fields, 1993
124 Masahisa Adachi, Embeddings and immersions, 1993
123 M. A. Akivis and B. A. Rosenfeld, Élie Cartan (1869–1951), 1993
122 Zhang Guan-Hou, Theory of entire and meromorphic functions: deficient and asymptotic values and singular directions, 1993
121 I. B. Fesenko and S. V. Vostokov, Local fields and their extensions: A constructive approach, 1993
120 Takeyuki Hida and Masuyuki Hitsuda, Gaussian processes, 1993
119 M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, 1993
118 Kenkichi Iwasawa, Algebraic functions, 1993
117 Boris Zilber, Uncountably categorical theories, 1993
116 G. M. Fel’dman, Arithmetic of probability distributions, and characterization problems on abelian groups, 1993
115 Nikolai V. Ivanov, Subgroups of Teichmüller modular groups, 1992
114 Seizô Itô, Diffusion equations, 1992
113 Michail Zhitomirskiǐ, Typical singularities of differential 1-forms and Pfaffian equations, 1992
112 S. A. Lomov, Introduction to the general theory of singular perturbations, 1992
111 Simon Gindikin, Tube domains and the Cauchy problem, 1992
110 B. V. Shabat, Introduction to complex analysis Part II. Functions of several variables, 1992
109 Isao Miyadera, Nonlinear semigroups, 1992
108 Takeo Yokonuma, Tensor spaces and exterior algebra, 1992
107 B. M. Makarov, M. G. Goluzina, A. A. Lodkin, and A. N. Podkorytov, Selected problems in real analysis, 1992

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This page intentionally left blank
Traveling Wave Solutions of Parabolic Systems
This page intentionally left blank
Traveling Wave Solutions of Parabolic Systems

Aizik I. Volpert
Vitaly A. Volpert
Vladimir A. Volpert

American Mathematical Society
Providence, Rhode Island
ABSTRACT. Traveling wave solutions of parabolic systems describe a wide class of phenomena in combustion physics, chemical kinetics, biology, and other natural sciences. The book is devoted to the general mathematical theory of such solutions. The authors describe in detail such questions as existence and stability of solutions, properties of the spectrum, bifurcations of solutions, approach of solutions of the Cauchy problem to waves and systems of waves. The final part of the book is devoted to applications to combustion theory and chemical kinetics.

The book can be used by graduate students and researchers specializing in nonlinear differential equations, as well as by specialists in other areas (engineering, chemical physics, biology), where the theory of wave solutions of parabolic systems can be applied.

Library of Congress Cataloging-in-Publication Data
Vol'pert, A. I. (Aizik Isaakovich)
[Begushchie volny, opisyvaemye parabolicheskimi sistemami. English]
Traveling wave solutions of parabolic systems/Aizik I. Volpert, Vitaly A. Volpert, Vladimir A. Volpert.
 p. cm. — (Translations of mathematical monographs, ISSN 0065-9282; v. 140)
Includes bibliographical references.
ISBN 0-8218-4609-4 (acid-free)
QA377.V6413 1994
515'.353—dc20 94-16518

© 1994 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

Reprinted with corrections, 2000

∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Information on copying and reprinting can be found in the back of this volume.

This volume was typeset by the author using \LaTeX, the American Mathematical Society’s \LaTeX macro system.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 05 04 03 02 01 00
Contents

Preface xi

INTRODUCTION. Traveling Waves Described by Parabolic Systems 1
 §1. Classification of waves 2
 §2. Existence of waves 11
 §3. Stability of waves 16
 §4. Wave propagation speed 22
 §5. Bifurcations of waves 23
 §6. Traveling waves in physics, chemistry, and biology 32

PART I. STATIONARY WAVES

CHAPTER 1. Scalar Equation 39
 §1. Introduction 39
 §2. Functionals ω_* and ω^* 45
 §3. Waves and systems of waves 51
 §4. Properties of solutions of parabolic equations 72
 §5. Approach to waves and systems of waves 85
 §6. Supplement (Additions and bibliographic commentaries) 111

CHAPTER 2. Leray-Schauder Degree 121
 §1. Introduction. Formulation of results 121
 §2. Estimate of linear operators from below 128
 §3. Functional $c(u)$ and operator $A(u)$ 134
 §4. Leray-Schauder degree 138
 §5. Linearized operator 141
 §6. Index of a stationary point 144
 §7. Supplement. Leray-Schauder degree in the multidimensional case 149

CHAPTER 3. Existence of Waves 153
 §1. Introduction. Formulation of results 153
 §2. A priori estimates 159
 §3. Existence of monotone waves 173
 §4. Monotone systems 176
 §5. Supplement and bibliographic commentaries 183

CHAPTER 4. Structure of the Spectrum 187
 §1. Elliptic problems with a parameter 189
 §2. Continuous spectrum 192
 §3. Structure of the spectrum 198

| §4. Examples | 208 |
| §5. Spectrum of monotone systems | 212 |

CHAPTER 5. Stability and Approach to a Wave

§1. Stability with shift and its connection with the spectrum	217
§2. Stability of planar waves to spatial perturbations	218
§3. Conditions of instability	225
§4. Stability of waves for monotone systems	237
§5. On the solutions of nonstationary problems	238
§6. Approach to a monotone wave	242
§7. Minimax representation of the speed	250

PART II. BIFURCATION OF WAVES

CHAPTER 6. Bifurcation of Nonstationary Modes of Wave Propagation

| §1. Statement of the problem | 259 |
| §3. Examples | 268 |

CHAPTER 7. Mathematical Proofs

| §1. Statement of the problem and linear analysis | 273 |
| §3. Stability of branching-off solutions | 295 |

PART III. WAVES IN CHEMICAL KINETICS AND COMBUSTION

CHAPTER 8. Waves in Chemical Kinetics

§1. Equations of chemical kinetics	299
§2. Monotone systems	306
§3. Existence and stability of waves	312
§4. Branching chain reactions	316
§5. Other model systems	333

Bibliographic commentaries

| | 335 |

CHAPTER 9. Combustion Waves with Complex Kinetics

§1. Introduction	337
§2. Existence of waves for kinetic systems with irreversible reactions	338
§3. Stability of a wave in the case of equality of transport coefficients	362
§4. Examples	366

Bibliographic commentaries

| | 375 |

CHAPTER 10. Estimates and Asymptotics of the Speed of Combustion Waves

§1. Estimates for the speed of a combustion wave in a condensed medium	377
§2. Estimates for the speed of a gas combustion wave	392
§3. Determination of asymptotics of the speed by the method of successive approximations	400

Bibliographic commentaries

| | 409 |
SUPPLEMENT. Asymptotic and Approximate Analytical Methods in Combustion Problems

§1. Narrow reaction zone method. Speed of a stationary combustion wave 411
§2. Stability of a stationary combustion wave 415
§3. Nonadiabatic combustion 416
§4. Stage combustion 418
§5. Transformations in a combustion wave 423
§6. Application of the methods of bifurcation theory to the study of nonstationary modes of propagation of combustion waves 426
§7. Surveys and monographs 431

Bibliography 433
This page intentionally left blank
Preface

The theory of traveling wave solutions of parabolic equations is one of the fast developing areas of modern mathematics. The history of this theory begins with the famous mathematical work by Kolmogorov, Petrovskii, and Piskunov and with works in chemical physics, the best known among them by Zel’dovich and Frank-Kamenetskiĭ in combustion theory and by Semenov, who discovered branching chain flames.

Traveling wave solutions are solutions of special type. They can be usually characterized as solutions invariant with respect to translation in space. The existence of traveling waves appears to be very common in nonlinear equations, and, in addition, they often determine the behavior of the solutions of Cauchy-type problems.

From the physical point of view, traveling waves usually describe transition processes. Transition from one equilibrium to another is a typical case, although more complicated situations can arise. These transition processes usually “forget” their initial conditions and reflect the properties of the medium itself.

Among the basic questions in the theory of traveling waves we mention the problem of wave existence, stability of waves with respect to small perturbations and global stability, bifurcations of waves, determination of wave speed, and systems of waves (or wave trains). The case of a scalar equation has been rather well studied, basically due to applicability of comparison theorems of a special kind for parabolic equations and of phase space analysis for the ordinary differential equations. For systems of equations, comparison theorems of this kind are, in general, not applicable, and the phase space analysis becomes much more complicated. This is why systems of equations are much less understood and require new approaches. In this book, some of these approaches are presented, together with more traditional approaches adapted for specific classes of systems of equations and for a more complete analysis of scalar equations. From our point of view, it is very important that these mathematical results find numerous applications, first and foremost in chemical kinetics and combustion. The authors understand that the theory of traveling waves is far from being complete and hope that this book will help in its development.

This book was basically written when the authors worked at the Institute of Chemical Physics of the Soviet Academy of Sciences. This scientific school, created by N. N. Semenov, Director of the Institute for a long time, by Ya. B. Zeldovich, who worked there, and by other outstanding personalities, has a strong tradition
of collaboration among physicists, chemists, and mathematicians. This special atmosphere had a strong influence on the scientific interests of the authors and was very useful to us. We would like to thank all our colleagues with whom we worked for many years and without whom this book could not have been written.

Aizik Volpert
Department of Mathematics, Technion, Haifa, 32000, Israel

Vitaly Volpert
Universite Lyon 1, CNRS, Villeurbanne Cedex, 69622 France

Vladimir Volpert
Northwestern University, Evanston, Illinois 60208

June 1993
Bibliography

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bac1]</td>
<td>R. D. Bachelis and V. G. Melamed, Concerning the nonuniqueness of the stationary solutions of the system of equations of combustion theory when the rate constant and the coefficient of thermal conduction and diffusion are piecewise constant, Soviet Phys. Dokl. 10 (1966), 730–733.</td>
<td>1966</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

[Bon2] _____, Non-uniqueness for flame propagation when Lewis number is less than 1 (to appear).

the, singular. e waves, existence d in.

Clarendo, motion M, s, on, M, by application M, Indian in, Combust burner, d curvature the mean, e, fronts, nd 3 of, phenomena Sovie—, related 8 index SIA phenomena, 3, d analysis, combustion Periodic SIA Lectur, of, deflagration, A of, problems one d, dy SIA d Nagumo CBM d reaction-, in mathematical competitive in partial, of, of, of, of, of, solitary stability of, bifurcation, plug models critical d, equations, of, Nonlinea, Comm 2, Stability of the porous plug burner flame, SIAM J. Appl. Math. 43 (1983), 1335–1349.

Buckmaster, The quenching of deflagration waves, Combust. and Flame 26 (1976), 151–162.

C. C. Conley and J. A. Smoller, Remarks on travelling wave solutions of nonlinear diffusion equations, Lecture Notes in Math., vol. 525, Springer-Verlag, Berlin and
BIBLIOGRAPHY

New York, 1976, pp. 77–89.

[Ema1] N. M. Emanuel’ and D. G. Knorre, Course in chemical kinetics, Vysshaya Shkola, Moscow, 1984. (Russian)

[Esc22] ———, The singular perturbation approach to flame theory with chain and competing

A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value

The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinski chemical reaction, J. Differential Equations 40 (1981), 253-278.

On propagation of concentrational waves due to nonlinear boundary effects, Factors of Variety in Mathematical Ecology and Population Genetics, Pushchino, 1980. (Russian)

V. I. Kri, Fibrillation in excitable media, Problemi Kibernetiki 20 (1968), 59-80. (Russian)

V. I. Kri, Mathematical models of cardiac arrhythmias (spiral waves), Pharmac. Ther. B. 3 (1978), 539-555.

P. S. Land, Self-oscillations in distributed systems, “Nauka”, Moscow, 1983. (Russian)

N. N. Semenov, Chain reactions, "Nauka", Moscow, 1986. (Russian)

———, Thermal theory of combustion and explosion, Uspekhi Fiz. Nauk 23 (1940), 251–292. (Russian)

, Application of the theory of rotation of vector fields to investigation of traveling waves, Proc. of the Republican Conference on Nonlinear Problems in Mathematical Physics, Donetsk, 1983. (Russian)

V. G. Voronkov and N. N. Semenov, *Propagation of cold flames in combustible mixtures containing 0.03% carbon disulfide*, Zh. Fiz. Khimii 13 (1939), no. 12, 1695–1727. (Russian)

BIBLIOGRAPHY

[Zel3] Ya. B. Zel'dovich, Theory of combustion and detonation of gases, OGIIZ, Academy of Sciences, Moscow, 1944. (Russian)

Copying and reprinting. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.