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Preface to the Russian Edition

Analysis of the limiting behavior of distributions of various functionals defined
on trajectories of stochastic processes and fields is one of the central areas in the
theory of stochastic processes. Asymptotic analysis of distributions of functionals
of general type processes has originated in fundamental articles by Ibragimov [35],
Rozanov [86], Volkonskij and Rozanov [98], Rozenblatt [85]. They were considering
problems which look especially attractive for Gaussian processes. It is so because
natural characteristics, such as the expected value and the covariance, can be used in
formulation of variants of general limit theorems. For instance, it is possible to replace
general conditions of mixing, appearing in various limit theorems, by conditions on
the behavior of spectral or covariance functions which are easier to work with. As
a result, the behavior of the distribution of the maximum of a Gaussian process can
be analyzed in considerably more detail. The role of Gaussian distribution in the
probability theory and its applications is well known, as it is also well known how
naturally and simply Gaussian distributions are described. So it is no wonder that the
theory of Gaussian stochastic processes has been enjoying such remarkable attention
during the last few decades.

A spectacular example of the interaction between general theorems and their
“Gaussian” analogs is the theory of local characteristics of trajectories of stochastic
processes. It all began back in 1949, when A. N. Kolmogorov obtained sufficient
conditions on continuity of a stochastic process. Having done that, A. N. Kolmogorov
formulated a problem of obtaining necessary and sufficient conditions for the tra-
jectories of a Gaussian process to be continuous with probability one in terms of its
covariance or spectrum. A large group of mathematicians had been attacking this
problem ever since the first work on this subject by Yu. K. Belyaev, in which he studied
analytic processes appeared in 1959. This group included V. N. Sudakov, R. Dud-
ley, X. Fernique, and others. The problem was finally solved and powerful methods
of studying Gaussian distributions were developed as a by-product. These methods
contributed not only to the problem itself, but rather to the theory in whole.

Another example of such interaction, the analysis of asymptotic properties of
functionals of supremum type, number-of-crossings type, and several other types, is
presented in this book. The first “Gaussian” result obtained after the above-mentioned
paper by V. A. Volkonskij and Yu. A. Rozanov was a Poisson limit theorem for the
number of high excursions without the condition of strong mixing. Yu. K. Belyaev and
H. Cramer were the first to prove it. Follow-up results in this and related directions
were obtained by M. P. Leadbetter, V. P. Nosko, J. Pickands, G. Lingren, S. Berman,



X PREFACE TO THE RUSSIAN EDITION

and several others including the author of this book. A fairly complete literature
review on this subject can be found in articles [72] and [63].

Even though this subject has constantly been in the area of interests of many math-
ematicians and researchers who use the theory of stochastic processes in applications,
a significant number of natural and principal questions is still unanswered. What is
the broadest class of Gaussian processes and fields for which the exact asymptotic
behavior of P(sup X (¢) > u) as u — oo can be found? What are correction terms
for this asymptotic in u, and also for the asymptotic behavior in the case of processes
approximating Gaussian in a array scheme? What is the rate of convergence in the
limit theorem for the maximum of a trajectory of a Gaussian process or field? How
correction terms should be chosen in a array scheme of convergence to a Gaussian
process? (The last two questions, in particular, are important for a non-parametric
construction of confidence domains for distribution densities and for surfaces of re-
gression.) Is it possible to find necessary and sufficient conditions in a Poisson limit
theorem for high excursions of Gaussian processes? What correction terms do we have
there? How can we associate conditions of mixing with a natural for Gaussian process
conditions on the rate of decreasing of its covariance function?

New methods of asymptotical analysis of Gaussian processes and fields are sys-
tematically developed in this book. These methods allow us to obtain almost complete
solutions to several basic problems (including those listed above) which concern the
analysis of the limiting behavior of supremum type and number-of-crossings type
functionals of Gaussian process and field trajectories.

Even though this book is targeted at mathematicians, one can find a large number
of asymptotic formulas inside, useful in mathematical statistics applications, reliability
theory, theory of rough surfaces, other areas of applications of stochastic processes.

All results presented in the book have been thoroughly discussed at the seminar
“Selected problems of the theory of Gaussian processes and fields”, which has been
running in Moscow State University for many years. It is my pleasure to thank
all participants of this seminar. Some of the participants are also co-authors of
results presented here. Special thanks go to the seminar’s head, my teacher Yurii
Konstantinovich Belyaev. It is to a large extent his responsibility that this book has
has been written.

Let us comment on some notations.! Letters L and C, with sub-, super-scripts
or without, usually denote the constants exact form which is of no importance to us.
Different constants may look alike for that matter. The object of analysis is a random
element X (¢) = X (¢, w) defined on T x Q, where (Q, %, P) is our primary probabilistic
space, (T, p) is a parametric metric space, usually a subset of R” or Z”. Conditions
imposed on the distribution of X (¢) always guarantee the existence of a version with
almost surely (a.s.) continuous trajectories, and this version is always considered.

!See also the Preface to the English edition.



Preface to the English Edition

I was pleased to find out that the American Mathematical Society had decided to
publish an English variant of my book. But it also reminded me that serious revision of
the book was in order. Two reasons for that deserve to be mentioned. First, the general
theory of Gaussian processes, as well as some of the aspects of the book itself, has
undertaken significant changes from the moment of appearance of the original variant
of the book, and I could not keep these changes out of the book. Second, the book
was written as a “large article” with proofs comprehensible only by a small number of
specialists. This style was deemed unsuitable by the publisher of the translation, as well
as by me at the time we started talking about this project. Out of this discussion a new
“one-dimensional” chapter, the Introduction, has emerged. This chapter was designed
to be accessible by a wide audience, including upper-division students in mathematics.
And, hopefully, it is. So, there are different strategies in attacking this, not at all
easy, book. One reader can go through the Introduction alone, and then refer to the
results in the main body with some understanding of where they basically come from.
Another reader may be dissatisfied with incomplete proofs in the Introduction and read
the whole book. The reader will be rewarded by a deeper understanding of the theory
and will find a lot of interesting ideas not presented in the Introduction. Besides, if
a multi-dimensional case were just a technical generalization of the one-dimensional
one, it would not be worth publishing anyway.

Furthermore, the method of double sum was in its infancy when the book first
appeared in Russian, even though potential advantages of this method were pretty
much understood. By now, a lot of new results have been gathered, and the under-
standing of the method has significantly improved. It all forced me to rewrite the
corresponding chapter completely, even though I tried to keep factual material (the
results) as unchanged as possible. The remaining chapters were touched to a smaller
degree. The results were just left unchanged, because even today they are unbeaten,
and their proofs have been available only in Russian. In particular, it is true for
the asymptotic integral-geometric expansion of the probability of high excursion of
a stationary Gaussian field, for necessary and sufficient conditions in a Poisson limit
theorem for large deviations of arbitrary Gaussian functions in discrete time, for the
Rice method in a central limit theorem for sums of stochastic processes, and so on.

Other changes include additional titles in the bibliography; however, we keep intact
the idea of having only the sources to which proofs refer, or with original proofs. Rare
exceptions were made for titles with extensive bibliographies.

xi



xii PREFACE TO THE ENGLISH EDITION

It is my pleasure to thank the American Mathematical Society and, in particular,
S. I. Gelfand for his extensive help and remarks on the general plan of the translation.
My thanks also go to the translator, V. V. Piterbarg, whose job was not made any easier
by me making extensive revisions of the book, even though the electronic means of
communication between Russia and America worked surprisingly well. I am grateful
to V. Fatalov for his help in preparing the second chapter. I welcome your remarks
and suggestions, in particular on the chapter “The Method of Double Sum”, which is
growing into a separate book.
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