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Preface to the English Edition

This volume is an English translation of my textbook on Riemannian geometry
originally written in Japanese and published in 1992 by Shokabo, Tokyo. I wrote
the Japanese edition mainly because at that time there were no textbooks written
in Japanese that introduced modern Riemannian geometry to advanced undergrad-
uate and graduate students and that could also serve as a reference. On the other
hand, there are many textbooks and monographs on Riemannian geometry written
in Western languages at various levels and treating a variety of topics. I have con-
sulted them, and I have been influenced especially by the books by M. Berger and
A. Besse, J. Cheeger and D. G. Ebin, and W. Klingenberg.

Now let me mention the points on which I put emphasis in the present volume.

(1) After reviewing fundamentals on differentiable manifolds in Chapter I, I try
to explain the fundamental notions and results of Riemannian geometry in Chapters
IT and III with particular emphasis placed on understandability and readability,
since, in my teaching experience, many students find it difficult to grasp Riemannian
geometry on their first try.

(2) In the remaining chapters, among various topics in Riemannian geometry I
am mainly concerned with the comparison methods and their applications. I take
an approach using Jacobi fields to comparison methods in Chapter IV, and give
their applications to the relation between the curvature and topology, geometric
inequalities, and spectral geometry in Chapters V and VI.

In principle, I faithfully translated the Japanese edition, except for correct-
ing small errors and adding a few comments on further developments. However,
Appendix 6 on Gromov’s convergence theorem and the collapsing of Riemannian
manifolds has been expanded and revised considerably. I also added more refer-
ences and notes on the references to each chapter, although they are still far from
being complete.

I would like to express my gratitude to K. Grove, H. Karcher, A. Katsuda, W.
Klingenberg, R. Porter, and W. Tuschmann for useful suggestions and advice. I
also thank K. Shimakawa for helping me with the ApS-IATEX typesetting.

Takashi Sakai
May, 1995
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Preface

In this volume we give an exposition of the fundamental concepts and results of
Riemannian geometry, and explain especially the ideas called comparison methods
and their applications, assuming some fundamentals on differentiable manifolds.

First we briefly mention the birth of Riemannian geometry. In his “Elements”
(Stoicheia), Euclid (Eukleides) systematically arranged many facts of elementary
geometry that had long been known, taking an axiomatic viewpoint for the first
time. Namely, defining the notions of point, line, plane, angle, etc., and describing
some of the most fundamental relationships among them as the axioms (or postu-
lates), he systematically deduced, through strict logic, other marvelous geometric
facts (propositions, theorems) based on the axioms. From an axiomatic viewpoint
it had been suspected ever since the age of Euclid that the fifth postulate, which
is equivalent to the statement that for a given line [ and a point p in the plane
there exists a unique line parallel to ! through p, could be proven from the other
axioms. After various attempts over more than 2,000 years, some people began to
suspect that a new geometry might be developed by the denying the fifth postulate
and leaving the remaining axioms as they stand. Jénos Bolyai (1832) and N. L.
Lobachevsky (1830) were the first who published their new geometry. Gauss him-
self also reached the same conclusion, but did not publish since he feared that false
controversies might be caused by misunderstandings.

The discovery of non-Euclidean geometry brought about serious examinations
of the foundations of geometry and the concept of space. For instance, Gauss
measured the inner angles of a triangle whose vertices where the summits of three
high mountains far apart in Germany, and tried to judge which geometry reflects
the real world.

Under these circumstances G. F. B. Riemann proposed in 1854 an epoch-making
view in his Habilitationsschrift, “Uber die Hypothesen, welche der Geometrie grund-
liegen”, submitted to Gottingen University. Namely, instead of taking an axiomatic
viewpoint, he proposed to consider more general “Mannigfaltigkeiten” (manifolds),
which are locally homeomorphic to Euclidean space of a fixed dimension and “spread
out” manifold. Then he discussed how to measure the length of curves, the dis-
tance between two points, the angle between vectors, etc., on a given manifold,
and introduced the notion of a Riemannian metric inspired by the surface theory
of Gauss. Further, Riemann defined the notion of the (sectional) curvature of a
Riemannian metric in terms of the Gauss curvature of a surface. Then he noted
that the sectional curvatue of a Riemannian metric is constant if and only if fig-
ures are freely movable in a manifold without expansion or contraction. He also
pointed out that, for manifolds of constant curvature k, the flat case (i.e., k =0)
describes Euclidean geometry, and the negative constant curvature case describes

xi
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the non-Euclidean geomtery of Bolyai and Lobachevsky. Manifolds of positive con-
stant curvature correspond to the elliptic non-Euclidean geometry of Riemann. It
was reported that old Gauss, who attended Riemann’s lecture, was deeply touched.

Thus a completely new and huge field of geometry opened. Riemann’s idea was
first developed by G. Ricci, T. Levi-Civita, and other people as an absolute differen-
tial calculus for tensors, which seemed rather formal. However, such tensor calculus
turned out to provide a needed mathematical tool when Einstein established his
general theory of relativity with a gravitation field in 1916, and Riemannian geom-
etry was highlighted.

Subsequently Hermann Weyl and Elie Cartan took a more general view of the
connection, and unified Riemann’s idea and F. Klein’s program interpreting geome-
tries in terms of transformation groups. S. Cohn-Vossen, W. Blaschke, and others
studied the global properties relating the metric invariants to the topology of the
surface. H. Poincaré, G. D. Birkhoff, M. Morse, J. Hadamard, E. Hopf, and oth-
ers worked on various properties of geodesics from different standpoints. H. Hopf
studied the global properties of spaces of constant curvature, and E. Cartan orig-
inated and made an extensive study of the symmetric spaces, a remarkable class
of Riemannian manifolds. Through all this essential work Riemannian geometry
was linked to various fields of mathematics (e.g., dynamical systems, calculus of
variations, topology), and it was recognized that the relation between local prop-
erties (e.g., curvature) determined by the metrics and global properties related to
the whole structure of manifolds are important objects of the investigation. Also
the notion of differentiable manifolds was defined rigorously in the terminology of
modern mathematics by H. Weyl and H. Whitney, and the fundamental concepts
of manifolds and Riemannian geometry were consolidated. For instance, H. Hopf
and W. Rinow defined the notion of completeness of a Riemannian metric, through
which the global notions were established.

In the present book, after reviewing fundamentals on differentiable manifolds in
Chapter I, we treat with care some fundamental concepts and results of Riemannian
geometry in Chapters II and III. Especially, we explain the notions of geodesic,
Jacobi fields, and curvature together with many examples in Chapter II, and some
global concepts and results of Riemannian geometry, which are mainly related to
geometry of geodesics, in Chapter III. I hope that the reader may grasp Riemannian
geometry in outline through Chapters IT and III.

Modern Riemannian geometry has been developed in many branches from var-
ious viewpoints mainly as geometry on manifolds, and it is impossible to cover all
topics in a textbook. In the present volume we are mainly concerned with the
comparison methods and their applications in Chapters IV, V, and VI. A complete
simply connected Riemannian manifold of positive constant curvature § is isomet-
ric to the sphere of radius 1/v/6. H. Hopf conjectured that a complete simply
connected Riemannian manifold whose sectional curvature is not necessarily equal
to a positive constant but remains close to a positive constant is still topologically a
sphere. Then H. E. Rauch established this fact in his epoch-making paper in 1951.
M. Berger and W. Klingenberg improved and developed Rauch’s idea, and got the
best possible sphere theorem for the case where the ratio of the minimal and the
maximal value of the sectional curvature is greater than 1/4. Through their work
and work of D. Gromoll, J. Cheeger, E. Ruh, K. Shiohama, P. Eberlein, K. Grove,
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H. Karcher, and other geometers, great progress has been made in studying the rela-
tion between metrical invariants and global properties of Riemannian manifolds. In
particular, comparison methods, which compare a given Riemannian manifold with
a standard Riemannian manifold of constant curvature in terms of some geometric
invariants, were developed. In Chapter IV we state these comparison methods in a
unified manner in terms of Jacobi fields. Then we apply these methods to the rela-
tion between curvature and topology of Riemannian manifolds in Chapter V, and
to the inequalities among geometric invariants and spectral geometry in Chapter
VI. On the other hand, since the fields treated in Chapters V and VI are still in
rapid progress, we cannot state in detail the front line of current research in this
textbook. However, in Appendix 6 we mention some of M. Gromov’s ideas, which
have been one of the main sources promoting the recent development of Riemannian
geometry, and have inspired many excellent young geometers.

On the other hand, we cannot state in detail the applications of dynamical
systems, partial differential equations, etc. to Riemannian geometry, e.g., minimal
submanifold, harmonic map, heat flow, etc. For these topics the reader may consult,
e.g., Hajime Urakawa’s book [Ur-2].

I would like to express my gratitude to Professor S. Murakami, who invited me
to write this book, and to Mr. S. Hosoki of Shokabo Publishing Company for his
kind cooperation.

In concluding the preface, I would like to remember the late Professor Shigeo
Sasaki, under whose guidance I began to take an interest in Riemannian geometry.
Professor Sasaki was one of the pioneers of modern differential geometry in Japan,
and emphasized the importance of studying global problems that are also related to
other fields of mathematics. He himself did much pioneering research on Riemann-
ian geometry. He passed away in the summer of 1987, when I began to prepare the
present book. During the writing I often wished that he were still alive to advise
me, and often recalled his enthusiasm for mathematics and his great personality.

Takashi Sakai
April, 1992
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normal bundle, 20, 47, 59, 72, 215
normal coordinate system, 33, 37, 41, 78,
110, 263
null set, 63
null space, 5, 92, 98, 110

o

o.n.b. (orthonormal basis), 4

one parameter group of (local) diffeomor-
phisms, 9

one parameter subgroup of a Lie group, 13

O’Neill formula, 75

orientable, 20, 62, 106, 123, 142, 324

orthogonal transformation (matrix), 4, 13,
19, 198

P

parallel, 29, 30, 228
— translation, 29, 31, 121, 139, 175

partition of unity, 6, 25, 62

¢-family, 294, 300

((6)-) pinched, 202

Poincaré model (of hyperbolic space), 52,
230

point at infinity, 230

Poisson summation formula, 287

polar coordinate, 65, 78

pole, 222

polynomial growth, 194, 195, 309

principal curvature, 47, 49, 159, 189, 310

projection (of vector bundle), 15

projective space, 186, 187, 207



complex —, 76, 131, 186, 238, 286, 292
real —, 20, 105, 140, 186, 262, 285, 286
proper (map), 8, 68, 308

R

Radon measure, 61, 63
rank
— of a manifold of nonpositive curvature,
237
— of a symmetric space, 188
Rauch comparison theorem
(R.C.T. (I), (II)), 149, 150, 215, 223, 244
ray, 174, 189, 229, 230
Rayleigh quotient, 266, 268, 276, 280
regular curve, 25, 38
regular value, 10
de Rham
— theorem, 302
— decomposition theorem, 129, 180, 182
representation, 14, 140
Ricci curvature, 44, 45, 66, 144, 155, 156,
157, 159, 183, 184, 194, 195, 218, 220,
221, 247, 249, 252, 275, 278, 280, 289,
308
Ricci tensor, 44, 79, 120, 121, 180, 289
Riemannian
— covering, 24, 68, 113, 116, 117,
132, 139, 193, 220, 286
-— manifold, 23
— manifold with boundary, 70, 265
— metric, 23, 24
— (direct) product, 24, 68, 87, 122, 129,
131, 218, 224, 237, 286
— submersion, 25, 56, 66, 74, 76, 131, 217,
224
— symmetric pair, 184
right translation, 12
rigidity theorem, 207

122,

S

Sasaki metric, 56, 58, 68, 79, 132, 160, 253

scalar curvature, 46, 66, 79

Schur lemma, 46

second fundamental form, 47, 49, 132, 146,
232, 310

second variation, 91

— formula, 90, 98, 110, 141, 198, 222, 263

section, 17

sectional curvature, 43, 44, 48, 75, 101, 144,
149, 150, 152, 153, 154, 155, 160, 176,
183, 184, 201, 212, 221, 304

semisimple Lie group, 180, 183, 184

shape operator, 47, 58, 80, 91, 143

shortest curve (see also minimal geodesic),
37, 39

simple point, 217

INDEX

357

slice, 10
Sobolev space, 265
— constant, 286
— theorem, 265
soul, 217, 238, 321
space form, 138
special
— linear group 13
— orthogonal group, 13
— unitary group, 13
spectrum, 269, 284
sphere, 14, 19, 49, 79, 105, 123, 139, 157,
252, 270, 275, 280, 285
sphere theorem, 201, 210, 211
Grove-Shiohama, —, 204
stationary curve, 38, 90
Stone-Weierstrass theorem, 272, 273
subbundle, 10, 15
subharmonic function, 218, 300
submanifold, 8, 19
submersion, 8, 14, 19
support function, 217, 301
supporting half-space, 172, 190
symmetric space, 175, 185
— of compact type, 182, 183, 207
— of Euclidean type, 182
— of noncompact type, 182, 183, 184, 187,

188
symplectic
— form, 5, 18, 57, 260
— group, 19

— manifold, 18
— vector space, 5, 19
Synge theorem, 197-198

T

tangent
— bundle, 7, 20, 53, 79, 132
— cone, 171, 190
— space, 7
— vector, 7
tensor, 2
— bundle, 16
— field, 17, 30
— product, 1, 16
— space, 2
Toponogov comparison theorem
(T.C.T. (1), (11)), 161, 202, 206, 208, 212,
215
torsion tensor, 18, 28
torus, 13, 20, 105, 121, 131, 138, 199, 261,
273, 286
total space, 15
totally geodesic (submanifold), 48, 75, 79,
136, 151, 168, 171, 190, 208, 215, 235
totally umbilic, 147
transitive, 14, 120, 121, 175



358

transvection, 176

U

uniformly, 194
— compact, 306
unit tangent bundle, 23, 55, 253
unitary group, 5, 13, 19
universal covering space, 117, 155, 193, 194

A\

variation, 35, 37, 88, 131
— of a curve, 35
— vector field, 37, 88, 131

piecewise C° —, 37
variational completeness, 178
vector

— bundle, 15

— field, 8

— space, 1

vertical space, 25, 53, 74
visibility manifold, 239
volume, 4, 63, 64, 68, 131, 160, 221, 241,
243, 244, 252, 280, 284, 304
— element, 63, 80
— of a metric ball, 65, 155, 156, 189

w

warped product, 224
Weingarten formula, 48
Weitzenboeck formula, 303
Weyl asymptotic formula, 273, 274
Whitney

— sum, 16, 20, 47

— theorem, 8, 25, 86
Wiedersehens manifold, 261
word-length, 194, 237
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The author’s intent behind this book was to provide to advanced under-
graduate and graduate students an introduction to modern Riemannian
geometry that could also serve as a reference. The book begins with an
explanation of the fundamental notion of Riemannian geometry. The
remaining chapters deal with various topics in Riemannian gcometry,
with the main focus on comparison methods and their applications. A
special feature of the book is an appendix, which has been considerably
revised and expanded as compared to the original Japancse edition. on
the collapsing of Riemannian manifolds and Gromov’s convergence
theorem.

With special emphasis placed on understandability and readability and
with many problems included, the book is suitable as a text for a course
in differential geometry for well-prepared and motivated graduate
students. It can also serve as a good reference for a practicing mathema-
tician interested in Riemannian geometry.
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