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Preface

The asymptotic properties of the likelihood ratio play an important part in
solving problems in statistics for various schemes of observations. Wald [195, 196]
and Le Cam [168, 169] were the first to commence developing asymptotic methods
in mathematical statistics based on asymptotic properties of the likelihood ratio. At
first, sequences of independent random variables were considered using the central
limit theorem for the logarithm of the likelihood ratio. These investigations gave
rise to the notion of the local asymptotic normality (LAN) of a family of probability
measures generated by observed random variables [169]. Later on H4jek and Siddk
[14], Chibisov [125], Roussas [110], Ibragimov and Has'minskii [40], Dzaparidze
[29], and others developed a rather general asymptotic theory of parameter estima-
tion and hypothesis testing based on asymptotic properties of the likelihood ratio
for sequences of mutually dependent random variables.

The extension of statistical methods to time-continuous stochastic processes
attracted the attention of many scientists. Among the first works in this field was
the work by Ulf Grenander [24], which marked the beginning of active research on
developing statistical methods for Gaussian and stationary processes [2, 32, 37, 40,
41]. Many asymptotic methods for estimating Gaussian diffusion-type processes
based on the LAN property can be found in the book by Ibragimov and Has'minskii
[40]. The extension of the asymptotic methods of mathematical statistics based on
the central limit theorem and the LAN property to non-Gaussian and nonstationary
stochastic processes gave rise to new ideas in the theory of stochastic processes.

In recent years convenient formulas for densities of probability measures gen-
erated by stochastic processes were obtained and limit theorems for various sto-
chastic processes were proved. Eventually, the asymptotic methods became an
important tool in studying diffusion-type [57, 62, 68, 103] and counting [57, 71,
78, 183, 186] processes, processes with independent increments [73, 129, 163,
199], Markov processes [77, 132, 162, and semimartingales [83, 84, 119, 166].

In this book we describe the asymptotic methods for parameter estimation and
hypothesis testing based on asymptotic properties of the likelihood ratio in the
case where an observed stochastic process is a semimartingale. Semimartingales
form a rather wide class of stochastic processes, which include diffusion-type and
counting processes, processes with independent increments, Markov processes, and
others. In this book we consider only right-quasicontinuous semimartingales. This
limitation allowed us to simplify the presentation of the asymptotic method and to
make it accessible to engineers.

As was observed by Chibisov (see the corresponding remark in [110]) and Ibrag-
imov and Has’minskii [40], the asymptotic method developed by Wald and Le Cam
is rather general by its nature. It can be applied to any model of observations for
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which the likelihood ratio possesses the properties required by this method. There-
fore, further development of the method of Wald and Le Cam and its application to
particular models of observations reduce to finding specific restrictions that must
be imposed on the likelihood ratio. In many cases these restrictions appear to
be common to a variety of schemes of observations. Following [40], this fact was
substantially used in this book. When discussing any statistical problem, we first
deduce general results for observations of arbitrary nature and then modify them
to the case of observations of martingales. Thereafter these results are applied to
diffusion-type and counting processes, which are, in this book, the main models for
demonstrating the efficiency and checking the correctness of our theory. The choice
of these two particular schemes of observations is justified by their importance in
solving various statistical problems [12, 47, 50, 101, 120, 190].

Chapter 1 contains general basic notions and results for stochastic processes,
which are used throughout the rest of the book. The facts concerning the notion
of a martingale and its generalizations are given. Certain classes of stochastic pro-
cesses are introduced. Random measures; stochastic integrals with respect to local
martingales, random measures, and semimartingales; and other notions are defined.
The Itd formula for semimartingales and the Lenglart inequality are presented. Sta-
tistical experiments generated by observations of semimartingales are introduced,
and formulas for the likelihood ratio are given. Limit theorems for semimartingales
and, in particular, central limit theorems for local martingales are formulated.

Chapters 2 and 3 are devoted to the problem of distinguishing between two sim-
ple statistical hypotheses. In Chapter 2 a general scheme of statistical experiments
is considered. Certain types of asymptotic distinguishability between families of
hypotheses are introduced. These types are characterized in terms of the likelihood
ratio, Hellinger integral of order £, Kakutani—Hellinger distance, and the distance in
variation between hypothetical measures, etc. The problem of complete asymptotic
distinguishability is discussed. In the case of complete asymptotic distinguishabil-
ity the behavior of error probabilities in the Neyman—Pearson test is investigated
for various kinds of behavior of the likelihood ratio; namely under the following
conditions: the law of large numbers is fulfilled, the theorem on large deviations
of the logarithm of the likelihood ratio holds, properly centered and normalized
logarithm of the likelihood ratio weakly converges. In the case of continuous fam-
ilies of hypotheses the behavior of error probabilities of the Neyman—Pearson test
is investigated, provided the likelihood ratio weakly converges to some law under
the null hypothesis. Asymptotic expansions of the likelihood ratio are considered
for contiguous and noncontiguous families of hypothesis. At the end of Chapter 2
two reductions of the problem of hypothesis testing are considered. These reduc-
tions make it possible to take into account the behavior of the sets of singularity of
hypothetical measures.

In Chapter 3 the results of Chapter 2 are used in statistical experiments gen-
erated by observations of semimartingales. All restrictions are formulated in pre-
dictable terms: either in terms of triples of predictable characteristics of semi-
martingales or in terms of Hellinger processes of order . Both the nonparametric
case where there are two triples of characteristics and the parametric case where
there is a family of predictable characteristics of a semimartingale that depend on
an unknown parameter are considered. The results obtained are applied to studying
various particular cases of diffusion-type and counting processes.
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In Chapters 4 and 5 some problems of asymptotic estimation of unknown pa-
rameters are considered. In Chapter 4 the general limit theorems on asymptotic
properties of maximum likelihood and Bayes estimates obtained by Ibragimov and
Has'minskii [40] for observations of an arbitrary nature are applied to observations
of semimartingales. The results obtained are used for studying diffusion-type and
counting processes. In Chapter 5 an unknown parameter is assumed to be random,
and under this condition certain information-theoretic problems of estimation of
parameters are considered. The asymptotic behavior of the Shannon information
contained in an observation of the unknown parameter is studied, and various meth-
ods of obtaining lower bounds for Shannon information contained in a statistical
estimate for the unknown parameter are described. Based on these results, many
informational inequalities for risk functions of statistical estimates analogous to the
well-known Cramér—Rao and Héjek inequalities are derived. The results obtained
are applied to general schemes of observations of semimartingales.

Clearly, it is impossible to consider all the problems of statistics of stochastic
processes in one book. For example, we do not mention the problem of complex
hypothesis testing, which is close to the results of Chapter 4. Some interesting
results obtained in this area can be found in the works by Roussas [110], Ingster
[42, 44], Burnashev [11], and others. In this connection the somewhat obsolete
review [6] should also be mentioned.

The problems of statistics for the semimartingales that are not left-quasiconti-
nuous have not been considered at all. The effect of the sets of singularity of
hypothetical measures has not been discussed in detail: there is only one section
devoted to the reduction of the problem of hypothesis testing. The important
problem of applying the results of Chapter 5 to the study of asymptotic sufficiency
has been omitted altogether.

The bibliography at the end of the book does not pretend to be complete.
However the author tried to mention all the works that have played a significant
part in the development of asymptotic methods in statistics of stochastic processes.
For the English edition, the list of references was enlarged and the Bibliographical
Notes revised.



This page intentionally left blank



Basic Notation

A= (AY) ..o, matrix with elements A%

A= (AT the transpose of a matrix A

[Al oo the norm of a matrix A, |A| = (Tr AA")!/?

alNb........... . the minimum of two numbers a,b € R, a A0 = —a™~

aVb.................... the maximum of two numbers a,b € R, aV 0 =a"

B(A) oo the Borel o-algebra of subsets of A, B(R*) = B*,
B(RE) =Bk, Bl = By, B =B, B(R,) = B,

D, ]5, Dy.............. variances with respect to measures P, E’, P,

det A ...l determinant of a matrix A _

E,E,Ey ol expectation with respect to measures P, P, P,

f=)eex oo, a function defined on X

I the unit matrix of order k

LYIP) oo the distribution law of a vector Y with respect to a
measure P

N the set of positive integers

N(@,B).cooovoiiiiiiit. the normal (Gaussian) law with vector of means a and
covariance matrix B

P<Q. ..ol absolute continuity of a measure P with respect to a
measure Q

PrQ.oe equivalence (mutual absolute continuity) of measures P
and Q

PLQ....coooi i singularity of measures P and Q

Pilimy oYy =c....... means that lim;_, ., P*{|Y; —c| > e} =0foralle >0

R: k-dimensional Euclidean space with a fixed orthonormal
basis with points x = (z!,2%,...,2%)", R} = R,
R*\ {0} =R, R =R, R, =[0,00), Ry = [0,]

TrA.. .o the trace of a matrix A

2] e e the norm of a vector x € R* for p € (0,0),
jaly = (S o) "7, lalz = lal

(Tyy) oo scalar product of vectors z,y € RF, 2'y = (z,v)

09 the Kronecker delta

Afg i a jump of a function at a point z € R, Af, = fo — foe

(QF,P) et a probability space, where (2 is a set of points w; F, a
o-algebra of subsets of 2; and P, a probability measure
on F

XA oeeeeenee e the indicator function, x4 = x(A4) = (xz(4))zex

Xa(A) oo the indicator of a set A, x,(A4) = x(4; 1)

O the symbol of the end of a proof (Q.E.D.)

xiii



xiv BASIC NOTATION

Classes of stochastic processes

M. class of all uniformly integrable martingales

Mo class of all martingales

ME class of all uniformly integrable continuous martingales

M class of all continuous martingales

ME class of all uniformly integrable purely discontinuous
martingales

Md ..................... class of all purely discontinuous martingales

2 _ :
M ={{eM: 0 .. class of all uniformly square-integrable martingales
SupteR+ E[&|* < oo}
={¢eM: . class of all square-integrable martingales
E|£¢|2 <o Vte R+}

YV class of all adapted right-continuous nondecreasing
processes A with Ap = 0 and A; < oo (P-a.s.) for all
te Ry

V={{-n: ...class of all processes with a locally bounded variation

EeVvinevty

Ve class of all processes of V with (P-a.s.) continuous
trajectories

Af={feV: . class of all integrable nondecreasing processes

Efo < 00}
A={{-n: ..class of all processes with integrable variation
e At ne AT}

KFEP). ..o, class of all processes with respect to a filtration F and
measure P

Kloc c v the local class

Mige oo class of all local martingales

ME class of all square-integrable local martingales

O class of all optional processes

P class of all predictable processes

O class of all O x B-measurable functions

P o class of all P x B-measurable functions

S class of all semimartingales

Spi class of all special semimartingales

Classes of integrable functions

‘Clzoc(é) {f f € P f2 < > -Aloc}

Lloe(&) = {S:f €P, (22 [6,€)'* € AL}

Lrocl€) = {1 € Cho(M1). f> A € V}

Gi.(v) = {ffe’P;fP*ueAfgc} i=1,2

Goc(v) = {f:f € P IfPA+IF) " +v € AL}

Classes of loss functions

W......... e class of all loss functions

W a subclass of loss functions in W



I(P!|PY) ..

BASIC NOTATION xv

class of all loss functions in W that have a polynomial
majorant

class of all functions in W' that have a polynomial
majorant

class of all functions I(u) in W, for which

inf |y >4 l(u) > supjy < 4~ L(u), ¥ > 0, for all A

Some other symbols

class of all finite stopping times with respect to F

class of all stopping time with respect to F

class of all normalizing matrices

the Lebesgue-Stieltjes integral

the stochastic integral over a process ¢

the integral with respect to a random measure p

the stochastic integral with respect to a local martingale
measure j — v

the Neumann—Pearson test of level o

the maximum likelihood estimate of a parameter 6

the Bayes estimate of a parameter

the amount of Shannon information contained in an
observation £¢ of an unknown parameter

the amount of Shannon information contained in an
estimate 0' of parameter

the Hellinger integral of order ¢ for measures Pt and P!
the entropy of a measure P! with respect to a measure
}~>t, the IEullback—Leibler information between measures
Pt and P!

completely asymptotically distinguishable families of
hypotheses

families of hypotheses that are not completely
asymptotically distinguishable

completely asymptotically indistinguishable families of
hypotheses

a family of hypotheses (ﬁ t) is contiguous to a family of
hypotheses (HY)

a family of hypotheses (fI %) is noncontiguous to a family
of hypotheses (H")

mutually contiguous families of hypotheses

mutually noncontiguous families of hypotheses

families of hypotheses are not mutually contiguous
completely asymptotically separable families of
measures

families of measures are not completely asymptotically
separable

completely asymptotically inseparable families of
measures
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(PY<Q(PY....oo... a family of measures (P?) is contiguous to a family of
measures (P?!)

(PHT(PY) .o a family of measures (P!) is noncontiguous to a family
of measures (P*)

(PYy<>(PYY............ mutually contiguous families of measures

(PHZS (P ... mutually noncontiguous families of measures

(PH > (PYy . ..., families of measures are not mutually contiguous



Bibliographical Notes

Chapter 1

1.1. In this section, we discuss notions and results of the general theory of
stochastic processes and stochastic integration needed for the further presentation.
More details on this subject are given in [30], [138], [139], [153], [156], [96], [98],
[128], [20], [21], [100], [207]; also see [1], [46].

1.2. We follow Ibragimov and Khas'minskii [40] in describing general statis-
tical experiments. In [4] and [115], statistical experiments are called statistical
structures. Lemma 1.2.1 plays the crucial role in absolute continuity of probability
measures. This lemma was proved by Girsanov [17] for Wiener processes; many
other authors have later obtained this result for different types of stochastic pro-
cesses; see [25], [46], [96], [98], [113], [139], [153], and [156]. Theorem 1.2.1
without the additional condition VIII) was proved in [46], [153], [98], and [156].
The local density was studied in many special cases; it was obtained in [113] for
Markov processes, in [96] for diffusion type processes, in [25] for Markov type pro-
cesses, and in [45] for counting processes. Similar results related to the exponential
representation of distributions of stochastic processes are obtained in [166], [231].
Statistical experiments generated by stochastic processes and their properties are
described in [40], [146], [158], and [171].

1.3. Theorems 1.3.1 and 1.3.2 were proved in [84]. A proof of Theorem 1.3.3
was given in [83]. Theorems 1.3.4-1.3.6 are new; for close results see [76], [80],
and [81]. More details about semimartingales are given in [156], [154], [27]. Limit
theorems for special cases of semimartingales can be found in [51], [56], [71], 73],
[77], [116], [119], and [149].

Chapter 2

2.1. In this section we discuss some notions and results needed for the further
presentation. More details are given in [9] and [58].

2.2. In this section we follow [85] and [89]. The complete group of types of
the asymptotic distinguishability between families of hypotheses was introduced
by the author [85]. The early paper [70] should also be mentioned, where types
ag, ai, and e of the asymptotic distinguishability were introduced for similar dif-
fusion processes. These types also form a complete group. Various definitions of
the asymptotic distinguishability were considered by other authors: Krafft [65] and
Ingster [43] gave a definition for families of hypotheses, and Liptser, Pukel’sheim,
and Shiryaev [95], Eagieson [141], Eagleson and Mémin [142], and Le Cam and
Traxler [170] introduced the same notion for the complete asymptotic discrimi-
nation of families of measures. Mutual contiguity for families of measures was

197
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introduced by Le Cam [169] (note that this notion is called simply continuity in
that paper). Le Cam [169] and Roussas [110] gave various characterizations for
the mutual contiguity. The contiguity of a family of measures to another family
was defined by Hé4jek and Siddk [14]. Several characterizations for this kind of
contiguity were given by Liptser, Pukel’sheim, and Shiryaev [95], Eagleson and
Mémin [142], Hall and Loynes [148], and F. Liese [236]. These questions were also
discussed in [146], [171], [156], [174] and [127].

2.3. Here we follow [88]. The results of this section can be found in [87] for the
case of equivalent measures P* and P'. Kullback and Leibler [200] introduced the
relative entropy (Ptlﬁ't) under the name information for distinguishability. Sanov
[201] also used this notion in problems on large deviations for polynomial schemes
(see also [202]-[205]). Theorem 2.3.1 is a generalization of a classical Stein lemma
(see [91], [198], and [219] for other generalizations). The original proof of Stein’s
lemma is based on a result on large deviations. Later, Kullback [53] suggested
another method using the law of large numbers (see also [124]). Theorems 2.3.2 and
2.3.3 belong to Krafft and Plachky [164] for the case of sequences of independent
identically distributed random variables. A generalization of their results to the
minimax risk in the case of composite hypotheses was given in [206]. Another proof
of Theorem 2.3.2 was obtained by Kolomiets [49]. Theorems 2.3.3 and Corollary
2.3.4 are related to results on large deviations for A; as t — oco. If the condition
limy o0 xt_l Ina; = —a is assumed for a > 0 instead of al’ and condition A* is
satisfied, then, using Lemma 2.3.4, one can show that lim;_, Xt_l lnﬂ(éj’a‘) =
—b(a), where b(a) is a certain function [208]. The first results on large deviations
were obtained by Khintchine [209], Smirnoff [210], Cramér [211], and Chernoff
[212], who studdied the case of sums of independent identically distributed random
variables. For further developments see [201], [205], [213], [189], [191], [143],
[144], [214]. The function b(a) was studied in [215] and [216] for observations
of independent identically distributed random variables and in [217] and [218] for
general binary statistical experiments.

2.4. In this section we present results of [88] and [92] in a somewhat different
form. Results similar to Theorems 2.4.1 and 2.4.2 were obtained by Basawa and
Scott [131], Hornik [150], and Janssen [157]. The idea of the proof of Theorems
2.4.3 and 2.4.4 is similar to that of Theorems 2.4.1 and 2.4.2. A close result was
proved in [197]. Relation (2.4.25) was obtained in [197] for independent identically
distributed random variables.

2.5. Here we follow [92] and [93]. Similar results with the Gaussian law in
condition A6 can be found in [88]. Close results were obtained by Roussas [110]
and Hall and Loynes [148]. The main Lemma 2.3.1 was proved for the Gaussian
law S = N(a,0?) in [110] with a = —0?/2 and in [88] with a < —0?/2. Lemma
2.5.1 was proved in [93] for a general law (see also [92]). Theorem 2.5.4 is new.
General results on relative compactness and tightness can be found in (7], [127],
[110], and [156].

2.6. In this section, we present results of [88] and [92] in a somewhat modi-
fied form (see also [89], [90], [176], [177]). The asymptotic decomposition of the
likelihood ratio in condition A8* was obtained in [70] for unbounded vectors wu;.
Condition A8* with bounded vectors u, for measures P! and P! belonging to a
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parametric family is known as the local asymptotic normality condition and was
presented in various books, mainly devoted to the theory of parametric estimation;
see [169], [110], [40], [29], [57], [146], [9], [184]. Condition A8" with bounded vec-
tors u; for measures P and pt belonging to a parametric family is closely related
to the notion of local asymptotic mized normality.

2.7. The reductions of hypotheses testing considered in this section were stud-
ied in [88]. In presenting them, we follow [92] and [177]. More detail and special
cases as well as further results can be found in [88], [92], and [177].

Chapter 3

3.1. In this section, we follow [156] and [49]. For properties and applications
of Hellinger processes, see [160], [174], [178], [179], [181]. Representation (3.1.9)
for a Hellinger process of order ¢ was obtained in [86] using the multiplicative
decomposition of the process Y (¢). If & = inf{e: Hy(¢;P,P) < oo} and el =
sup{e:Ht(s;Ig,P) < oo}, then e’ Te_ <0Oandely | ey > 1 ast— oo; see [223],
[224]. Therefore the Hellinger process h(e) = h(e; P, P) is well defined by Theorem
3.1.1. This allows one to get assertions of this section for all e € (e_,e;). More
details are given in [223]-[225].

3.2. The law of large numbers was proved in [84]. Theorem 3.2.2 is obtained
by Kolomiets [49]. Theorem 3.2.3 is based on Theorems 1-3 in [86]. The idea to
split the space €2 by the Hellinger process was applied for the first time to diffusion
processes in [67]; the same method was later used in [81] to estimate parameters
of counting processes. Theorem 3.2.4 was proved in [92], [176]. Further references
can be found in [92] and [176].

3.3. This section is based on [83] and [84]. Asymptotic relation (3.3.5) was
obtained in [75] for diffusion type processes and in [78] for counting processes. This
relation was discussed in [77] for Markov processes and in [226] for semimartingales
with determinate triplets of predictable characteristics.

3.4. General limit theorems for diffusion processes were obtained in [66], [70],
and [71]. Types ag, a;, and e of the asymptotic distinguishability between families
of hypotheses were introduced in [70] in the case of similar hypotheses. Some
results for the scheme “a signal in white noise” can be found in [82]. Example
3.4.2 is taken from [92]. Results for null recurrent processes were discussed in
[87]. Similar asymptotic results for the minimax risk belong to Gushchin [28].
Sequential tests for distinguishing diffusion processes were given in [126] and [96].
Properties of homogeneous diffusion processes were described in more detail in
[19)-[20], [114], [122]. Corresponding results for (and applications of) Hellinger
integrals and processes of order € can be found in [28], [219], [237], and [240].

3.5. Here we present some general limit theorems of [71] and [78]. There is
an extensive literature on the problem of distinguishing counting processes with
determinate compensators; see, for example, [47], [134], [72], and [194]. Results
discussed in this section were obtained in [94] for the case of determinate compen-
sators and renewal processes. The idea of the proof of Theorem 3.5.9 was introduced
in [86]. Generalizations of Theorems 3.5.7, 3.5.8, 3.5.10, and 3.5.11 were obtained
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in [228] for renewal processes with discontinuous compensators. Theorems 3.5.1—
3.5.4 were proved in [227] for counting processes with discontinuous compensators;
see also the survey papers [225] and [230].

Chapter 4

_ 4.1. This section contains results on properties of statistical estimates 6, and
6; due to Ibragimov and Khas’minskii [40].

4.2. Theorems 4.2.1-4.2.6 are taken from [83], [84]; see also [175], [176].
Properties of the likelihood ratio for semimartingales with determinate triplets of
predictable characteristics were studied in [226] (the case of discontinuous charac-
teristics was also treated in [226]).

4.3. An extensive literature is devoted to the problem of estimation of pa-
rameters for diffusion processes. The Gaussian processes were the first class to be
studied in the literature; see, for example, [3], [39], [50], [96], [123], [167] and the
references in [40], [57], [96]. This case was treated in detail in Araté’s book [2].
The problem becomes complicate if the diffusion process is not Gaussian. Never-
theless, the asymptotic behavior of statistical estimates was also studied for a linear
parameter by using limit theorems for stochastic integrals over the Wiener process
[52], [61], [62], [103], [116], [123], [133]. The next step is to study the case of a
nonlinear parameter, and this requires a method based on the LAN condition [40].
The main problem arising in this approach is to prove condition K3 for 8 > k and
K4. To prove condition K4, some authors (see [5], [57], [76]) pose restrictions on
the shift in the following form:

/Ot(a(s,z,y) —a(s,z,0))*ds > kl|y — 62, Kk > 0.

Note that for a wide class of processes no conditions of this kind are satisfied, and
this does not allow one to study such processes. The truncation method for the
space of trajectories used in the proof of Theorem 4.2.5 solves this problem (this
method was proposed in [64]; see also [68]). The proof of condition K3 for 5 > k is
based on the idea of the proof of Lemma 3.3.2 in [40]. This idea instead of Lemma
3.5.2 in [40] works in the Gaussian case (see Lemma 4 in [76] and Theorem 4.2.6).
We mention also [111], where LAN condition was established for diffusion processes
with periodic coefficients depending on the process. Methods of estimation were
described in [229], [230], [183], [238], [239] for diffusion processes.

4.4. The parameter estimation for counting processes was treated in a rather
great number of papers. Most of these papers deal only with the case of Poisson
processes; see [47], [57], [72], [134], [173], [190]. The application of the general
asymptotic method based on the LAN property [4] encounters the same problems
as in the case of diffusion processes. The LAN property was obtained almost si-
multaneously for Poisson processes [55], Poisson type processes [56], and general
counting processes [71]. The proof of condition K3 for 8 > k is simpler in this
case due to an idea used for the first time in the proof of Lemma 4 in [76], where
the case of diffusion type processes was considered; the proof for counting processes
can be found in [81]. Condition K4 was also proved in [81] by using the truncation
method introduced in [64] for diffusion processes. Further results on properties of
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the likelihood ratio and parameter estimation can be found in [229], [230], [183],
(238], [239].

Chapter 5

5.1. Theorems 5.1.1-5.1.3 are taken from [74] and [79]. Theorem 5.1.1 was
proved in [68] for k = 1. Relation (5.1.3) was obtained earlier for sequences of in-
dependent random variables in [68] and [117], purely discontinuous processes with
independent increments in [73], and Markov processes in [77]. Relation (5.1.32)
for sequences of independent random variables was proved in [63]; with terms of
higher orders in the asymptotic expansion it was also proved in [187] and [193] for
p =1 and ©' finite. Relation (5.1.32) with terms of higher orders in the asymptotic
expansion was obtained in [242] for p = 1 and the scheme of general statistical
observations . Upper and lower bounds as well as the asymptotic behavior of the
information I(£%,6) up to terms of order O(1) can be found in [246] for the case of
a continuous parameter 6 and observations of independent identically distributed
random variables.

5.2. Theorems 5.2.1-5.2.4 are taken from [65], [6], [74] and given here in a
somewhat different form. The idea of the proof of Lemma 5.2.1 was used for the
first time in [243]. Inequality (5.2.29) was obtained in [34] and [69] for the case
I(v) = |v|? and sequences of independent random variables. The rate of convergence
in asymptotic relation (5.2.51) was studied in the case of p = 1 and a finite ©' in
[187] and [245] for observations of independent random variables, and in [242] and
[244] for the scheme of general statistical observations.

5.3. Corollary 5.3.1 and Theorem 5.3.3 are taken from [74]. Theorem 5.3.2
was proved in [65] and [69] for special classes of functions L(y, z) and sequences of
independent random variables. The equivalence between the sufficiency and infor-
mation sufficiency was proved in Linnik’s book [241] for the Shannon information
and in Kullback’s book [53] for the Kullback information. More details on the
asymptotic information sufficiency were given in [107], [65], [69], and [74].
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condition
Cramér’s, 106, 155, 156
for the absolute continuity of
measures, 11
for the equivalence of measures, 15
for the local absolute continuity of mea-
sures, 11
for the local equivalence of measures, 11
Lindeberg’s, 25
local asymptotic at a point (LANC), 139
Lyapunov’s, 25
uniform local asymptotic normality in a
set. 139

conditional entropy

of a distribution, 168
contiguity of hypotheses, 42
Cramér

condition, 129

series, 106, 129
Cramér—Wold method, 23, 195
cumulant of a process, 121

decomposition
asymptotic, 89

Lebesgue, 33

multiplicative, 80
Dellacherie conditions, 10
distance

in variation, 36

Kakutani—Hellinger, 37
distribution

a posteriori, 169

a priori, 36

degenerate, 22

one-vertex infinitely divisible, 122
distribution density

a posteriori, 138

a priori, 137

conditional, 168

of a parameter, 161
distribution function of a stable law, 110,

130

Doléans stochastic exponent, 80
dual projection, 3

entropy
average conditional of a distribution, 169
conditional differential, 168
differential, 161
of a distribution, 168
of a measure with respect to another
measure, 46, 175
Shannon, 52
equivalence of measures, 11
local, 11
estimate
asymptotically efficient, 138
asymptotically minimax, 138
Bayes, 137
maximum likelihood, 137
statistical, 137
uniformly consistent, 152

family

dominated by a measure, 9

locally asymptotically normal at a point
(LAN), 138

of binary statistical experiments, 15, 18,
21,79

of parametric statistical experiments, 16,
19, 21, 137, 161
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of statistical experiments, 15
uniformly locally asymptotically normal
in a set, 139
family of functions
tight with respect to another family of
measures, 43
uniformly integrable with respect to a
family of measures, 43
family of probability measures, 10, 36
completely asymptotically inseparable, 40
completely asymptotically separable, 36
contiguous to another family of measures,
42
mutually contiguous, 42
mutually noncontiguous, 42
noncontiguous to another family of
measures, 42
not completely asymptotically separable,
36
not mutually contiguous, 42
parametric, 88
relatively compact, 58
tight, 58
family of statistical hypotheses, 36
completely asymptotically
distinguishable, 36
completely asymptotically
indistinguishable, 40
contiguous to another family of
hypotheses, 42
mutually contiguous, 42
mutually noncontiguous, 42
not completely asymptotically
distinguishable, 36
not mutually contiguous, 42
filtration, 1
satisfying ordinary conditions, 1
formula
for the change of variables for
semimartingales, 8
asymptotic for the Shannon information,
162
conditional information, 168, 170
Ito’s, 8
frequency modulation, 103
function
mean-square differentiable, 151
slowly varying in the Karamata sense, 130

arylr 1aLa sense

Girsanov theorem, 11

indistinguishable processes, 1
inequality
Cramér—-Rao’s, 186, 187, 191
Hajek’s, 186, 192, 193
information, 186, 187
Lenglart’s, 3
information
conditional, 168
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Kullback-Leibler’s, 175
information sufficiency, 194

asymptotical, 194
integral

Hellinger, 37

of order ¢, 37, 79

Lebesgue-Stieltjes, 3

1t6 formula, 8

Kullback-Leibler
distance, 46
divergence, 46
information, 46

large deviations, 48, 84
law of large numbers, 46, 83, 112, 126
strong, 126
lemma
fundamental Neyman-Pearson, 34
Stein’s, 48
level of a test, 33
likelihood ratio, 33, 139
normalizing, 139
local absolute continuity of measures, 10
local class of processes, 2
local density of a measure, 11, 18, 20
localizing sequence for a process, 2
lower bounds for the information on a
parameter
asymptotic, 179, 184
nonasymptotic, 176
lower bounds for the risk function
asymptotically minimax, 192
Héjek’s, 193
Hiéjek’s type, 192
integral Cramér—Rao’s, 187
nonintegral of Cramér—Rao’s type, 191

martingale, 2

continuous, 2

continuous Gaussian, 119

local, 2

purely discontinuous, 2

square-integrable local, 2

measure

o-finite invariant, 109

6—a—ﬁnite, 6

ﬁ-o-ﬁnite, 6

compensator, 6

Dirac’s, 6

Doléans, 6

dominating, 9

dual predictable projection, 6

finite invariant, 105, 154

Lebesgue invariant, 111

locally absolutely continuous with respect
to another measure, 10

locally equivalent to another measure, 11

probability, 9



mixture of distribution laws, 60
mixture of normal laws, 60

observation, 9
of a counting process, 21, 112
of a diffusion-type process, 18, 19, 98, 151
of a martingale, 140
of a semimartingale, 15, 79, 194

power of the test, 33
probabilities of errors of a test, 33
of the first kind, 33
of the second kind, 33
probability space, 9
with a filtration satisfying ordinary
Dellacherie conditions, 10
with filtration, 1
problem
of distinguishing between hypotheses, 79
of distinguishing between two simple
hypotheses, 33
of estimating parameter, 10
of testing hypotheses, reduction, 70
of testing two simple hypotheses, 10
process
F-adapted, 1
F-optional, 2
F-predictable, 2
adapted (to a filtration), 1
compensator, 3
counting, 19
counting with determinate compensators,
116, 156
diffusion-type, 17, 98, 151
dual predictable projection, 3
Hellinger of order &, 80, 144
homogeneous diffusion, 105, 154
null recurrent, 109, 111
positively recurrent, 105
with exact growth at infinity, 110
nondecreasing, 2
of the local density of a measure, 11, 89,
112, 115
optional, 2, 6
Poisson, 116
Poisson homogeneous, 116
Poisson inhomogeneous, 116
positive recurrent, 154
predictable, 2, 6
quadratic variation, 4
renewal, 124, 126, 159
standard Wiener, 16
stochastic, 1
with independent increments, 8
property of (7)-uniqueness, 11
quadratic characteristic, 4
mutual, 4
quantile of order p, 54
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Radon—Nikodym derivatives, 33, 81
random measure, 5
integral-valued, 5
jump, 6
local martingale, 6
optional, 6
predictable, 6
reduction of the problem of testing
hypotheses
first, 71
second, 75
return time
first, 106
risk function for an estimate, 175

sample space, 10, 15
semimartingale, 2, 8
left-quasicontinuous, 8
special, 2
with independent increments, 121
set
F-optional, 2
F-predictable, 2
P-negligible, 1
negligible, 1
nonessential, 1
optional, 2
predictable, 2
random, 1
Shannon
entropy of the distribution, 168
information contained in an estimate, 175
information contained in an observation,
161
information with respect to a parameter,
161
lower bound for the e-entropy, 190
signal in white noise, 151
state space of a process, 1
statistic, 137, 152
asymptotically information sufficient, 194
information sufficient, 194
statistical experiment, 9
binary, 9, 15
generated by an observation, 9
statistical experiments
generated by counting processes, 19
generated by diffusion-type processes, 16
generated by semimartingales, 10
parametri-, 16
statistical hypotheses, 33
close, 102
close noncontiguous, 104
simple, 33
stochastic basis, 1
P-complete, 1
complete, 1
satisfying ordinary conditions, 1
stochastic differential equation, 17
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stochastic integral, 3
over a local martingale, 5
over a local martingale measure, 7
over a random measure, 5
over a semimartingale, 5, 18
over a square integrable local martingale,
4
stochastic interval, 2
stochastic process
P-modification, 1
regular P-modification, 3
stochastic processes
P-equivalent, 1
P-indistinguishable, 1
stopping time, 2
predictable, 2

test for distinguishing between hypotheses,
33
Bayes, 36
Neyman-—Pearson, 34
nonrandomized, 35
theorem
characterization of complete asymptotic
distinguishability of hypotheses, 38

characterization of complete asymptotic
indistinguishability of hypotheses, 40
characterization of contiguity of
hypotheses, 43
Girsanov’s for semimartingales, 11
Krafft and Plachky, 52
on large deviations, 50, 84, 129
on the weak convergence, 86, 130
on the weak convergence of
semimartingales, 31
Prokhorov’s, 58
total variation, 36
trajectory of a stochastic process, 1
triple of predictable characteristics of a
semimartingale, 8
type of asymptotic distinguishability, 45

‘Wald identity, 133, 135
weak convergence
of distribution laws, 53
of the likelihood ratio, 59
Wiener process, 112
self-similarity property, 112
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