Quantum Field Theory, Supersymmetry, and Enumerative Geometry

Daniel S. Freed
David R. Morrison
Isadore Singer
Editors
Quantum Field Theory, Supersymmetry, and Enumerative Geometry
Quantum Field Theory, Supersymmetry, and Enumerative Geometry

Daniel S. Freed
David R. Morrison
Isadore Singer
Editors
IAS/Park City Mathematics Institute runs mathematics education programs that bring together high school mathematics teachers, researchers in mathematics and mathematics education, undergraduate mathematics faculty, graduate students, and undergraduates to participate in distinct but overlapping programs of research and education. This volume contains the lecture notes from the Graduate Summer School program.

2000 Mathematics Subject Classification. Primary 81Qxx, 81Txx, 14-02, 83-02; Secondary 81Sxx, 14N35, 83Cxx.

Library of Congress Cataloging-in-Publication Data
Quantum field theory, supersymmetry, and enumerative geometry / Daniel S. Freed, David R. Morrison, Isadore Singer, editors.
p. cm. — (IAS/Park City mathematics series, ISSN 1079-5634 ; v. 11)
Includes bibliographical references.
QCI74.45.A1Q36274 2006
530.14'3—dc22 2006047633

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2006 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.
∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 11 10 09 08 07 06
Contents

Preface vii

Introduction 1

William Fulton (Notes by Alastair Craw), Enumerative Geometry 5
1. Schubert Calculus 7
2. Moduli Spaces 13
3. Gromov–Witten Numbers on G/P 18
4. A Look at Some Proofs 22

Bibliography 29

Aaron Bertram, Computing Gromov-Witten Invariants with Algebraic Geometry 31
Lecture 1. Introduction and Motivation 33
Lecture 2. Localization 39
Lecture 3. J-functions 45
Lecture 4. An Alternative to WDVV 53

Bibliography 59

Daniel S. Freed, Classical Field Theory and Supersymmetry 61
Introduction 63
Lecture 1. Classical Mechanics 65
Lecture 2. Lagrangian Field Theory and Symmetries 79
Lecture 3. Classical Bosonic Theories on Minkowski Spacetime 95
Lecture 4. Fermions and the Supersymmetric Particle 107
Lecture 5. Free Theories, Quantization, and Approximation 117
Lecture 6. Supersymmetric Field Theories 133
Lecture 7. Supersymmetric \(\sigma\)-Models 147
Bibliography 161

John W. Morgan, Introduction to Supermanifolds 163

Introduction 165
1. The Basic Definitions 166
2. Differential Topology and Differential Geometry of Supermanifolds 172
3. Super Lie Groups 175
4. Integration on Supermanifolds 177
Bibliography 181

Clifford V. Johnson, Notes on Introductory General Relativity 183

A Physicist’s Apology 185
1. Special Relativity: Recapitulation of Key Concepts 186
2. From Space and Time to Spacetime 199
3. The Principle of Equivalence and Curved Spacetime 211
4. Field Equations 224
5. Dynamics and Variational Principles 237
6. Some Interesting Solutions to Einstein’s Equations 249
7. Higher Dimensions and Other Advanced Topics 261
Appendices 277
Bibliography 285
Preface

The IAS/Park City Mathematics Institute (PCMI) was founded in 1991 as part of the “Regional Geometry Institute” initiative of the National Science Foundation. In mid 1993 the program found an institutional home at the Institute for Advanced Study (IAS) in Princeton, New Jersey.

The IAS/Park City Mathematics Institute encourages both research and education in mathematics and fosters interaction between the two. The three-week summer institute offers programs for researchers and postdoctoral scholars, graduate students, undergraduate students, high school teachers, undergraduate faculty, and researchers in mathematics education. One of PCMI’s main goals is to make all of the participants aware of the total spectrum of activities that occur in mathematics education and research: we wish to involve professional mathematicians in education and to bring modern concepts in mathematics to the attention of educators. To that end the summer institute features general sessions designed to encourage interaction among the various groups. In-year activities at the sites around the country form an integral part of the High School Teachers Program.

Each summer a different topic is chosen as the focus of the Research Program and Graduate Summer School. Activities in the Undergraduate Summer School deal with this topic as well. Lecture notes from the Graduate Summer School are being published each year in this series. The first eleven volumes are:

- Volume 1: *Geometry and Quantum Field Theory* (1991)
- Volume 3: *Complex Algebraic Geometry* (1993)
- Volume 11: *Quantum Field Theory, Supersymmetry, and Enumerative Geometry* (2001)

Volumes are in preparation for the subsequent years.

Some material from the Undergraduate Summer School is published as part of the Student Mathematical Library series of the American Mathematical Society.
We hope to publish material from other parts of the IAS/PCMI in the future. This will include material from the High School Teachers Program and publications documenting the interactive activities which are a primary focus of the PCMI. At the summer institute late afternoons are devoted to seminars of common interest to all participants. Many deal with current issues in education. Others treat mathematical topics at a level that encourages broad participation. The PCMI has also spawned interactions between universities and high schools at a local level. We hope to share these activities with a wider audience in future volumes.
Titles in This Series

11 Daniel S. Freed, David R. Morrison, and Isadore Singer, Editors, Quantum Field Theory, Supersymmetry, and Enumerative Geometry, 2006
10 Steven Rudich and Avi Wigderson, Editors, Computation Complexity Theory, 2004
 9 Brian Conrad and Karl Rubin, Editors, Arithmetic Algebraic Geometry, 2001
 8 Jeffrey Adams and David Vogan, Editors, Representation Theory of Lie Groups, 2000
 7 Yakov Eliashberg and Lisa Traynor, Editors, Symplectic Geometry and Topology, 1999
 6 Elton P. Hsu and S. R. S. Varadhan, Editors, Probability Theory and Applications, 1999
 5 Luis Caffarelli and Weinan E, Editors, Hyperbolic Equations and Frequency Interactions, 1999
 4 Robert Friedman and John W. Morgan, Editors, Gauge Theory and the Topology of Four-Manifolds, 1998
 3 János Kollár, Editor, Complex Algebraic Geometry, 1997
 1 Daniel S. Freed and Karen K. Uhlenbeck, Editors, Geometry and Quantum Field Theory, 1995
Each summer the IAS/Park City Mathematics Institute Graduate Summer School gathers some of the best researchers and educators in a particular field to present diverse sets of lectures. This volume presents three weeks of lectures given at the Summer School on Quantum Field Theory, Supersymmetry, and Enumerative Geometry, three very active research areas in mathematics and theoretical physics.

With this volume, the Park City Mathematics Institute returns to the general topic of the first institute: the interplay between quantum field theory and mathematics. Two major themes at this institute were supersymmetry and algebraic geometry, particularly enumerative geometry. The volume contains two lecture series on methods of enumerative geometry that have their roots in QFT. The first series covers the Schubert calculus and quantum cohomology. The second discusses methods from algebraic geometry for computing Gromov-Witten invariants. There are also three sets of lectures of a more introductory nature: an overview of classical field theory and supersymmetry, an introduction to supermanifolds, and an introduction to general relativity.

This volume is recommended for independent study and is suitable for graduate students and researchers interested in geometry and physics.