PROCEEDINGS OF THE
FIFTEENTH SYMPOSIUM IN APPLIED MATHEMATICS
OF THE AMERICAN MATHEMATICAL SOCIETY

Held in
Chicago, Illinois, April 12–14, 1962
and
Atlantic City, New Jersey, April 16–19, 1962

N. C. Metropolis
A. H. Taub
John Todd
C. B. Tompkins
EDITORS

http://dx.doi.org/10.1090/psapm/015
PROCEEDINGS OF
SYMPOSIA IN APPLIED MATHEMATICS
VOLUME XV

EXPERIMENTAL ARITHMETIC,
HIGH SPEED COMPUTING AND MATHEMATICS

AMERICAN MATHEMATICAL SOCIETY
190 HOPE STREET, PROVIDENCE, RHODE ISLAND
1963
Library of Congress Catalog Number 63–17582

Prepared by the American Mathematical Society under Contract No. DA–19–020–ORD–5569 with the U.S. Army Research Office (Durham), Grant No. NSF G–20971 from the National Science Foundation, and with financial support from the Institute for Defense Analyses.

All rights reserved except those granted to the United States Government. Otherwise, this book, or parts thereof, may not be reproduced in any form without permission of the publishers.

Copyright © 1963 by the American Mathematical Society
Printed in the United States of America
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Purposeful and unpurposeful computing</td>
<td>1</td>
</tr>
<tr>
<td>By Harvey Cohn</td>
<td></td>
</tr>
<tr>
<td>Eliminating the irrelevant from mechanical proofs</td>
<td>15</td>
</tr>
<tr>
<td>By Martin Davis</td>
<td></td>
</tr>
<tr>
<td>The mechanization of mathematical arguments</td>
<td>31</td>
</tr>
<tr>
<td>By Hao Wang</td>
<td></td>
</tr>
<tr>
<td>Towards more versatile mechanical translators</td>
<td>41</td>
</tr>
<tr>
<td>By E. T. Irons</td>
<td></td>
</tr>
<tr>
<td>Information theory and decoding computations</td>
<td>51</td>
</tr>
<tr>
<td>By Peter Elias</td>
<td></td>
</tr>
<tr>
<td>Adaptive neural networks as brain models</td>
<td>59</td>
</tr>
<tr>
<td>By H. D. Block</td>
<td></td>
</tr>
<tr>
<td>Computer investigation of orthogonal Latin squares of order ten</td>
<td>73</td>
</tr>
<tr>
<td>By E. T. Parker</td>
<td></td>
</tr>
<tr>
<td>Determination of division algebra with 32 elements</td>
<td>83</td>
</tr>
<tr>
<td>By R. J. Walker</td>
<td></td>
</tr>
<tr>
<td>How programming difficulties can lead to theoretical advances</td>
<td>87</td>
</tr>
<tr>
<td>By E. C. Dade and H. Zassenhaus</td>
<td></td>
</tr>
<tr>
<td>Methods of successive restrictions in computational problems involving discrete variables</td>
<td>95</td>
</tr>
<tr>
<td>By C. B. Tompkins</td>
<td></td>
</tr>
<tr>
<td>An experimental study of the simplex method</td>
<td>107</td>
</tr>
<tr>
<td>By Harold W. Kuhn and Richard E. Quandt</td>
<td></td>
</tr>
<tr>
<td>Large and nonconvex problems in linear programming</td>
<td>125</td>
</tr>
<tr>
<td>By R. E. Gomory</td>
<td></td>
</tr>
</tbody>
</table>
Some high speed logic 141
 By D. H. Lehmer

Stability questions for some numerical methods for ordinary differential
 equations .. 147
 By Germund G. Dahlquist

Some applications of the quotient-difference algorithm 159
 By Peter Henrici

Plane-rotations in floating-point arithmetic 185
 By J. H. Wilkinson

New aspects in numerical quadrature 199
 By F. L. Bauer, H. Rutishauser and E. Stiefel

On Jacobi rotation patterns 219
 By H. Rutishauser

Automatic numerical integration of ordinary differential equations 241
 By Arnold Nordsieck

Survey of stability of different schemes for solving initial value problems for
 hyperbolic equations 251
 By Peter D. Lax

Unexpected dividends in the theory of prime numbers 259
 By J. Barkley Rosser

The particle-in-cell method for numerical solution of problems in fluid
 dynamics 269
 By Francis H. Harlow

Numerical experiments in atmospheric hydrodynamics 289
 By J. G. Charney

The oscillations of the earth and of the atmosphere 311
 By Gordon J. F. MacDonald

Few particle experiments in statistical mechanics 335
 By Berni J. Alder

An approach to the Ising problem using a large scale fast digital computer 351
 By Chen-Ping Yang
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied mathematics as used in theoretical chemistry</td>
<td>367</td>
</tr>
<tr>
<td>By JOSEPH O. HIRSCHFELDER</td>
<td></td>
</tr>
<tr>
<td>The mechanization of science</td>
<td>377</td>
</tr>
<tr>
<td>By R. W. HAMMING</td>
<td></td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>385</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>389</td>
</tr>
</tbody>
</table>
PREFACE

This volume contains all but two of the papers which were presented at two symposia sponsored by the American Mathematical Society and other co-sponsors in the spring of 1962.

The first symposium was held in Chicago, Illinois, April 12–14, on the subject of

Experimental Arithmetic.

This symposium was sponsored by the Society and the Association for Computing Machinery, and it was supported financially by the Institute for Defense Analyses. The organizing and invitations committee consisted of N. Metropolis (Chairman), Marshall Hall, Jr., Peter Henrici, Mark Kac, R. D. Richtmyer, and A. H. Taub.

The objective of this symposium was to examine ways in which the arithmetical potential of modern high-speed computers can furnish experience which sheds light on outstanding problems in mathematics and other sciences.

The second symposium was held at Atlantic City, New Jersey, April 16–18 on the subject of

Interactions between Mathematical Research and High-Speed Computing.

This symposium was sponsored by the Society and the Association for Computing Machinery and was supported financially by the Army Research Office and the National Science Foundation. Its organizing and invitations committee consisted of John Todd (Chairman), G. E. Forsythe, P. D. Lax, D. H. Lehmer, H. H. Goldstine, C. B. Tompkins, and D. M. Young, Jr.

The objective of this symposium was to enable mathematicians to become familiar with the potentialities of computers of types currently available and with the problems involved in the proper and effective exploitation of these computers.

The close relationship between the subject matters of the two symposia prompted the organizing committees to merge the proceedings into this single volume. Generally speaking, papers in this volume have been edited by one of the four members of the editorial committee in accordance with subject matter; no attention has been paid in ordering the papers to the particular symposium in which they were presented and various borderline cases have been decided on the basis of editorial convenience. The editors have not tried to settle conflicting opinions expressed in different papers in the series.

N. **Metropolis**

University of Chicago

A. H. **Taub**

University of Illinois

John Todd

California Institute of Technology

C. B. **Tompkins**

University of California at Los Angeles
AUTHOR INDEX

Italic numbers refer to pages on which a complete reference to a work by the author is given. Roman numbers refer to pages on which a reference is made to a work of the author. For example, under Minkowski would be the page on which a statement like the following occurs: "This theorem was proved earlier by Minkowski [7, § 2] in the following manner. . . ."

Boldface numbers indicate the first page of articles in this volume.

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackermann, W.</td>
<td>30, 39</td>
<td>Church, A.</td>
<td>29</td>
</tr>
<tr>
<td>Adrian, A. D.</td>
<td>71</td>
<td>Clark, W. A.</td>
<td>71</td>
</tr>
<tr>
<td>Albert, A. A.</td>
<td>85, 99, 106</td>
<td>Cohn, H.</td>
<td>1</td>
</tr>
<tr>
<td>Alder, B. J.</td>
<td>335, 348, 349</td>
<td>Conte, S. D.</td>
<td>181</td>
</tr>
<tr>
<td>Alsop, L.</td>
<td>324, 334</td>
<td>Courant, R.</td>
<td>258</td>
</tr>
<tr>
<td>Alterman, Z.</td>
<td>318, 324, 334</td>
<td>Culbertson, J. T.</td>
<td>71</td>
</tr>
<tr>
<td>Appel, K. I.</td>
<td>268</td>
<td>Curtiss, C. F.</td>
<td>349, 376</td>
</tr>
<tr>
<td>Ashenhurst, R. L.</td>
<td>250</td>
<td>Curtiss, J. H.</td>
<td>14</td>
</tr>
<tr>
<td>Backus, G.</td>
<td>334</td>
<td>Dade, E. C.</td>
<td>87, 94, 94</td>
</tr>
<tr>
<td>Backus, J. W.</td>
<td>42, 50</td>
<td>Dahlquist, G.</td>
<td>147, 149, 150, 151, 153, 158</td>
</tr>
<tr>
<td>Bandemer, H.</td>
<td>181</td>
<td>Dantzig, G. B.</td>
<td>96, 106, 107, 124, 125, 131, 138</td>
</tr>
<tr>
<td>Baron, M. L.</td>
<td>201, 218</td>
<td>Davis, M.</td>
<td>8, 14, 15, 29, 30, 39</td>
</tr>
<tr>
<td>Bateman Project Staff of California Institute of Technology</td>
<td>375, 376</td>
<td>Dempsey, E.</td>
<td>182</td>
</tr>
<tr>
<td>Bauer, F.</td>
<td>158, 199, 199, 218</td>
<td>De Rocco, A. G.</td>
<td>348</td>
</tr>
<tr>
<td>Bellman, R.</td>
<td>138</td>
<td>Deutsch, J. A.</td>
<td>71</td>
</tr>
<tr>
<td>Benders, J. F.</td>
<td>125, 134, 138</td>
<td>Dickson, J. C.</td>
<td>124</td>
</tr>
<tr>
<td>Benioff, H.</td>
<td>324, 326, 334</td>
<td>Dingle, R. B.</td>
<td>182</td>
</tr>
<tr>
<td>Benson, G. C.</td>
<td>182</td>
<td>Doetsch, G.</td>
<td>175, 182</td>
</tr>
<tr>
<td>Bergman, S.</td>
<td>9, 14</td>
<td>Douglas, J.</td>
<td>158, 158</td>
</tr>
<tr>
<td>Beurlé, R. L.</td>
<td>71</td>
<td>Duda, W. L.</td>
<td>71</td>
</tr>
<tr>
<td>Bird, R. B.</td>
<td>349</td>
<td>Dunham, B.</td>
<td>27, 30, 38, 39</td>
</tr>
<tr>
<td>Block, H. D.</td>
<td>59, 71, 72</td>
<td>Dzielinski, B. P.</td>
<td>125, 137, 138</td>
</tr>
<tr>
<td>Bolt, R. H.</td>
<td>71</td>
<td>Eady, E. T.</td>
<td>303, 309</td>
</tr>
<tr>
<td>Boone, W. W.</td>
<td>8, 14</td>
<td>Eccles, J. C.</td>
<td>71</td>
</tr>
<tr>
<td>Bose, R. C.</td>
<td>74, 81</td>
<td>Eckart, C.</td>
<td>329, 334</td>
</tr>
<tr>
<td>Bourbaki, M.</td>
<td>39</td>
<td>Ehrman, J. R.</td>
<td>365</td>
</tr>
<tr>
<td>Brauer, A.</td>
<td>145</td>
<td>Eisemann, K.</td>
<td>127, 138</td>
</tr>
<tr>
<td>Brink, F.</td>
<td>71</td>
<td>Elias, P.</td>
<td>51, 58</td>
</tr>
<tr>
<td>Brown, K. M.</td>
<td>181</td>
<td>Emde, F.</td>
<td>376</td>
</tr>
<tr>
<td>Bruck, R. H.</td>
<td>74, 81, 97, 106</td>
<td>Epstein, M. A.</td>
<td>57, 58</td>
</tr>
<tr>
<td>Brus, S. G.</td>
<td>348</td>
<td>Erdélyi, A.</td>
<td>376</td>
</tr>
<tr>
<td>Büchi, J. R.</td>
<td>39</td>
<td>Ertel, H.</td>
<td>293, 309</td>
</tr>
<tr>
<td>Buchholz, W.</td>
<td>14</td>
<td>Euler, L.</td>
<td>73, 80</td>
</tr>
<tr>
<td>Buchholz, H.</td>
<td>181</td>
<td>Ewing, M.</td>
<td>324, 334</td>
</tr>
<tr>
<td>Bullen, K. E.</td>
<td>318, 334</td>
<td>Fano, R. M.</td>
<td>56, 58</td>
</tr>
<tr>
<td>Bullock, T. H.</td>
<td>71</td>
<td>Farley, B. G.</td>
<td>71</td>
</tr>
<tr>
<td>Burns, B. D.</td>
<td>71</td>
<td>Fermi, E.</td>
<td>290, 309</td>
</tr>
<tr>
<td>Charney, J. G.</td>
<td>289, 289, 290, 291, 303, 309</td>
<td>Feshbach, H.</td>
<td>334</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fickett, W.</td>
<td>349</td>
</tr>
<tr>
<td>Flood, M. M.</td>
<td>97, 106</td>
</tr>
<tr>
<td>Ford, L. R., Jr.</td>
<td>125, 138</td>
</tr>
<tr>
<td>Forsythe, G. E.</td>
<td>220, 239</td>
</tr>
<tr>
<td>Fosdick, L. D.</td>
<td>365</td>
</tr>
<tr>
<td>Francis, J. G. F.</td>
<td>236, 239</td>
</tr>
<tr>
<td>Frankel, S. P.</td>
<td>348</td>
</tr>
<tr>
<td>Franklin, J.</td>
<td>182</td>
</tr>
<tr>
<td>Frederick, F. P.</td>
<td>124</td>
</tr>
<tr>
<td>Frege, G.</td>
<td>40</td>
</tr>
<tr>
<td>Fridshal, R.</td>
<td>39</td>
</tr>
<tr>
<td>Fried, B. D.</td>
<td>181</td>
</tr>
<tr>
<td>Friedman, B.</td>
<td>182</td>
</tr>
<tr>
<td>Friedman, J.</td>
<td>37, 40</td>
</tr>
<tr>
<td>Friedrichs, K. O.</td>
<td>258</td>
</tr>
<tr>
<td>Fromm, J. E.</td>
<td>285, 288</td>
</tr>
<tr>
<td>Fulkerson, D. R.</td>
<td>125, 138</td>
</tr>
<tr>
<td>Fulton, J. F.</td>
<td>71</td>
</tr>
<tr>
<td>Gelernter, H.</td>
<td>40</td>
</tr>
<tr>
<td>Gilbert, F.</td>
<td>319, 334</td>
</tr>
<tr>
<td>Gilbert, H. G.</td>
<td>246, 250</td>
</tr>
<tr>
<td>Gilmore, P. C.</td>
<td>30, 40, 125, 127, 138</td>
</tr>
<tr>
<td>Givens, W.</td>
<td>188, 198, 221, 239</td>
</tr>
<tr>
<td>Goad, W. B.</td>
<td>285, 288</td>
</tr>
<tr>
<td>Gomory, R. E.</td>
<td>13, 125, 125, 127, 129, 137, 138, 139</td>
</tr>
<tr>
<td>Glickman, S. E.</td>
<td>71</td>
</tr>
<tr>
<td>Gorn, S.</td>
<td>12, 14</td>
</tr>
<tr>
<td>Grassmann, H.</td>
<td>40</td>
</tr>
<tr>
<td>Gray, H. L.</td>
<td>250</td>
</tr>
<tr>
<td>Greep, R. O.</td>
<td>71</td>
</tr>
<tr>
<td>Gregory, R. T.</td>
<td>239</td>
</tr>
<tr>
<td>Gutenberg, B.</td>
<td>334</td>
</tr>
<tr>
<td>Hadamard, J.</td>
<td>182</td>
</tr>
<tr>
<td>Hahn, S. G.</td>
<td>258</td>
</tr>
<tr>
<td>Haibt, L. H.</td>
<td>71</td>
</tr>
<tr>
<td>Hall, M.</td>
<td>81, 85, 102, 106</td>
</tr>
<tr>
<td>Hamming, R. W.</td>
<td>149, 158, 377</td>
</tr>
<tr>
<td>Handscomb, D. C.</td>
<td>365</td>
</tr>
<tr>
<td>Harlow, F. H.</td>
<td>269</td>
</tr>
<tr>
<td>Harrison, C., Jr.</td>
<td>250</td>
</tr>
<tr>
<td>Harrison, J. C.</td>
<td>323, 324, 326, 334</td>
</tr>
<tr>
<td>Hartline, H. K.</td>
<td>72</td>
</tr>
<tr>
<td>Haselgrove, C. B.</td>
<td>87–88, 94</td>
</tr>
<tr>
<td>Hay, J. C.</td>
<td>72</td>
</tr>
<tr>
<td>Hebb, D. O.</td>
<td>71</td>
</tr>
<tr>
<td>Heilermann, J. B. H.</td>
<td>182</td>
</tr>
<tr>
<td>Henrici, P.</td>
<td>149, 150, 153, 154, 158, 159, 181, 182, 220, 239</td>
</tr>
<tr>
<td>Herbrand, J.</td>
<td>40</td>
</tr>
<tr>
<td>Hessenberg, K.</td>
<td>221, 239</td>
</tr>
<tr>
<td>Hide, R.</td>
<td>309</td>
</tr>
<tr>
<td>Hilbert, D.</td>
<td>30</td>
</tr>
<tr>
<td>Hill, T. L.</td>
<td>348</td>
</tr>
<tr>
<td>Hirschfelder, J. O.</td>
<td>349, 367, 376</td>
</tr>
<tr>
<td>Holland, J. H.</td>
<td>71</td>
</tr>
<tr>
<td>Hoover, W. G.</td>
<td>348</td>
</tr>
<tr>
<td>Householder, A. S.</td>
<td>239</td>
</tr>
<tr>
<td>van Hove, L.</td>
<td>348</td>
</tr>
<tr>
<td>Hu, T. C.</td>
<td>125, 129, 138</td>
</tr>
<tr>
<td>Hubel, D. H.</td>
<td>69, 72</td>
</tr>
<tr>
<td>Ingham, A. E.</td>
<td>268</td>
</tr>
<tr>
<td>Irons, E. T.</td>
<td>41, 50</td>
</tr>
<tr>
<td>Jacchia, L. G.</td>
<td>328, 334</td>
</tr>
<tr>
<td>Jacobi, C. G. J.</td>
<td>219, 239</td>
</tr>
<tr>
<td>Jacobson, J. D.</td>
<td>349</td>
</tr>
<tr>
<td>Jahnke, E.</td>
<td>376</td>
</tr>
<tr>
<td>Jakobson, R.</td>
<td>14</td>
</tr>
<tr>
<td>Jarosch, H.</td>
<td>318, 324, 334</td>
</tr>
<tr>
<td>Kac, M.</td>
<td>353, 365</td>
</tr>
<tr>
<td>Kahr, A. S.</td>
<td>40</td>
</tr>
<tr>
<td>Kaula, W.</td>
<td>334</td>
</tr>
<tr>
<td>Keller, H. B.</td>
<td>71</td>
</tr>
<tr>
<td>Kesler, C.</td>
<td>72</td>
</tr>
<tr>
<td>Kirkwood, J. G.</td>
<td>348</td>
</tr>
<tr>
<td>Kleene, S. C.</td>
<td>14, 71</td>
</tr>
<tr>
<td>Kleinfeld, E.</td>
<td>85</td>
</tr>
<tr>
<td>Knight, B. W.</td>
<td>72</td>
</tr>
<tr>
<td>Kommerell, K.</td>
<td>200, 218</td>
</tr>
<tr>
<td>Kopal, Z.</td>
<td>328, 334</td>
</tr>
<tr>
<td>Kreiss, H. O.</td>
<td>158, 253, 255, 258</td>
</tr>
<tr>
<td>Kuhn, H. W.</td>
<td>97, 106, 107, 124</td>
</tr>
<tr>
<td>Kusmin, R. O.</td>
<td>199, 218</td>
</tr>
<tr>
<td>Landshoff, R.</td>
<td>285, 288</td>
</tr>
<tr>
<td>Larson, H. T.</td>
<td>14</td>
</tr>
<tr>
<td>Lashley, K. S.</td>
<td>61, 71</td>
</tr>
<tr>
<td>Lax, P. D.</td>
<td>251, 258</td>
</tr>
<tr>
<td>Lebowitz, J. L.</td>
<td>348</td>
</tr>
<tr>
<td>Lehman, R. S.</td>
<td>88, 94</td>
</tr>
<tr>
<td>Lehmer, D. H.</td>
<td>141, 145, 268</td>
</tr>
<tr>
<td>Lehmer, D. N.</td>
<td>268</td>
</tr>
<tr>
<td>Lehmer, E.</td>
<td>145</td>
</tr>
<tr>
<td>Lettvin, J. Y.</td>
<td>72</td>
</tr>
<tr>
<td>Lewinson, V. A.</td>
<td>348</td>
</tr>
<tr>
<td>Lewy, H.</td>
<td>258</td>
</tr>
<tr>
<td>Logemann, G.</td>
<td>30</td>
</tr>
<tr>
<td>Longley, H. J.</td>
<td>285, 288</td>
</tr>
<tr>
<td>Longuet-Higgins, C.</td>
<td>349</td>
</tr>
<tr>
<td>Lorenz, E.</td>
<td>289, 309</td>
</tr>
<tr>
<td>Loveland, D.</td>
<td>30</td>
</tr>
<tr>
<td>Löwdin, P. O.</td>
<td>372, 376</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

McCarthy, J., 14, 71
McCulloch, W. S., 71, 72
MacDonald, G. J. F., 311, 319, 326, 327, 334
MacNeish, H. F., 81
MacRobert, T. M., 376
Mann, H. B., 78, 79, 81
Manne, A. S., 136, 139
Margenau, H., 376
Martin, F. C., 72
Maturana, H. R., 72
Mayer, J. F., 348
Mazur, P., 348
Metropolis, N., 250
Miller, J. C. P., 182
Mills, W. H., 145
Milne, W. E., 250
Milner, B., 71
Minsky, M., 40
Moore, E. F., 40
Moore, E. H., 81
Moore, J. T., 182
Mori, H., 349
Mori, K., 289, 309
Morse, P. M., 334
Munk, W., 327, 334
Munro, W., 100, 106
Murnaghan, F. D., 239
Murphy, G. M., 376
Murray, A. E., 72

Natanson, I. P., 218
Naur, P., 50
Ness, N. F., 323, 324, 326, 334
von Neumann, J., 13, 286, 288
Newell, A., 40
de Nô, R. L., 71
Nordsieck, A., 241, 250
North, J. H., 27, 30, 39
Novikoff, P. S., 8, 14

Oncley, J. L., 71
Onsager, L., 309
Oppenheim, I., 348
Ore, O., 94
Ostrowski, R. T., 76, 78, 81

Paige, L. J., 74, 79, 81, 100, 102, 106
Parker, E. T., 73, 74, 80, 81
Parker, F. R., 348
Pasta, J., 290, 309
Patz, W., 87, 94
Peano, G., 40
Pekeris, C. L., 318, 324, 328, 334

Penfield, T. H., 71
Percus, J. K., 348
Perron, O., 182
Phillips, N., 289, 309
Pickert, G., 85
Pitts, W., 71, 72
Pólya, G., 182, 367, 376
Pope, D. A., 99, 106
Pople, J. A., 349
Prawitz, D., 26, 30, 40
Prawitz, H., 26, 30, 40
Press, F., 324, 326, 334
Putnam, H., 8, 14, 29, 39
Quandt, R. E., 107, 124
Quine, W. V., 30, 40

Rabin, M. O., 12, 14
Rasmussen, T., 71
Ratliff, F., 72
Reed, R. J., 298, 310
Reiffen, B., 58
Richtmyer, R. D., 250, 258, 285, 286, 288
Robinson, A., 30, 40
Robinson, J., 8, 14
Rochester, N., 71
Roe, G. M., 182
Rogers, D. G., 298, 310
Rogers, H., 14
Romberg, W., 199, 218
Rosenberg, M. D., 71
Rosenblatt, F., 63, 64, 71, 72
Rossby, C.-G., 293, 310
Rosser, J. B., 31, 40, 259, 268
Russell, B., 40
Rutishauser, H., 158, 159, 182, 199, 218, 219, 239

Saaty, T. L., 124
Salsburg, Z. W., 348, 349
Salvadori, M. G., 201, 218
Schmitt, F. O., 71
Schoenfeld, L., 268
Scott, D., 12, 14
Seiden, E., 100, 106
Seigert, A. J. F., 348, 349
Selfridge, J. L., 145
Shanks, D., 5, 14
Shannon, C. E., 12, 14, 51, 58, 71
Shaw, J. C., 40
Sholl, D. A., 71
Shrikhande, S. S., 74, 81
AUTHOR INDEX

Siebert, M., 328, 334
Simon, H. A., 40
Singer, M., 71
Skolem, Th., 40
Slichter, L. B., 323, 324, 326, 334
Smith, E. B., 348
Smith, S., 324, 326, 334
Stein, P. R., 9, 14
Stern, M., 289, 290, 291, 309
Stewart, H. J., 297, 310
Stiefel, E., 158, 182, 183, 199, 218
Stieltjes, T. J., 170, 183
Strang, W. G., 254, 258
Suranyi, J., 40
Sutton, G., 324, 334
Sward, G. L., 39
Szegö, G., 182

Tarry, G., 73, 81, 97, 106
Taussky, O., 94, 94, 183
Thompson, P. D., 334
Thomson, J. J., 297, 310
Thomson, Sir W., 334
Todd, J., 2, 14
Tomkins, C. B., 74, 79, 81, 95, 99, 100, 106
Tucker, A. W., 14

Ulam, S. M., 9, 14, 40, 290, 309
Urabe, M., 149, 158
Utz, W. R., 143, 145

Van Duren, K. D., 76, 81
Vogera, N., 30, 40

Wagner, H. M., 137, 139
Wainwright, T. E., 348, 349
Walker, R. J., 83, 85
Wall, H. S., 183
Wang, H., 12, 14, 30, 31, 40
Watson, G. N., 376
Weaver, W., 58
Weekes, K., 328, 334
Welch, L. R., 98, 99, 106
Wendroff, B., 258
Wexler, C., 102, 106
Weyl, H., 94
Whitehead, A. N., 40
Whittin, T. M., 137, 139
Whittaker, E. T., 376
Widder, D. V., 175, 183
Wiener, N., 2, 14
Wiesel, T. N., 69, 72
Wightman, C. W., 72
Wilkes, M. V., 328, 334
Wilkinson, J. H., 185, 185, 198, 220, 239
Williams, R. C., 71
Wintner, A., 239
Wisman, E., 244, 250
Wolfe, P., 125, 131, 138
Wood, W. W., 348, 349
Wozencraft, J. M., 55, 56, 58
Wrench, J. W., Jr., 5, 14

Yang, C. N., 348
Yang, C.-P., 351
Yovits, M. C., 14

Zassenhaus, H., 87, 94, 94
SUBJECT INDEX

ALGOL, 12, 220
a, 261
Absolute refractory period, 60
Adaptive neural networks, 59
Addition of continued fractions, 228
Additive loop, 80
Afferent, or sensory, neuron, 60
Affine plane, finite, 74
Affirmative-negative rule, 25
Algebra, directed, 381
Algebraic
number field, order in, 88
number theory, 5
Algorithm, Euclidean, 11
Analysis, numerical, 379
Analytic
continuation, 171
differentiation, 380
functions, zeros of, 159
Angular momentum equation, 296
Applied Mathematics, 4
Approximant, 168
Approximate
plane rotation, 189
rotation matrix, 189
Arithmetic
floating point, 246
normalized significant digit, 248
operations, error bounds, 185
Arithmetical vortex systems, 307
Artificial viscosity, 274, 285
Assignment problem, 96
Associateor Units, 63
Asymptotic expansions, 170, 174, 175, 179
Atmospheric hydrodynamics, 289
Atomic formula, 17, 18
Autocorrelation function, 346
Automatic
interval control, 242
programming, 11
starting, 242
axon, 59

Basis, reduced, 89
Bayes formula, 104
Bessel functions, 177
Binary erasure channel, 52
Biological neuron, 59
Block codes, random, 52
Body
cell, 59
forces, 282
Boltzmann
distribution, 353
factors, 352, 353
H-function, 344
Boundary
catastrophe, 278
conditions, 279, periodic, 338
fluxes, 276
value problems, inverse, 312
Bounds for zeros of polynomials, 166
Brain models, 59, 62
Cantor type paradox, 5
Carleman's convergence criterion, 171
Cartesian Problems, three-dimensional, 282
Cells, 271
body, 59
total pressure in mixed, 273
Channel, 51
binary erasure, 52
noisy, 51
periodic, 280
Characteristic polynomials, 166
Chebyshev polynomial, 383
Chilean earthquake, 311
Circle theorem, Gerschgorin, 167
Class semigroup, 88
Clause, 21
Codes
random block, 52
tree, 55
Coding, 51
theory, 51
Coefficients
self-diffusion, 346
transport, 345
Collapse through identification, 100
Collision rate, 344
Combinatorial Mathematics, 4
Communications, finite, 103
Compatible, 75
Complete similarity transformation, 195
Completeness theorem, 20
Comprehension, human, 9
Compressible fluids, 269
Computability Theory, 4
Computer storage space, 287
Computing
cybernetic, 1
global, 12
numerical analysis, 1
time, 287
Condensed Simplex Tableau, 108
Conjunct, linked, 26
Conjunctive normal form, 22
Connection, value of, 63
Connective, truth-functional, 15
Conditions for normality, 162
Confluent hypergeometric function, 176
Conservation
of energy, 279
of mass, 279
of momentum, 279
Consistency, 150
Constant symbol, 16, 17
Continuation, analytic, 171
Continuative output, 281
Continued fractions, addition of, 228
Contradiction, truth-functional, 22
Controls, real time, 10
Convergence, 150
criterion, Carleman's, 171
Converging factors, 159, 174-177
lower bounds, 175
upper bounds, 175
Coordinates
cylindrical, 282
polar, 282
Corresponding power series, 169
Courant condition, 287
Cross coupled perceptrons, 71
Curie temperature, 351
Cybernetic computing, 1
Cylinder of fluid striking a laminated plate, 284
Cylindrical coordinates, 282
Davis-Putnam procedure, 25
Decoding, 51
sequential, 51
Deferred approach to the limit, 200
Deflation by Jacobi rotations, 223
Degrees of freedom, 337
Density
fluctuations, 283, 340
matrices, 374
Determinants, Hankel, 161
Difference equation, 149
Differentiation, analytic, 380
Directed algebra, 381
Discrete vortex representation, 289
Discretization error, 148
Disjunctive normal form, 24
Distributing internal energy, 277
Distribution
Boltzmann, 353
function, higher, 337
velocity, 344
Division algebra, 83
Double viscosity procedure, 286
Earthquake, Chilean, 311
Effective viscosity of the PIC method, 286
Efferent, or motor neuron, 60
Eigenvalues, 167
Elliptic integrals, 382
End-feet, 59
Energy
conservation of, 276, 279
equation, 296
flux of ——— across a boundary, 280
Enskog theory, 347
Entropy, 341
Equation
angular momentum, 296
difference, 149
energy, 296
Liouville, 335
momentum, 296
quartic ——— in closed form, 383
quasi-geostrophic, 290
stiff, 368
Equipotentiality
and Mass Action, 68
Law of, 61
Equivalence, local, 94
Erasure channel, binary, 52
Ergodic hypothesis, 335
Error
bounds for arithmetic operations, 185
correction, 66
discretization, 148
integral, 177-178
local, 148
propagation, 148
round-off, 6, 148
Euclidean
algorithm, 11
norm, 194
Eulerian viewpoint, 269
Euler's conjecture, 73
SUBJECT INDEX

Evaluation of the Riemann Zeta function, 214
Even parts of continued fractions, 172
Exact plane rotation, 188
Excitatory signals, 60
Existential quantifier, 16
Expansions
 asymptotic, 170, 174, 175, 179
 virial, 342
Experiment, 271
Externally applied pressure, 281

FORTRAN program, 164, 165, 177
Factors
 Boltzmann, 352, 353
 converging, 159, 174–177
Far-subsonic flow, 287
Finite
 affine plane, 74
 communications, 103
 projective planes, 97
Floating point
 arithmetic, 246
 operations, 185
 square root procedures, 186
Flow-charts, 9
Fluctuation, 339
 density, 283, 340
 dissipation, 345
Fluids, compressible, 269
Flux
 boundary, 276
 of energy across a boundary, 280
Forced learning, 66
Formal power series, 159
Formula
 atomic, 17–18
 Bayes, 104
Forecast, 312
Fractional ideals, 88
Fractions
 continued, 159
 Stieltjes, 170, 171
Frequency, Väisälä, 329
Froude number, 290
Function
 autocorrelation, 346
 Bessel, 177
 Boltzmann H-, 344
 confluent hypergeometric, 176
 gamma, 178
 Green's, 295
 higher distribution, 337
 hypergeometric, 176
 Lommel, 178
 meromorphic
 poles of, 162
 zeros of, 163
 partition, 335

Game theory, 383
Gamma function, 178
Generating polynomials (of T-table), 202
Genus, 94
Gerschgorin circle theorem, 167
Gilmore's procedure, 24
Givens' transformation, 188
 method, 196
Global computing, 12
Gödel
 completeness theorem, 20
 number, 12
Gradient methods, 113, 115
Grand canonical ensemble, 343
Green's function, 295
Group, 19

H-function, Boltzmann, 344
Hamiltonian form, 295
Hankel determinants, 161
Hard sphere systems, 342
Heat conduction, 282
Herbrand
 theorem of, 23
 universe, 22–23
Hide's turbulent regime, 306
Higher distribution function, 337
Hilbert's Tenth Problem, 8
Householder transformation, 233
Human comprehension, 9
Hydrodynamics, atmospheric, 289
Hypergeometric
 function, 176
 series, 171
Hypernormal, 163

Ideals, fractional, 88
Incidence matrices, 97
Informal retrieval, 377
Information regeneration, 377
 theory, 51
Inherent negative diffusions, 286
Inhibitory signals, 60
Input, prescribed, 280
Instability, 148
 numerical, 162, 177
Institutionalist version of mathematics, 7
Integrals, elliptic, 382
Integration, 381
Interfacial area, 343
Internal energy, distributing, 277
Internuncial neurons, 60
Interpretation, 18
Interval control, automatic, 242
Invariance
 rotational, 287
 translational, 287
Invariant theory, 3
Inverse boundary value problems, 312
Inversion of a matrix, 375
Ising lattice, 351, 338, 353
Isotopic, 84

Jacobi rotation, 219
deflation by, 223

Kinetic and potential energies of the vortex system, sum of, 296

Lagrangian viewpoint, 269
Laguerre polynomials, 181
Language translation, 12
Laplace transform, 175
Laplacian integrals, 173, 179
Largest known prime, 5
Latin square, 73
Lattice
gas, 338
Ising, 351, 353
Law
 of Equipotentiality, 61
 of mass action, 61
Learning curve, 67
Legendre polynomials, 180
Limit, deferred approach to, 200
Linear
 multistep methods, 149
 program, 108
Linearly independent, 383
Linked conjunct, 26
Liouville equation, 335
Literals, 21
Local equivalence, 94
Logic, symbolic, 15
Lommel function, 178
Long period oscillations in the atmosphere, 298
Loop
 additive, 80
 multiplicative, 80

Los Alamos Scientific Laboratory, 269
Lower bounds for converging factor, 175
Machine
 roundoff, 279
 Turing, 7
Mark I perceptron, 65
Markov
 chain, 335-336, 338
 process, 346
Mass
 action, law of, 61
 conservation of, 279
Mate, 26
Material, transport of, 277
Mathematical
 memory, world, 10
 neuron, 59, 61
Mathematics
 Applied, 4
 Combinatorial, 4
 institutionalist version of, 7
Matrix
 approximate rotation, 189
 density, 374
 Hessenberg, 221
 incidence, 97
 inversion of, 375
 permutation, 95
 transition, 353
Mechanical translator, 41
Mechanics, statistical, 335
Mechanization of science, 377
Meromorphic function
 poles of, 162
 zeros of, 163
Mesh, moving, 281
Microscopic reversibility, 336, 346
Mixed cell, total pressure in, 273
Model, 18
 brain, 59, 62
 Modes, normal, 297
 Moments, 175
 Momentum
 conservation of, 279
 equation, 296
 Monte Carlo method, 336
 Motor, neuron, 60
 Moving mesh, 281
 Multiplicative loop, 80
 Multistep methods, linear, 149
 n-dimensional space, 9
SUBJECT INDEX

Negative diffusions, inherent, 286
Network, redundant, 70
von Neumann, John, 308
Neural networks, adaptive, 59
Neuron
afferent, 60
biological, 59
doctrine, 61
efferent, 60
internuncial, 60
mathematical, 59, 61
motor, 60
organization in the brain, 61
sensory, 60
Newton-Cotes formula, 200
Noise, 51
Noisy channel, 51
Non-Desarguesian plane, 80
Norm
Euclidean, 194
spectral, 194
Normal
form
conjunctive, 22
disjunctive, 24
modes, 297
series, 161
ultimately, 161
Normality, conditions for, 162
Normalized significant digit arithmetic, 248
Number theory, 4
algebraic, 5
Numerical
analysis, 379
computing, 1
instability, 162, 177
integration of ordinary differential equations, 241
stability, 149
Odd parts of continued fractions, 172
One-literal clause rule, 25
Operations
floating-point, 185
pivot, 109
Order in an algebraic number field, 88
Ordinary differential equations
numerical integration of, 241
solution of ——— in a closed form, 381
Organization
of neurons in the brain, 61
spontaneous, 71
Orthogonal polynomials, 159, 179
Oscillations
atmospheric, 327
long period ——— in the atmosphere, 298
of the solid earth, 313
of the subtropical anticyclone, 298
of the symmetric n-vortex system, 297
spheroidal, 316
toroidal, 316
Output, continuing, 281
π (x), 259
ψ (x), 259
PI (x), 260
PIC method, 269, 287
effective viscosity of, 286
P-T (x), 262
Paradox
Cantor type, 5
Russell (and) Richards, 7
Particle, 271
-in-Cell method, 269
moved, 277
Partition function, 335
Perceptrons, 63
cross coupled, 71
Mark I, 65
Periodic
boundary conditions, 338
channel, 280
Periodicity of three-vortex system, 299
Permutation matrices, 95
Phase
space, 338
transition, 339, 341
Pivot, 109
operation, 109
rules, 112
Pivoting, 108
Plane rotation, 188
approximate, 189
exact, 188
sequence of, 190
Poincaré cycle, 346
Point vortices in three dimensions, 294
Polar coordinates, 282
Poles of meromorphic function, 162
Polynomials
characteristic, 166
Chebyshev, 383
generating (of T-table), 202
Laguerre, 181
Legendre, 180
orthogonal, 159, 179
Potential, 336	Refractory period
square-well, 337	absolute, 60
vorticity, 289, 293	relative, 61
Power series, 381	Regime
continued fractions corresponding to (formal), 168	Hide's vacillating, 305
corresponding, 169	turbulent, 306
formal, 159	Reinforcement rule, 62, 63, 66
Prawitz procedure, 26	Relation symbol, 16, 17
Prediction, weather, 13	Relative refractory period, 61
Prescribed input, 280	Removing the first order diffusive effects, 287
Pressure, externally applied, 281	Resolution of the fine detail, 287
Prime, largest known, 5	Response Units, 63
Principle, uncertainty, 13	Retrieval, informal, 377
Problem, word, 8	Reversibility, microscopic, 336, 346
Procedure	Richards (and) Russell paradoxes, 7
Davis-Putnam, 25	Rigid obstacles, 281
Gilmore's, 24	Riemann
Prawitz, 26	hypothesis of, 382
proof, 15	Zeta function, evaluation of, 214
Processes, translation, 105	Ring, ternary, 80
Program	Romberg's method
FORTRAN, 164, 165, 177	weight coefficients for, 205
linear, 108	Rossby number, 290
Programming	Rotating
automatic, 11	tank experiment, 296
stochastic, 107	thermal convection in a fluid, 303
Projective planes, finite, 97	Rotation
Proof procedures, 15	approximate plane, 189
	exact plane, 188
	Jacobi, 219
	matrix, approximate, 189
	plane, 188
	sequence of plane, 190
	Rotational invariance, 287
	Rounding
	away from zero, 250
	errors, statistical distribution, 198
	Roundoff, 249
	error, 6
	machine, 279
	Russell (and) Richards paradoxes, 7
Random	SL (\(\alpha\)), 260
	SR (\(\alpha\)), 260
	Sampling, random, 335
	Science, mechanization of, 377
	Second order terms, 194
	Self-diffusion coefficient, 346
	Semigroup, class, 88
	Sensory
	neuron, 60
	units, 63
	Sequence of plane rotations, 190
	Recognition of patterns, 70
	Reduced basis, 89
	Redundant network, 70
	Quasi-geostrophic equations, 290
	Quotient-difference scheme, 160
	of reciprocal series, 162
	Quartic equation in closed form, 383
	Quasi-ergodicity, 338
	Rotations
	SL (\(\alpha\)), 260
	SR (\(\alpha\)), 260
	Sampling, random, 335
	Science, mechanization of, 377
	Second order terms, 194
	Self-diffusion coefficient, 346
	Semigroup, class, 88
	Sensory
	neuron, 60
	units, 63
	Rotation
	approximate plane, 189
	exact plane, 188
	Jacobi, 219
	matrix, approximate, 189
	plane, 188
	sequence of plane, 190
	Rotation
	approximate plane, 189
	exact plane, 188
	Jacobi, 219
	matrix, approximate, 189
	plane, 188
	sequence of plane, 190
	Rotational invariance, 287
	Rounding
	away from zero, 250
	errors, statistical distribution, 198
	Roundoff, 249
	error, 6
	machine, 279
	Russell (and) Richards paradoxes, 7
	SL (\(\alpha\)), 260
	SR (\(\alpha\)), 260
	Sampling, random, 335
	Science, mechanization of, 377
	Second order terms, 194
	Self-diffusion coefficient, 346
	Semigroup, class, 88
	Sensory
	neuron, 60
	units, 63
	Rotation
	approximate plane, 189
	exact plane, 188
	Jacobi, 219
	matrix, approximate, 189
	plane, 188
	sequence of plane, 190
	Rotational invariance, 287
	Rounding
	away from zero, 250
	errors, statistical distribution, 198
	Roundoff, 249
	error, 6
	machine, 279
	Russell (and) Richards paradoxes, 7
Sequencial decoding, 51
Series
 hypergeometric, 171
 normal, 161
 power, 381
 Taylor, 380
Signals
 excitatory, 60
 inhibitory, 60
Significance index, 248
Significant digit arithmetic, normalized, 248
Similarity transformation, complete, 195
Simplex method, 107, 108
Simplex Tableau, Condensed, 108
Simplify, 381
Simpson’s rule, 200
Solid earth, oscillations of, 313
Solution of ordinary differential equations in a closed form, 381
Space, n-dimensional, 9
Spatial and temporal summation, 60
Spectral norm, 194
Sphere systems, hard, 342
Spheroidal oscillations, 316
Splitting rule, 25
Spontaneous organization, 71
Square-well potential, 337
Stability, 150
 numerical, 149
 weak, 153
Starting, automatic, 242
Statistical
 distribution of the rounding errors, 198
 mechanics, 335
Stieltjes fractions, 170–171
Stiff equations, 368
Stimulus, 63
Stochastic programming, 107
Subtropical anticyclones, oscillations of, 298
Sum of the kinetic and potential energies of the vortex system, 296
Supernormal period, 61
Symbol
 constant, 16, 17
 function, 16, 17
 relation, 16, 17
Symbolic logic, 15
Symmetric n-vortex system, oscillation of, 297
Synapses, 59
Syntax of language, 42

θ (x), 259
TH (x), 260
T + L (x), 262
T-table, 201
 generating polynomials of, 202
Tableau, Condensed Simplex, 108
Tank experiment, rotating, 296
Taylor series, 380
Temperature
 Curie, 351
 transition, 355, 358
Temporal
 spatial and —— summation, 60
Tentative new velocities, 275
Term, 17
 second order, 194
Ternary ring, 80
Theorem, Herbrand’s, 23
Theory
 coding, 51
 computability, 4
 game, 383
 information, 51
 invariant, 3
Thermal convection in a rotating fluid, 303
Three-dimensional
 Cartesian Problems, 282
 discrete vortex system, 304
Three-vortex system, periodicity, 299
Threshold, 60, 63
Toroidal oscillations, 316
Total energy, 279
 conservation of, 279
Total pressure in a mixed cell, 273
Transformation
 complete similarity, 195
 Givens’, 188
 Householder, 233
 QR-, 232
Transition
 matrix, 353
 temperature, 355, 358
Translation, 105
 invariance, 287
 language, 12
 process, 105
Translator, mechanical, 41
Transmitter, 51
Transport
 coefficients, 345
 of material, 277
Transversal, 75, 96
Trapezoidal rule, 156
Tree codes, 55
Truth-functional connective, 15
Truncation error, 179
Turing machines, 7
Two
complex variables, 9
ideals, weak equivalence of, 89
phases, 357

Ultimately normal, 161
Uncertainty principle, 13
Units
Associator, 63
Response, 63
Sensory, 63
Universal quantifier, 16
Universe, 18
Upper bounds for converging factor, 175

Väisälä frequency, 329
Vacillating regime
Hide’s, 305
(regularly) instability of, 306
Value of the connection, 63
Variables, two complex, 9
Velocity
distribution, 344
tentative, 275
weighting, 278
Virial
expansion, 342
theorem, 339

Viscosity, 282
artificial, 274, 285
Vortex representation, discrete, 289
Vortex system
arithmetical, 307
sum of the kinetic and potential energies of, 296
three-dimensional discrete, 304
Vorticity, potential, 289, 293
van der Waals loop-like behavior, 341
Watson’s Lemma, 175, 178
Weak
equivalence of two ideals, 89
stability, 153
Weather prediction, 13
Weight coefficients for Romberg’s method, 205
Weighting velocity, 278
Word problem, 8
World Mathematical Memory, 10

Y-table, 217

Z-table, 216
Zeros
of analytic functions, 159
of meromorphic functions, 163
of polynomials, 165
(bounds for), 166