Stochastic Processes in Mathematical Physics and Engineering

PROCEEDINGS OF
SYMPOSIA IN
APPLIED MATHEMATICS

VOLUME XVI

PROCEEDINGS OF A SYMPOSIUM IN APPLIED MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY

Held in New York City
April 30-May 2, 1963

COSPONSORED BY
THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

Richard Bellman
EDITOR

PROCEEDINGS OF
 SYMPOSIA IN APPLIED MATHEMATICS

VOLUME XVI

STOCHASTIC PROCESSES
 IN
 MATHEMATICAL PHYSICS
 AND ENGINEERING

Prepared by the American Mathematical Society under Grant No. AF-AFOSR-66-63 with the United States Air Force Office of Scientific Research and Contract No. DA-31-124-ARO(D)-81 with the U.S. Army Research Office (Durham).

International Standard Serial Number 0160-7634
International Standard Book Number 0-8218-1316-1
Library of Congress Catalog Number 64-18128

Copyright © 1964 by the American Mathematical Society

Printed in the United States of America All rights reserved except those granted to the
United States Government. Otherwise, this
book, or parts thereof, may not be reproduced in any form without permission of the publishers.

CONTENTS

Introduction vii
Stochastic Green's functions 1
By G. Adomian
On the theory of random equations 40
By A. T. Bharucha-Reid
Reynolds operators 70
By G. C. Rota
On propagation in random media of discrete scatterers 84
By Victor Twersky
Wave propagation in a general random continuous medium 117
By W. C. Hoffman
Stochastic equations and wave propagation in random media 145
By J. B. Keller
Stochastic transformations and functional equations 171
By Richard Bellman
The application of stochastic approximation to the optimization of random circuits 178
By K. B. Gray
Random walks on lattices 193
By E. W. Montroll
On statistical spectral analysis 221
By Emanuel Parzen
Stability in single detection problems 247
By W. L. Root
The construction of a class of stationary Markoff processes 264
By Eugene Wong
Probability bounds via dynamic programming 277
By David Blackwell
Markovian sequential decision processes 281By Cyrus Derman
Application of truncated hierarchy techniques 290
By J. M. Richardson
Author Index 303
Subject Index 307

INTRODUCTION

In the study of the classification and recognition of mathematical processes, dichotomies can be introduced in several different fashions. Two of the most useful have been "deterministic vs. stochastic" and "descriptive vs. variational." In recent years, we have seen greater and greater emphasis laid upon stochastic and decision processes, and even a blending of the two in the form of modern control theory.

The gradual shift of interest from the classical deterministic descriptive process has been largely a consequence of the continuing challenges to the mathematician to explain phenomena, produce numbers, and guide research in such fields as physics, engineering, economics, biology, medicine and operations research. Combinations of complexity and uncertainty have forced a more frequent use of probabilistic concepts.

In this volume, the emphasis is upon stochastic processes, divided a bit unevenly between descriptive and decision aspects. In dealing with random effects, we can use deterministic or stochastic equations, just as in dealing with deterministic effects we can employ stochastic or deterministic equations or in treating descriptive processes, we can use either descriptive or variational equations. The choice of a particular analytic formulation is a tribute to the existing analytic techniques and the computational resources available, as well as a reflection of the underlying physical process and the prevalent scientific philosophy.

The papers by Adomian, Bharucha-Reid, Hoffman, Keller, Richardson, and Twersky deal with various and overlapping aspects of the general theory of stochastic equations, principally ordinary and partial differential equations. Mụch of this work is motivated by particular equations arising in wave propagation and scattering theory, as the papers by Hoffman, Keller, and Twersky indicate. The objective of obtaining specific analytic results leads to the development of perturbation techniques and the consideration of questions of closure, as, for example, in Richardson's paper.
The paper by Bellman deals with stochastic iteration, a topic which arises from the consideration of stochastic differential equations in very much the same way as classical iteration theory arises from deterministic differential equations. A particularly important type of stochastic iteration arises in the theory of stochastic approximation. This approach is used by Gray to study a design problem arising from circuits with random components. In their papers, Blackwell and Derman use dynamic programming, the first to obtain estimates in probability theory by identification with a stochastic decision process, and the second to treat an interesting class of sequential decision processes of Markovian type.

Classical estimation and identification problems arising from stochastic processes are treated by Parzen and Root using new and powerful approaches.

Finally, the papers by Montroll, Rota, and Wong consider deterministic equations associated respectively with random walk, turbulence, and diffusion theory.

Looking over the papers in this volume, we see many new, fascinating, and difficult classes of problems, ideal areas for the young analyst to test his talents, develop his techniques, and plant his flag.

Richard Bellman
Santa Monica, California

1964

AUTHOR INDEX

Italic numbers refer to pages on which a complete reference to a work by the author is given.
Roman numbers refer to pages on which a reference is made to a work of the author. For example, under Minkowski would be the page on which a statement like the following occurs:
"This theorem was proved earlier by Minkowski [7, §2] in the following manner . . ."
Boldface numbers indicate the first page of articles in this volume.

Achieser, N. I., 238, 245
Adomian, G., 1, 38, 56, 66
Akutowicz, E. J., 250, 263
Altman, M., 66
Ament, W. S., 126, 127, 140, 143, 146, 149, 170
Andersen, E. S., 72, 82
Antosiewicz, H. A., 66
Arbault, J., 81
Ashcroft, W. D., 192
Atkinson, F. V., 72, 83
Babuška, I., 55, 58, 66
Bachelier, L., 193, 219
Bahadur, R. R., 81
Balakrishnan, A. V., 247, 263
Barrett, J. F., 273, 275
Batchelor, G. K., 144
Baxter, G., 72, 82
Bazer, J., 116
Beard, C. I., 116
Belayev, Yu. K., 249, 263
Bellman, R., 143, 144, 171, 172, 175, 177, 281, 288
Bergman, P. G., 39, 136, 143
Bernstein, S., 55, 66
Bertram, J. E., 66
Bharucha, B. H., 57, 65, 66
Bharucha-Reid, A. T., 40, 61, 66, 67, 144, 302
Billik, M., 81
Birkhoff, G. D., 5, 38, 70, 74, 81
Blackman, R. B., 239, 245
Blackwell, D., 277, 277, 280, 288
Blanc-Lapierre, A., 38, 121, 142
Blum, J. R., 182, 192
Bochner, S., 272, 275
Bogolyubov, N. N., 147, 170, 302
Booker, H. G., 127, 144
Bourret, R. C., 146, 149, 151, 154, 170, 302
Bowhill, S. A., 128, 144
Boyce, W. E., 61, 67
Brainerd, B., 81

Bremmer, H., 127, 128, 140, 141, 143
Brooks, C. E. P., 223, 245
Buchan, J. F., 39
Bugnolo, D. S., 123, 127, 140, 143
Bush, R. R., 177
Carruthers, N., 223, 245
Carstensten, E. I., 116
Chandrasekhar, S., 193, 219, 275
Chelpanov, B., 39
Chernov, L. A., 39, 136, 143, 153, 170
Chung, K. L., 288
Cole, G. H. A., 116
Courant, R., 67, 194, 220
Cramer, H., 27, 38, 275
Crawford, A. B., 128, 144
Damask, A. C., 219
Dambis, K. Z., 62, 67
Dantzig, G., 281, 286, 288
Darling, D. A., 39, 273, 275
Davenport, W. B., 27, 39
Derman, C., 281, 288
Dienes, C. J., 219
Dieudonné, J., 81
Dobrushin, R. D., 249, 263
Dolph, C., 144
Domb, C., 193, 205, 220
Doob, J. L., 38, 67, 117, 142, 276, 278, 280
Driml, M., 67
Dubins, L. E., 277, 280
Dubreil-Jacotin, M. L., 74, 81
Duffin, R. J., 220
Dunford, N., 81
Dvoretzky, A., 177, 182, 183, 192, 194, 210, 220
Dynkin, E. B., 67
Dyson, F. J., 47, 67, 219, 302
Eaton, J. H., 282, 289
Edwards, D. A., 58, 67
Engleman, R., 47, 67
d'Epenoux, F., 281, 289
Erdélyi, A., 220, 276
Erdös, P., 52, 67, 194, 210, 220
Eringen, A. C., 39, 55, 69, 177

Feller, W., 204, 206, 2..0, 276, 280, 283, 284, 289
Feynman, R. P., 143
Firstman, S. I., 192
Fisher, R. A., 223, 245
Foldy, L. L., 85, 86, 94, 98, 116, 146, 153, 160, 170
Fortet, R., 9, 25, 38, 39, 121, 142
Foster, F. G., 220
Freǐdlin, M. I., 62, 67
Freimer, M., 289
Frenkiel, F. N., 122, 142
Friedrichs, K., 220
Friis, H. T., 128, 144
Frisch, H. L., 60, 67
Furstenberg, H., 175, 177

Gaudin, M., 47, 68
Gel'fand, I. M., 143
de Ghellink, G., 289
Girsanov, I. V., 62, 67
Gnedenko, B. V., 276
Good, I. G., 220
Goodman, N. R., 245
Gray, H. J., Jr., 192
Gray, K. B., 178
Grenander, U., 47, 55, 67, 177, 252, 263

Hadley, G., 36, 39
Hajek, J., 247, 263
Halmos, P. R., 81
Hammersley, J., 52, 67
Hamming, R. W., 230, 241, 245
Hannan, E. J., 241, 245
Hanš, O., 38, 42, 44, 45, 50, 61, 64, 67
Hardy, G. H., 220
Harris, T. E., 172, 177
Herman, R., 220
Hille, E., 68, 83
Hirschfeld, R., 81
Hochwald, W., 192
Hoffman, W. C., 2, 38, 117, 130, 143
Hogg, D. C., 128, 144
Hopf, E., 147, 170
Howard, R. A., 281, 289
Hufford, G. C., 81
Ito, K., 61, 68

Jacobs, K., 143
Jansen, L., 92, 116
Jenkins, G. M., 245
Johns, M. V., 288
Juréen, L., 69
Kac, M., 2, 9, 38, 51, 68, 276
Kalaba, R., 143, 144, 177
Kalianpur, G., 257, 263
Kalman, R. E., 68
Kampé de Fériet, J., 58, 66, 68, 70, 74, 81, 82, 117, 118, 122, 124, 142
Kantorovič, L. V., 68
Karal, F. C., 151, 154, 170
Karlin, S., 272, 276
Kay, I., 134, 143
Keller, J. B., 2, 38, 85, 86, 116, 124, 126, 135, 136, 143, 145, 147, 151, 15!, 170
Kelley, J. L., 82
Kelly, E. J., 249, 259, 263
Kesten, J., 175, 177
Kharanen, V. Ya., 136, 143
Khinchin, A. Ya., 38
Kiefer, J., 180, 182, 192
Klein, M., 289
Koenigs, M. G., 172, 173, 177
Kolmogorov, A. N., 38, 82, 120, 142, 267, 276
Koopmans, T., 68
Kraichnan, R. H., 58, 60, 68, 125, 143, 147, 170
Krasnosel'skiì, M. A., 68
Lampard, D. G., 273, 275
Lanczos, C., 230, 241, 245
Lax, M., 85, 98, 116, 146, 153, 159, 160, 161, 170
Lawson, J. L., 2, 38
van Lear, G. A., Jr., 69
Lebedev, V. L., 55, 68
Levy, P., 39
Lewis, R. M., 147, 170
Lewy, H., 220
Lieberman, G. J., 288
Lifshitz, I. M., 220
Littlewcod, J. E., 51, 68
Lloyd, S. P., 60, 67
Loève, M., 38, 142, 189, 192
Lumley, J. J., 68
Magnus, W., 220
Mandel, M., 92, 116
Manne, A. S., 281, 286, 289
Maradudin, A., 220
Maravell Casenoves, D., 58, 68

Markoff, A., 38
Martin, P. C., 290, 302
Maruyama, G., 124, 143
Mazur, P., 92, 116
McCrea, W. H., 193, 205, 220
McGregor, J., 272, 276
Meecham, W. C., 151, 152, 154, 170
Mehta, M. L., 47, 68
Milnes, H., 220
Mintzer, D., 39
Mizel, V. J., 82
Molinaro, I., 82
Montroll, E. W., 193, 193, 204, 220
Morrison, J. A., 60, 68
Mosteller, F., 177
Mourier, E., 68
Moy, S.-T. C., 74, 82
Moyal, J. E., 39, 58, 67, 68, 142
Müller, C., 143
Nagai, T., 62, 68
Nagy, B., 83
Nakamura, M., 82
Nemytskii, V. V., 68
Oberhettinger, F., 220
Offord, A. C., 51, 52, 67, 68
Opachowski, W., 219
Oseen, C. W., 82
Parzen, E., 221, 225, 227, 233, 238, 245, 247, 249, 263
Phillips, R. S., 68, 83
Pitcher, T., 260, 263
Pogorzelski, W., 68
Pólya, G., 193, 204, 220
Potts, R., 220
Priestley, M. B., 241, 245, 246
Primas, H., 61, 68
Prins, J. A., 92, 95, 116
Prokhorov, Yu. V., 257, 263
Pugachev, V. S., 55, 69
Rao, M. M., 82
Raven, R. S., 39
Rayleigh, L., 153, 170
Reed, I. S., 249, 259, 263
Reiche, F., 153, 170
Reynolds, O., 70, 74, 82
Rheinboldt, W. C., 66
Richardson, J. M., 177, 290
Riesz, F., 83
Root, W. L., 39, 247, 249, 259, 260, 263

Rosenblatt, J. R., 192
Rosenblatt, M., 67, 246
Rosenbloom, A., 39, 69
Rota, G.-C., 69, 70, 81, 82
Rutickii, Ya. B., 68
Ryll-Nardzewski, C., 46, 69
Sacks, J., 182, 192
Samal, G., 52, 69
Samuels, J. C., 9, 28, 29, 39, 55, 69, 177
Sarachik, P. E., 66
Savage, L. J., 277, 280
Schauder, J., 69
Ŝchuster, A., 222, 223, 246
Schwartz, J., 81
Schwinger, J., 290, 302
Sefl, O., 69
Seidman, T. I., 143
Sidak, Z., 82
Siegert, A. J. F., 9, 38, 39, 273, 275
Silver, S., 118, 142
Silverman, R. A., 122, 134, 142, 143
Singer, I. M., 74, 82
Skinner, T. J., 124, 143
Skorohod, A. V., 62, 69, 257, 263
Sopka, J., 82
Spaček, A., 38, 44, 45, 67, 6.
Sparo, D. I., 53, 69
Spitzer, F., 72, 82
Srinivasan, S. K., 57, 69
Staras, H., 127, 143
Sundstrom, M., 28, 39
Sur, M. G., 53, 69
Szegö, G., 276
Tamm, I., 290, 302
Tatarski, V. I., 144
Thomas, J. B., 276
Tikhonov, V. I., 39
Toda, M., 220
Tricomi, F., 220
Tukey, J. W., 192, 239, 245, 246
Twersky, V., 84, 85, 86, 95, 116, 142, 146, 160, 161, 170

Uhlenbeck, G. E., 2, 3, 38, 69, 276
Uhlmann, W., 50, 69
Ullrich, M., 61, 69
Urbanik, K., 58, 69
Villars, F., 39
Vineyard, G. H., 194, 210, 220

Wagner, H. M., 289
Walker, G., 223, 246
Wang, M. C., 3, 38, 276
Watson, G. N., 202, 205, 220
Weiss, G., 220
Weisskopf, V. F., 39
Wermer, J., 74, 82
Wheelon, A. D., 122, 127, 143
Whipple, F. J. W., 193, 205, 220
Whittle, P., 241, 246
Wiener, N., 223, 246
Wigner, E. P., 47, 69
Wilcox, C. H., 87, 116
Wing, G. M., 144

Wold, H., 69
Wolfe, P., 281, 286, 288
Wolfowitz, J., 180, 182, 192, 278, 280
Wong, E., 264, 276
Wright, F. B., 82

Yaglom, A. M., 143, 249, 263
Yeh, K. C., 128, 144

Zaanen, A. C., 69
Zadeh, L., 175, 177, 282, 289
Zernike, F., 92, 95, 116
Zumino, B., 147, 170

SUBJECT INDEX

$A_{r}, 127$
Abel-Schroder equation, 171
abstract Cauchy problem, stochastic analogue of, 61
acoustic waves through a turbulent medium, 117
algebraic equation(s)
of degree $n, 51$
random, 51
random, 51
almost
certain convergence, 119
certainly twice continuously differentiable, 120
amplitude, 130
fluctuations, 133
function, 135
multiple scattered, 89
scattering, 87
window generators, 236
analysis
of random functions, 118
regression, 241
spectral, 223
analytic random function, 133
angular
brackets, 292
emergent _ power spectrum, 128
anisotropic, 127, 128
randomly inhomogeneous medium, 128
approximate solutions of random operator equations, 50
approximation, 37
methods, 32
stochastic, 180
theory, 221
associated
gain function $G_{t}(\theta, \varphi), 127$
solution of - deterministic operator equation, 49
relation to expected solution, 49
assumption of local independence, 149
asymptotic
behavior, 173
expansions, 131
attenuation coefficient
coherent, 105
attenuation coefficient (continued)
for the coherent wave, 152
autocorrelation, 9, 22
function, 14
statistical, 12
autoregressive process, 54
average
scale of turbulence, 140
spectral, 227
averaged hierarchy, 294
averaging
identity, 70
operator, 70
Banach space of generalized random variables, 50
Banach-Cacciopoli, 44
fixed point theorem, 44, 50
Bernoulli slabs, stack of, 134
bias, 229
Birkhoff-Khintchine theorem, 123
Blackwell, 75
Bloch's relaxation theory, 61
Borel space, 46
Born approximation, 117, 124, 126
boundary
condition(s)
expected value of random, 60 realizable, 58
stochastic _ value problem, 58
boundedness with probability, 1, 130
brackets, angular, 292
branching processes, 172
Brownian
equation for ——oscillator, 58
motion, 272
Langevin equation for simple, 58
chain, Markov, 57, 284
Chapman-Kolmogorov equation, 137, 141
characteristic function, 7
joint, 9
multivariate, 8
n-dimensional, 10
circuit design, statistical, 179
classical integral equations, random solutions of, 62
coefficients, stochastic, 290
coherent
attenuation coefficient, 105
field, 84, 93, 166
exact series for, 92
heuristic equation for, 93
intensity, 84
and flux, 166
scattered wave, 153
wave, 150
attenuation coefficient for, 152
compact
representations for intensity, 96
support of $\nu, 129$
compound Poisson process, 140
condition(al)
expectation, 72
of a generalized random variable, 48 of $x(\omega), 48$
for continuity, 257
probability distribution, 8
consecutive scattering at m equidistant planes, 141
consistency relations, 120
constant-parameter medium, 18
continuous, 226
eigenvalues, 266
spectrum $C \sigma(T(\omega))$ of $T(\omega), 46$
continuity
condition, 259
for, 257
ordinary, 119
continuum, random, 117
contraction
Principle of —— Mappings, 44
random - operator, 44, 64
convergence
almost certain, 119
weak __ of measures, 257
correlation, 37, 175, 295
discard, 295
function, 8, 12, 128, 150, 223, 293
ellipsoidally symmetric, 128
of Gaussian form, 128
pair, 156
length, 154
covariance, 122
approach, 223
function(s), 9, 123, 127, 224
for logarithmic amplitude, 128
for phase fluctuations, 128
of $\boldsymbol{\Theta}, 131$
of the random solution of . . ., 60
covariance
function(s) (continued)
$\rho(x, y), 60$
sample, 223
stationary, 122
table of - and associated spectra, 122
stationarity, 225
criteria for ergodic properties, 124
cross-correlation, 9
cross section scattering, 139
per unit solid angle . . ., 140
cumulant, 295
discard, 295
$\Delta \varepsilon, 126,127$
density
function
multivariate, 9
spectral, 132 of the refractive index, 131
sample, 224
spectral, 11, 12
determinants, random, 53
deterministic
equation, 130
operator equation, 43
single slab case, 141
derivative of a random function, 118
deviation(s), 74, 132
time series, 227
dielectric
constant, 126, 127
noise, 139
difference equations, random, 53, 54
differentiability, 119
differential
cross-section profile, 141
equation(s)
functional, 165
Ito equation in the study of elliptic, 62
partial - using semigroup theory, 61
random, 55
ordinary, 55
their role in engineering, 55
their role in physics, 55
their role in technology, 55
with piecewise constant coefficients, 56
satisfied by the moments, 168
stochastic, 27, 28
Langevin type, 272
linear, 290
form of Poynting's theorem, 138
stochastic - operator, 1, 13
differentiation, functional, 164
diffusion, 125, 127, 140
equation(s), 140
approach, 117
for multiple scattering, 138
in operator form, 141
theory, 264
Dirichlet problem(s)
for Laplace's equation . . ., 58
generalized (Wiener) solution of ___ for
Laplace's equation, 59
random, 58
random Wiener solution of, 59
discrete, 226, 241
eigenvalues, 266
scatterers, 84
wave propagation in media of, 155
distribution(s)
finite-dimensional, 120
function, 91
first probability, 3
nth joint, 22
spectral, 224
multivariate, 120
of functionals, 273
of the roots of the equation, 52
stable, 272
dynamic programming, 171, 175, 277
economic time series analysis, 222
effective
field hypothesis, 161
propagation constant, 151
refractive index, 158
eigenvalues
continuous, 266
discrete, 266
eikonal equation, 135, 136
electromagnetic
total ——energy, 138
turbulent scattering of -_ waves, 123
waves through a turbulent medium, 117
elliptic differential equation, Ito equation in the study of, 62
emergent angular power spectrum, 128
endomorphism
random - of $\mathscr{X}, 42$
Reynolds, 70
energy
approximation, 97, 107
density, 84
total electromagnetic, 138
equation(s)
differential __ satisfied by the moments, 168
for generating functionals, 163
method of hierarchy, 163
of the Sturm-Liouville type, 265
random algebraic - of degree $n, 51$
stochastic, 145, 147
equivalence, strong, 260
equivalent
diffracting screens, 128
spatial Riccati equation, 124
ergodic, 5, 8, 20
properties, 123
criteria for, 124
of wave propagation . . ., 124
theorems, 73
ergodicity, 124
error probabilities, 253
estimation of time delay, 258
exact series
for coherent field, 92
for intensity, 93
expansion, Karhunen-Loève, 251
expectation
conditional, 72
\bar{x} of a generalized random variable $x(\omega), 48$
expected
solution(s), 48
of random equations, 47
relation to solution of associated determi-
nistic operator equation, 49
value, 147
of the random boundary condition, 60
extrapolation of a positive definite function, 250
far-zone approximation, 127
Feller, 80
Fermat's principle, 135
feuillet, 127, 128
field
coherent, 84, 93, 166
effective - hypothesis, 161
incoherent, 166
filter, 221
stochastic, 17
finite-dimensional distribution, 120
first
passage times, 203
probability distribution function, 3
fixed point
methods, 65
theorem(s)
fixed point
theorem(s) (continued)
Banach-Cacciopoli, 44, 50
random, 45
Schauder, 44
flux, 84
coherent intensity and, 166
incoherent, 166
transport theory of, 165
Fokker-Planck equation, 117, 138, 264, 267, 268, 269, 270, 271
for the rotational motion of a Brownian particle, 138
forward
scatter, 127, 128, 140
scattering amplitude per unit volume, 153
-type scatterers, 102
Fourier transform of $\Gamma\left(\xi_{1}, \xi_{2}\right), 122$
Fréchet differential of $T(\omega), 50$
free-space
Green's function, 128
wave number, 124
Fredholm
equations, 130
integral, 129
equation(s), 134
mean square, 120
random, 53, 64, 65
operator, 64
theory, 130
functional(s), 164
analysis, 118, 141, 142
probabilistic, 41
differential equation, 165
differentiation, 164
distribution of, 273
equation(s), 171
method involving ___ for a certain
generating functional, 163
equations for generating, 163
integral, 140
linear, 296
of the random refractive index process, 118
Taylor series, 164
gain function of the receiving antenna, 127
gambling, 277
Gauss hypergeometric series, 270
Gaussian
cross-section profile, 141
process, 4, 58
random process, 130
stationary ——inhomogeneities, 128
general
question of random equations, 142
statistical problem, 11, 18
generalized
gradient of __ phase function $\boldsymbol{\Theta}, 131$
random variable(s), 41
Banach space of, 50
conditional expectation of, 48
expectation \bar{x} of, 48
(Wiener) solution of the Dirichlet problem
for Laplace's equation, 59
generating
equations for ___ functionals, 163
stochastic Green's functions, 38
generator
lag window, 233
window, 233
geometric optics
application of _-_ to random continuous media, 136
of a random medium, 135, 136
of a randomly inhomogeneous medium, 137
Gibbs phenomenon, 230
globally stationary process, 122
gradient of generalized phase function $\Theta, 131$
Green's
function(s), 1, 56
generating stochastic, 38
stochastic, 1, 11, 12, 14, 15, 17, 21, 28, 38, 56
theorem, 126

Hamiltonian operator, stochastic, 1
Hamiltonians, random, 61
Hammerstein equation, random, 65
Hamming, 239
hanning, 239
harmonic time dependence, 118
heat equation for an infinite rod, random solutions of, 58
Hermite polynomials, 268
heuristic equation for coherent field, 93
hidden periodicities, 221, 223
hierarchy, 290
averaged, 294
equations, $160,163,164$
method of, 163
truncated, 290
unaveraged, 293
Hilbert-Schmidt theory, 130
homomorphisms, 74
Huyghen's principle, 137
hypergeometric series, Gauss, 270
identity, averaging, 70
incoherent
field, 166
flux, 166
intensity, 84, 92, 166
indefinite integral, mean square, 120
independence, assumption of local, 149
index, refractive, $117,125,130,131$
effective, 158
inference problems, nonsingular statistical, 249
initial value problem, 135
integral
equation(s), 128
for intensity, 100
formulation, 117, 124
Fredholm, 134
nonlinear, 65
nonsingular, 129
random, 61, 128
associated with Markov process, 61
solutions of classical, 62
systems of, 64
2-body, 96
of a random function, 118
stochastic, 122
integration in functional spaces, 125,142
integro-differential equation, 139
intensity, 84
coherent, 84
and flux, 166
compact representations for, 96
exact series for, 93
incoherent, 84, 92, 166
transport theory of, 165
integral equations for, 100
invariant
function, 123
imbedding, 125, 141
measure, 73
set, 123
inverse of the random operator, 42
irreducible, 284
iterated kernel, 129
iteration(s)
method of, 148
procedures for random operator equations, 50
second approximation to --perturbation solution, 127
stochastic, 172
iterative solution, 133
Ito
equation, 62

Ito
equation (continued)
in the study of elliptic differential equation, 62
random integral equation, 61
Jackson-de la Vallée Poussin kernel, 238
Jacobi polynomials, 269
joint
characteristic function, 9
moment, 8, 9
nth - distribution function, 22
probability
density $h_{\zeta}(x, y ; \xi, \eta), 140$
distributions, 3
jump function, spectral, 226
Karhunen-Loève expansion, 38, 251
Keller formulation of the radiation problem, 124
kernel
iterated, 129
Jackson-de la Vallée Poussin, 238
not symmetric, 130
Parzen, 239
ranḍom, 64
stochastic, 35
Tukey-Hamming, 239
Kiefer-Wolfowitz (KW) procedure, 181
Kolmogoroff's fundamental theorem, 120
Kolmogorov, 7074
Kronecker product, 174, 175
lag window generator, 233
Laguerre polynomials, 269
Lanczos' σ factors, 241
Langevin
equation, 57,58
for simple Brownian motion, 58
type stochastic differential equation, 272
lattices, random walks on, 1
least mean square error, 296
Lebesgue
random ——measure, 63
stochastic -_ integrals, 120
Lévy distance, 257
likelihood ratio, 260
linear
functional, 296
perturbation theory of ——_ stochastic
equations, 147
properties, 18
stability of ——_ systems, 56
linear (continued)
stochastic - differential equation, 290
stochastic —_operators, 290
localization principle, 141
locally stationary processes, 122
M-sequence, 277
majorants, stochastic, for the Neumann series . . ., 134
many scatterers, 89
mapping(s), 22, 38
stochastic, 13
Markoff process, 264
stationary, 273
Markov
chain, 57, 284
process, 137
stationary - process, 140
wide-sense __ process, 137
Markovian
hypothesis, 138
ray tracing, 137
martingales, 73
mathematical
analysis for random functions, 118
properties, 24
matrices, random, 47, 171, 174
matrix, stochastic, 14
maximum-likelihood
estimator, 256, 259
test, 251
mean
free path for scattering, 140
square, 296
convergence, 118
and the covariance function, 119
of random functions, 118
of a sequence, 118
convergent Neumann series, 130
derivative, 120
n.a.s.c. for the existence of ——— of order $p, 119$
deviation of optical path length . . ., 136
Fredholm integral equations, 120
indefinite integral, 120
least __ error, 296
n.a.s.c. for existence of the partial derivative of order $p, 119$
power, 127
properties, 119
of a random function, 119
rules for -_ differentiation, 120
Volterra integral equation, 120
mean (continued)
value theorem, 151
wave, 150
measure(s)
invariant, 73
-preserving transformations, 73
statistical, 1, 14, 17, 20, 21, 23, 24, 27, 28
medium, random, 145
method
involving a functional equation . . ., 163
of hierarchy equations, 163
of iterations or successive substitutions, 148
metric transitivity, 123
metrically transitive, 123
Mikusinski operator, random, 61
mixed spectrum, 226
mixing, 73
moments, 7
of order k of $x(\omega), 48$
of the solution of a given random equation, 47
Monte Carlo, 180
motion, Brownian, 272
multiple scattered
amplitude, 89
rays, 140
phase coherence of, 140
wave, 89
scattering, 125, 127
diffusion
equations for, 138
function, 140
of a plane wave . . ., 134
transport equations for, 138
multivariate
characteristic functions, 8
density function, 9
distribution, 120
n.a.s.c., 119
n-dimensional characteristic function, 10
nth
joint distribution function, 22
order correlation $R_{n}, 10$
Navier-Stokes equations, 49, 72
Neumann series
mean square convergent, 130
solution, 130, 134
Newton-Cotes scheme, stochastic approach to, 50, 51
Newton-Kantorovitch iteration procedure, stochastic analogue of, 51
noise
-in-noise, 248
theory, 221
white, 222
process, 54
nonlinear integral equations, 65
non-self-adjoint
problem, 142
spectral representations for - equations, 142
nonstationary, 123
process, 4, 12, 22
nonstochastic operator, sure, 147
Norton profile, 141
Ω, space of all real functions, 120
one-dimensional
form of the spatial Riccati equation, 133
problem, 134
operator(s)
averaging, 70
equation(s)
deterministic, 43
random, 43
approximate solutions of, 50
Fredholm, 64
random, 42
inverse of, 42
Reynolds, 70
stochastic, 12, 13, 14, 27, 147
sure
nonstochastic, 147
stochastic perturbations of, 147
transition, 155
optical path length, 135
optimization, statistical, 27
order(s)
nth ——correlation $R_{n}, 10$
of scattering, 90
ordinary
continuity, 119
of interest in engineering, 57
of interest in mathematical physics, 57
random __ differential equations, 55
Orlicz space, 62, 142
Ornstein-Uhlenbeck process, 272, 273
orthogonal polynomials, 272

$\left\langle\Psi_{\mathbf{c}}\right\rangle$-consistent

form, 99
integral equation, 109
pair correlation function, 156
parameter of smallness, 291
parametrix methods, 142
partial differential equations
random, 58
integrals of, 118
with constant coeficients, 61
using semigroup theory, 61
Parzen kernel, 239
path length, optical, 135
Pearson equation, 264, 265, 267, 268, 269, 271
penetration distance, variance proportional to, 140
periodicities, hidden, 221, 223
periodogram, 222
permittivity, 126, 127
perturbation
expansion, 125
theory, 117, 124, 125, 128, 291
of linear stochastic equations, 147
phase, 130
coherence of multiply scattered rays, 140
fluctuations, 133
photon flux, 138
point spectrum $\operatorname{P\sigma }(T(\omega))$ of $T(\omega), 46$
Poisson
compound ___ process, 140
problems for Laplace's equation . . ., 58
polarization factors, 127
polynomials
Hermite, 268
Jacobi, 269
Laguerre, 269
orthogonal, 272
positive definite function, extrapolation of, 250
potential, random, 60
power spectrum, 14
Poynting's theorem, differential form of, 138
primitive of $X(\omega, \xi)$ in mean square, 120
Principle of Contraction Mappings, 44
probabilistic functional analysis, 41
probabilities, error, 253
probability
distribution, 1, 3
conditional, 8
second ——function, 3
joint, 3
measure space, 41
that a ray is scattered n times in a distance $R, 140$
transitional, 264
process(es)
autoregressive, 54
branching, 172
Gaussian, 58
process(es) (continued)
Markoff, 264
nonstationary, 4, 12, 22
Ornstein-Uhlenbeck, 272, 273
stationary Markoff, 273
white noise, 54
Wiener, 61
with orthogonal increments, 121
programming, dynamic, 171, 175, 277
propagation, 84
effective - constant, 151
vector, 127
applications to wave in continuous media, 149
pursuit problems, 282
quasilinearization, 171
radiation
ascending hierarchy of ___ problems, 125
condition, 129
problem, 128
for an unbounded random medium, 124
formulation by Keller, 124
transport theory of, 169
random
adjoint, 42
algebraic equations, 51
of degree $n, 51$
application of geometric optics to continuous media, 136
continuum, 117
contraction operator, 44,64
determinants, 53
difference equation, 53, 54
differential equations, 55
their role in physics, 55
their role in engineering, 55
their role in technology, 55
with piecewise constant coefficients, 56
Dirichlet problem, 58
endomorphism of $\mathscr{X}, 42$
equation(s), 1
associated with a stochastic pendulum, 58
expected solutions of, 47
general question of, 142
moments of solution of given, 47
expected value of -_ boundary condition, 60
field, 10
field point theorems, 45
Fredholm integral equations 53, 64, 65
random (continued)
function(s), 2, 5
analysis of, 118
analytic, 133
derivative of, 118
integral of, 118
mathematical analysis for, 118
mean square convergence of, 118
mean square properties of, 119
regular, 118, 135
second order, 130
functional of ———refractive index process, 118
Hamiltonians, 61
Hammerstein equation, 65
integral equation(s), 61, 128
associated with Markov process, 61
Ito, 61
systems of, 64
integrals of partial differential equations, 118
kernel, 64
Lebesgue measure, 63
matrices, 47, 171, 174
sequence of $-\Phi_{k}, 57$
media, 1, 84
medium, 145
geometric optics of, 135
geometrical optics of, 136
ray propagation in, 136
radiation problem for unbounded, 124
Mikusinski operator, 61
operator, 42
inverse of, 42
equations, 43
approximate solutions of, 50
iteration procedures for, 50
operators
semigroups of, 61
spectral properties of concrete, 47
ordinary differential equations, 55
of interest in mathematical physics, 57
of interest in engineering, 57
partial differential equations, 58
with constant coefficients, 61
potential, 60
process, 6, 12
Gaussian, 130
stationary, 291
residual
for permittivity, 126, 127
for the dielectric constant, 126, 127
resolvent operator, 47
sampling, 27
random
sampling (continued)
operator, 14
series, 6
set, 63
solution(s), 43
of some classical integral equations, 62
of the heat equation for an infinite rod, 58
stability of - linear systems, 56
Sturm-Liouville problem, 61
transformation, 41
$T(\omega)$
linear, 41
bounded, 42
variable(s), 1, 6, 145
generalized, 41
Banach space of, 50
conditional expectation of, 48
vibration problem, 61
Volterra integral equations, 64
walks on lattices, 1
Wiener solution of the Dirichlet problem, 59
randomly inhomogeneous
anisotropic __ medium, 128
geometric optics of, 137
Volume, V, 126
rare gas, 102
ratio, likelihood, 260
ray
curvature, 135
direction, 135
paths, 125, 135
propagation in a random medium, 136
theory, 117
ray-tracing, 125, 127
realizable boundary conditions, 58
realization, or sample function, 120
recurrence relation, 134
reciprocity relation, 87
reduced wave equation, $118,120,135$
one-dimensional, 124
reflection coefficients, 134
refractive index, $117,125,130,131$
effective, 158
Markov process, 136
spectral density functions of, 131
regression analysis, 241.
regular
functions, 121
random functions, 118, 135
regularity, 130
relaxation theory, F. Bloch's, 61
representation, spectral, 118, 119, 121, 131
representation, spectral (continued)
for non-self-adjoint equations, 142
residual spectrum $R \sigma(T(\omega))$ of $T(\omega), 46$
resolvent
random -_ operator, 47
set $\rho(T(\omega))$ of a random endomorphism $T(\omega), 47$
Reynolds
endomorphism, 70
idendity, 70
operator(s), 49, 50, 70
Riccati equation(s), 133, 141
spatial, 130
analogue of, 117
one-dimensional form, 133
three-dimensional analogue of, 131
Riemann integrals, stochastic, 120
roots of the equation, distribution of, 52
Rytov
method of, 117, 128
transformation, 124, 130
sample
covariance function, 223
function, 120
space $S, 6$
spectral density function, 224
sampling, random, 27
operator, 14
scattered wave, coherent, 153
scatterers
discrete, 84
forward type, 102
scattering
amplitude, 87
forward —— per unit volume, 153
cross section, 139
per unit solid angle . . ., 140
total, 88
isotropic, 127
orders of, 90
Schauder fixed point theorem, 44
Schrödinger equation with random potential function, 60
second
approximation to the iteration-perturbation solution, 127
distribution, 8
order
functions, 121
random functions, 130
stationary _ processes, the spectral representation, 121
second (continued)
probability distribution function, 3
self-consistency, 162
semi-group property, 172
semigroups of random operators, 61
sequence of random matrices $\Phi_{k}, 57$
series, functional Taylor, 164
set, random, 63
signal
detection, 222, 247
measurement, 247
simple Brownian motion, Langevin equation for, 58
single-scattering, 127
solution, 126
random, 43
of classical integral equations, 62
Sommerfeld radiation condition, 124
space(s)
Borel, 46
of all real functions, $\Omega, 120$
Orlicz, 62, 142
spatial
analogue of the Riccati equation, 117
Riccati equation, 130
equivalent, 124
one-dimensional form of, 133
spectra, 128
spectral
analysis, 223
average, 227
density, 11, 12, 125
function, 132, 225
sample, 224
functions of the refractive index, 131
Gaussian, 140
distribution function, 224
general form of _ theorem for regular processes, 121
jump function, 226
properties of some concrete random operators, 47
representation(s), 118, 119, 121, 131
for non-self-adjoint equations, 142
window, 227
spectrum, 226
mixed, 226
of a time series, 224
stable, 254, 256
distributions, 272
stability, 173, 247, 256
condition, 254
criteria, 56
stability (continued)
of a random linear system . . ., 62
of linear systems, 56
of random linear systems, 56
stack of Bernoulli slabs, 134
stationarity, 5
covariance, 225
stationary, 9
covariance function, 122
Gaussian inhomogeneities, 128
Markoff process, 273
Markov process, 140
process(es)
locally, 122
not necessarily ergodic, 123
random process, 291
second order processes . . ., 121
statistical
autocorrelation, 12
circuit design, 179
measures, $1,14,17,20,21,23,24,27,28$
nonsingular __ inference problems, 249
optimization, 27
transforms, 20
Stieltjes integrals, stochastic, 120
stochastic
analogue
of the abstract Cauchy problem, 61
of the Newton-Kantorovitch iteration procedure, 50
approach to the Newton-Cotes scheme, 50, 51
approximation, 180
boundary value problem, 58
formulation of, 59
case . . . reflection and transmission coefficients, 141
coefficients, 290
differential equation(s), 27, 28
Langevin type, 272
differential operator, 1, 13
equation, 145, 147
filter, 17
Green's function, $1,11,12,14,15,17,21$, 28, 38, 56
Hamiltonian operator, 1
integral, 122
iteration, 172
kernel, 35
Lebesgue integrals, 120
linear
differential equation, 290
operators, 290
stochastic (continued)
majorants for the Neumann series . . ., 134
mappings, 13
matrix, 14
operator(s) 12, 13, 14, 27, 147
perturbations of the sure operator, 147
process associated with the random difference equation, 65
processes, 2, 3, 5
associated with random equations, 41, 65
Riemann integrals, 120
Stieltjes integrals, 120 transformation, 171
strong equivalence, 260
Sturm-Liouville
equation, 270, 271
of the - type, 265
random _- problem, 61
substitutions, method of successive, 148
sure
(nonstochastic) operator, 147
stochastic perturbations of 147
-signal-in-noise, 248
systems of random integral equations, 64
2-body integral equations, 96
table of covariance functions and associated spectra, 122.
Taylor series, functional, 164
test functional, 252, 258
three-dimensional analogue of the Riccati equation, 131
time
autocorrelation, 12
estimation of -_ delay, 258
series
analysis, 221
economic, 222
deviation, 227
spectrum of, 224
spectrum, 12
total
electromagnetic energy, 138
scattering cross-section, 88
per unit volume at wave number $k, 140$
transformation(s)
measure-preserving, 73
random, 41
Rytov, 124, 130
stochastic, 171
theory, 24
transforms, statistical, 20
transition(al)
operator, 155
probabilities, 125
probability, 140, 264
transmission
coefficient(s), 106, 112, 134
line, 106, 112
equation, 125, 134
transmitted power, 127
transport
equation(s), 117, 127
approach, 125
for multiple scattering, 138
phenomena, 141
process, 135
theory
of incoherent intensity and flux, 165
of radiation, 169
truncated hierarchy, 290
truncation
approximations, 294
poiṇt, 233, 237, 241
Tukey-Hamming kernel, 239
turbulence, 70, 128
turbulent
atmosphere, 127
scatter, 117
scattering, 139
of electromagnetic waves, 123
unaveraged hierarchy, 293
unbounded, 130
radiation problem for __ random medium, 124
uniformly bounded with probability 1,129
uniqueness theorem, 122

```
V, 126, 127
variable(s), random, 1, 6, 145
variance, 7, 229
    of signal level fluctuations, 136
    of the wave, 165,166
    of \(x(\omega), 48\)
    proportional to penetration distance, 140
vibration problem, random, 61
Volterra integral equations
    mean square, 120
    random, 64
wave
    coherent, 150
        attenuation coefficient for, 152
```

wave (continued)
equation, 118 reduced, 118, 120, 135
to be one-dimensional, 124
multiple scattered, 89
propagation applications to -_ in continuous
media, 149
in media of discrete scatterers, 155
scattered, coherent, 153
variance of, 165,166
weak convergence of measures, 257
weakly inhomogeneous medium, 132
weight, 233
white noise, 222
process, 54
wide-sense
Markov process, 137
Markovian, 137
solution, 43
Wiener
integrals, 125, 140, 142
process, 61
Wiener-Hopf, 72
window, 230, 232
generator, 233
amplitude, 236
lag, 233
worst-case design, 179
X, 126
$X(\omega, \xi), 119$

