Applications of Nonlinear Partial Differential Equations in Mathematical Physics

Volume 17

PROCEEDINGS OF SYMPOSIA IN APPLIED MATHEMATICS

AMERICAN MATHEMATICAL SOCIETY

Applications of Nonlinear Partial Differential Equations in Mathematical Physics

PROCEEDINGS OF SYMPOSIA
 IN APPLIED MATHEMATICS

Volume 17

Applications of Nonlinear Partial Differential Equations in Mathematical Physics

R. Finn, Editor

Providence, Rhode Island

LECTURE NOTES PREPARED FOR THE AMERICAN MATHEMATICAL SOCIETY SHORT COURSE
 APPLICATIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS IN MATHEMATICAL PHYSICS

Held in New York
APRIL 20-23, 1964
Prepared by the American Mathematical Society with the support of the U.S. Army Research Office
(Durham) and the Mathematics Division of the Air Force Office of Scientific Research under Grant No.

AF-AFOSR-562-64

International Standard Serial Number 0160-7634
International Standard Book Number 0-8218-1317-X
Library of Congress Catalog Card Number 65-18255

COPYING AND REPRINTING. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The appearance of the code on the first page of an article in this book indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Copyright © 1965 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. ©

CONTENTS

PREFACE vii
I. GENERAL NONLINEAR THEORY 1
Remarks on nonlinear parabolic equations 3By Avner Friedman
Existence and uniqueness theorems for solutions of nonlinear boundary value problems 24
By F. E. Browder
Nonlinear evolution equations in Banach spaces 50By Tosio Kato
Singularities of solutions of nonlinear equations 68
By James Serrin
Some nonlinear evolution equations 89
By J. L. Lions and W. A. Strauss
Results for a quasi-linear hyperbolic equation ${ }^{1}$ 90By R. C. MacCamy and V. J. Mizel
II. FINITE ELASTICITY, COMPRESSIBLE FLUIDS 91
The equations of finite elasticity 93
By Walter Noll
A priori estimates applied to nonlinear shell theory 102By Fritz John
Asymptotic description of a free boundary at the point of separation 111
By P. R. Garabedian
III. VISCOUS FLUIDS, MAGNETOHYDRODYNAMICS 119
Stationary solutions of the Navier-Stokes equations 121
By Robert Finn
Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations 154
By Harold Grad

[^0]On the existence of solutions of the steady-state Navier-Stokes equations for a class of nonsmooth boundary data ${ }^{1}$ 184 By J. E. Edwards
Toward the validity of the Prandtl approximation in a boundary layer ${ }^{1}$ 185By P. C. Fife
Instability and uniqueness results for a third order \cdot PDE on a strip ${ }^{1}$. 186By B. D. Coleman, R. J. Duffin and V. J. Mizel
IV. GENERAL RELATIVITY, QUANTUM FIELD THEORY 187
Existence and uniqueness theorems in general relativity 189By A. Lichnerowicz
Some algebraically degenerate solutions of Einstein's gravitational field equations 199
By R. P. Kerr and A. Schild
Nonlinear partial differential equations in quantum field theory 210
By I. E. Segal
AUTHOR INDEX. 227
SUBJECT INDEX. 229

PREFACE

The contributions to this volume arose from talks presented at a symposium on the nonlinear partial differential equations of mathematical physics, which took place in New York City, April 20-23, 1964. The organizational work and invitations were the responsibility of a committee, consisting of C. B. Morrey, W. Noll, J. B. Serrin, A. H. Taub and myself as chairman.

It was inevitable in view of the broad scope of the subject matter and the severe limitations of time that many important and original contributions could not be included in the program. An attempt was made, however, to organize the meeting in such a way that participants would gain acquaintance with some of the principal lines of modern research in a number of differing but interrelated subjects. Accordingly, the symposium was divided into four sessions of invited addresses, as follows:

1. General Nonlinear Theory
2. Finite Elasticity, Compressible Fluids
3. Viscous Fluids, Magnetohydrodynamics
4. General Relativity, Quantum Field Theory.

In addition, a fifth session was devoted to discussion of the invited talks and to the presentation of selected contributed papers.

The present volume is organized along similar lines, except that the abstracts of contributed papers have been placed in the sections to which they correspond. The underlying cohesive spirit which appeared in the diverse talks at the meeting will, it is hoped, be felt also by the reader who peruses the papers presented here. The volume will have served its purpose if an occasional reader is stimulated to probe more deeply into some of the questions that are discussed, or to discover some unifying principle which unites results that may at first seem to have little connection.

R. Finn
Stanford University

AUTHOR INDEX

Boldface numbers refer to the first page of articles by authors in this volume.
Italic numbers indicate pages where a complete reference to a work by the author is given. Roman numbers refer to pages where an author's name is mentioned.
Some roman page numbers have one or more superscript numbers. These superscripts are bibliographical reference numbers used on the page in place of an author's name.

Agmon, S. 7, 13-15, 21, 107, 110
Bakelman, I. Ja. $20^{3}, 21$
Batchelor, G. K. 226
Berker, R. 142, 152
Bernstein, B. $99^{8}, 101$
Bernstein, S. 17
Bianchi, L. 189
Bourbaki, N. 51, 65
Brodsky, A. R. 219, 225
Browder, F. E. 7, 10, 18, 21, 24, 25^{2-4}, $30^{5,7,9,18}, 31^{5,7,9}, 37^{6,8} 38^{17}, 39^{10,17}$, $40^{14,15,16}, 43^{16}, 44^{11}, 46^{12,13,18}, 48,51-52$, 54, 56, 60, 65-66
Bruhat, Y. 189, 197-198
Carleman, T. 154-156, 175, 183
Carrol, R. 57, 66
Cercignani, C. 156^{11}, 183
Chadam, J. 225
Chahine, M. T. 156^{13}, 183
Chaiken, J. 225
Chang, I-Dee. $127^{8}, 138,152$
Chien, W. Z. 102^{3}, 110
Chu, C. K. 156^{14}, 183
Cohen, P. J. 15, 21
Coleman, B. D. $93^{5}, 99^{5,7}, 101,186$
Darmois, G. 197.
Debever, R. 202, 209
DeGiorgi, E. 68, 88
Dieudonné, J. 51, 66
Dionne, P. 225
Dirac. 210, 220
Dobrovolskaya, Z. N. 115, 117
Doublis, A. 107, 110
Douglis, A. 7, 21, $124^{5}, 152$
Dowd, R. E. 111, 117
Duffin, R. J. 186
Eddington, A. S. 208, 209
Edwards, J. E. 150, 153, 184
Einstein, A. 189-191, 193, 197, 200, 208-209

Fife, P. C. 110, 148, 151, 185
Filippov, A. F. 18, 21
Finn, R. 88, 121, $127^{8,33}, 129^{11,12}, 136^{11}, 138$,
$139^{11,27}, 140-144,146^{11}, 152-153,184$
Fleming, W. H. 21
Fock, V. A. 198
Foiaş, C. 55, 66
Friedman, A. 3, $12^{16}, 13,16-17,21-22$
Friedrichs, K. O. 38, 48
Fujita, H. 20, 22, 57, 66, 133-135, 143, 152, 184
Gagliardo, E. 9, 22
Garabedian, P. R. 111, $112^{3}, 115^{3}, 117$
Gårding, L. 192
Gilbarg, D. 68, 70, $71^{5}, 82^{3,5}, 88$
Glushko, V. P. 9, 22
Goldberg, J. N. 204, 209
Goldenveizer, A. L. $102^{6}, 110$
Goodman, R. 225
Grad, H. 154, $155^{5}, 156^{9,15}, 157^{5,16}, 158^{9,18}$, $159^{9}, 166-167^{9}, 175-176^{16}, 178-179^{166}, 180$ $181^{9}, 183$
Grioli, S. $100^{12}, 101$
Gross, E. P. 156^{10}, 183
Gross, L. 213
Gussi, G. 66
Haag. 221
Hadamard, J. 100, 101, 198
Hayes, M. $99^{9}, 101$
Heisenberg. 220
Hilbert, D. 157, 183
Hille, E. 53, 66
Hopf, E. 129, 133, 149, 152, 211, 226
Jackson, E. A. 156, 183
John, F. 102, 110
Jörgens, K. 56, 66, 217, 225
Kačurovski, R. I. 49
Kalaba, R. 21, 22
Källén. 221

Kaplan, S. 19, 22
Kato, T. 4, 20, 22, 25, 39, $46^{20}, 48,50,53$, 57, 66
Keller. 217
Kerr, R. P. 199, $205^{13}, 208^{13}, 209$
Kibel, I. A. $136^{23}, 152$
Kiselev, A. A. 133, 152
Koiter, W. T. $102^{7}, 110$
Komatzu, H. 4, 22
Koshelev, A. I. 7, 22
Kotschin, N. J. 136^{23}, 152
Krasnosel'skii, M. A. 19-20, 21-22, 53-55, 66
Krein, M. G. 20, 22
Krein, S. G. 9, 15, 22, 53, 66
Kruzhkov, S. N. 18, 23
Krzywicki, A. 142, 153
Ladyzhenskaja, O. A. $17,18^{32,34,35}, 22,68$, $70,80,88,129^{13}, 131-133,142-143$, 149-150, 152
Lees, M. 14-15, 21-22
Lehmann. 221
Leray, J. 21, 25, 31, 128-130, 133-134, 142, 152, 189, 192, 194, 198
Lewy, H. $111^{5}, 112,117$
Lichnerowicz, A. 189, 198, 224, 226
Lichtenstein, L. 124, 152
Liepmann, H. W. $156{ }^{13}, 183$
Lions, J. L. $7^{37}, 14,21,22-23,25,31,37^{24}$, $48,53,66,89,133,152,225$
Littman, W. $68^{8}, 88$
MacCamy, R. C. 90
Malgrange, B. 14, 23
Minty, G. J. 25, 31, 48-49, 51, 60, 66
Mizel, V. J. 90, 186
Mizohata, S. 15, 23
Mlak, W. 20-21, 23
Morgenstern, D. 154, $155-156^{7}, 175,183$
Morrey, C. B., Jr. 17, 23, 68, 70, 88
Moser, J. $68^{10}, 88$
Naghdi, P. M. $102^{2}, 110$
Narasimna, R. 156^{13}, 183
Navier, L. 122, 151
Nickel, K. 147-148, 151, 153
Nirenberg, L. 7, 9, 13-15, 21, 23, 107, 110, $124^{5}, 152$
Noll, W. 93, $95^{4}, 98^{4}, 99^{5,7}, 100-101,186$
Novozhilov, V. V. $102^{1}, 110$
Odqvist, F. K. G. 124, 127-128, 152
Oleinik, O. A. 18, 23, 147, 153
Oseen, C. W. 123, 135, 138, $145^{4}, 151$

Patterson, P. 150-151
Pauli. 220
Payne, L. E. 136, 139, 152
Penrose, R. 202, 209
Petrov, A. Z. 203, 209
Phillips, R. S. 53, 56, 66
Pirani, F. A. E. 203, 209
Poenaru, V. 66
Povzner, A. Ja. 154, 155-156 ${ }^{4}$, 175, 183
Prandtl, L. 147
Protter, M. H. 14-15, 22-23
Prozorovskaja, O. I. 15, 22
Rellich, F. 131, 152
Ricci. 189
Rivlin, R. S. $99^{9}, 101$
Robinson, I. 204 209
Rose, N. W. 136^{23}, 152
Royden, H. 68^{11}, 88
Rutman, M. A. 20, 22
Sachs, R. K. 203-204, 209
de Saint-Venant, B. 122, 151
Schaefer, H. 130, 152
Schauder, J. 130, 152
Schild, A. 199, 203-204, 209
Schwarzschild, K. 201, 209
Schwinger. 211
Segal, I. E. 54-56, 66, 210, $222^{11}, 224-225^{14,15}$, 225-226
Serrin, J. 68, 69-70 ${ }^{12}, 71^{5,12,13}, 72^{12}, 82^{5}, 85^{12}$, $88,97^{6}, 101,149,153$
Shilov, G. E. 10^{59}, 23
Shinbrot, M. 132-133, 152
Smale, S. 49
Smith, D. 150-151
Sobolevski, P. E. 3-5, 10, 19-20, 22-23, 53, 57, 66
Solomjak, M. Z. 7, 23
Stampacchia, G. 17, $23,68^{8}, 70,88$
Stellmacher, K. 198
Stokes, G. G. 122́, 138, 151-152
Stoppelli, F. 100, 101
Strauss, W. A. $21,25,37^{24}, 48,56,66,89$, 219, 225
Symanzik. 221
Synge, J. L. 198
Tanabe, H. 3, 13, 23, 53, 66
Taub, A. H. 198
Toupin, R. A. $93^{3}, 99^{8,10}, 100-101$
Truesdell, C. 93, $99^{10}, 100-101,103,110$
Uraltseva, N. N. $17,18^{34,35}, 22,70,80,88$

Uhlenbeck, G. E. $156^{\mathbf{8}}, 183$
Vaĭnberg, M. M. 49
Velte, W. 136, 138, 146-147, 152
Višik, M. I. 10, 18, 23, 25, 31, 49
Wang Chang, C. S. $156^{8}, 183$
Wagner, H. 112, 117
Weinberger, H. F. $68^{8}, 88,139,152$
Weitzner, H. $156-157^{12}, 166^{12}, 183$

Wheeler, J. A. 198
Wightman. 221
Wild, E. 154, 175, 183
Wolibner, W. 142, 153
Yosida, K. ${ }^{60}, 23,53,67$

Zarantonello, E. H. 25, 40, 49
Zimmermann. 221

SUBJECT INDEX

Accretive, 59

Analytic semigroup, 53
Asymptotic character, 210, 218
Banach space $X, 50$
Banach spaces, continuity assumptions on monotone mappings in, 46
direct method of the calculus of variations, 46
duality mappings of, 25,44
functional equations on, 24
Baratropic flows, 97
Beltrami-Michell equations, 105
Beurling-Livingston theorem, 25, 44
Bianchi identities, 189
Body, 93
Boltzmann equation, boundary conditions, 158, 161
Chapman-Enskog theory, 176
collision frequency $(\nu(\xi)), 159-160$
existence, general, 154-155
existence, linear, 166
existence, nonlinear, 171
general properties, 158
Hilbert theory, 157, 175
linear operator, 159
models of, 156
norms, 158, 162
quadratic collision integral, 180
spectrum, 160
Boundary condition, 6
of Boltzmann equation, 158, 161
of fixed traction, 99
free, 112
of place, 98
of pressure, 99
of surface action, 98
Boundary data, nonsmooth, 184
Boundary layer, 147, 185
Boundary value problem, eigenfunction of a variational, 47
elliptic, 25
first initial, 6
mixed initial, 89
nonlinear_which are not strongly elliptic, 40
parabolic, 25
variational, 27

Boundedness, semi-, 24
$C-N^{+}$condition, 99
Calculus of variations, direct method of, 24, 46
Canonical commutation relations, 220
Cauchy, law of motion, 95
problem, 3, 190-193
stress tensor, 94, 104
Chapman-Enskog theory, 176
Class C_{0}, semigroup of, 53,56
Class $D, 142$
Class $H(-\theta, \theta), 53$
Collision (See Boltzman equation)
Commutation relations, canonical, 220
Commutator function, 223
Compact (completely continuous), 51, 55
resolvent, 54
Compatibility equations, 104
Configurations, 93
local, 94
reference, 94
Conformal, curvature tensor, 202
factor, 202
mapping, 113
Constitutive equations, 93
Continuity assumptions on monotone mappings in Banach spaces, 46
Continuous, demi-, 52, 58
weakly, 47
(See also Lipschitz)
Contraction semigroup, 53, 61
Convergence of solutions, 10
Convex space, uniformly, 89
Convexity, semi-, 47-48
Covering homotopy theorem, 44
Current vector, 195-196
Debever-Penrose direction, 202
theorem of, 202
Deformation, 93
-gradient, 94
tensor, 122, 125
Degree, 43
Demicontinuous, 52, 58
Derivatives
significant, 190
Difference-differential equations, 111

Differential operators, nonlinear system of, 26
Direct method of the calculus of variations, 24 in Banach spaces, 46
Dirichlet form, nonlinear, 30
Dirichlet problem, Hilbert space method of solving, 27
for the quasilinear operator $A, 30$
Dirichlet integral, 124, 128, 131, 138-139, 142, 150
Dissipative operator, 24
Duality mappings, multivalued, 45
of Banach spaces, 25, 44
Dynamical process, 94
Eigenfunction, 46
of a variational boundary value problem, 47
Eigenvalue problem, 47
nonlinear, 48
nonlinear elliptic, 25
Einstein ('s) equations, 189-191, 193, 197
Einstein's gravitational field equations, 201
Elastic, fluids, 96-97
hyper-, 96
perfectly \qquad material, 102
Elasticity, finite, 93
infinitesimal, 97
Elementary cone, 189
Elliptic boundary value problems, 25
nonlinear__ which are not strongly elliptic, 40
Ellipticity, strong, 99
Energy inequality, 58
Energy tensor, 195
Enskog (See Chapman)
Equilibrium equations, 104
Evolution, equations of, 38,216
nonlinear, 25
nonlinear___ in a Hilbert space, 39
Evolution operator, 52
Existence, global, 217
(See also Boltzmann equation)
Exterior solution of a rotating body, 205
Föppl (See v. Karman)
Fractional power of $A, 4$
Friedrichs extension, 57
Friedrichs, nonlinear perturbations of the symmetric positive systems of, 38
Functional equations on Banach spaces, 24
Fundamental solution, 3 tensor, 125
Fundamental tensor, 138, 141
Galerkin's method, 52, 58

General relativity, 200
Generator, infinitesimal, 53
of a group, 56
Global, existence, 217
solutions, 57
uniqueness, 211
Goldberg and Sachs theorem, 204
Gordon (See Klein)
Gradient, partial, 48
Gravitational field, 199
Einstein's_equations, 201
Gravitational potentials, 189
Gravitational rays, 190
Gravitational waves, 190
Green's function operator, 52 tensor, 128
Group of motions, 201
Harmonic coordinates, 190
Hilbert space, 51
method of solving the Dirichlet problem, 27
nonlinear equations of evolution in, 39
Hilbert theory, 157, 175
Homogeneous, 95
Homotopy theorem, covering, 44
Hydrodynamical potential theory, 124
Hydrodynamics, 186
Hydrodynamic waves, 197
Hyperbolic, 53
Hyper-elastic, 96
Index of the fluid, 195
Infinitesimal, elasticity, 97
generator, 53
Initial boundary value problem, first, 6 mixed, 89
nonlinear, 38
Initial condition, 6
Instability, 186
Interaction representation, 218
Interior shell equations, 109
Isotropic, 96
Isotropy group, 96
v. Karman and Föppl, equations, of, 110

Killing vector, 201
Kinetic energy, 136, 142
Kirchhoff, hypotheses, 102, 108
(See also Stress tensor)
Klein-Gordon equation, 219
Length, typical, 106
Leray, existence theorem of, 129
-Schauder theory, 24
('s) theorem, 192
Linear equations, semi-, 7 singular, 52
Linear operator, 159
Lipschitz continuous, locally, 51
uniformly, 51
Livingston (See Beurling)
Local, 211, 213
configurations, 94
uniqueness, 100
Locally Lipschitz continuous, 51
Lorentz condition, 197
Manifold, solution, 222, 225
Material objectivity, principle of, 96
Material points, 93
Materially uniform, 95
Michell (See Beltrami)
Mild solution, 39, 52, 54
Minkowski space, 199
Mixed initial boundary value problems, 89
Monotone mappings, from V to $V^{*}, 48$ continuity assumptions on ___ in Banach spaces, 46
(See also Multivalued)
Monotone nonlinear operators, 25 from a Banach space V to its dual $V^{*}, 24$
Monotonic, 51, 58
operator, 89
Multiplevalued duality mapping, 45
Multivalued monotone mappings, 46
from V to $V^{*}, 46$
Natural state, 100
Navier-Stokes equation, 57, 184-185
Newtonian fluids, non-, 186
Nonlinear, Dirichlet form, 30
initial value problems, 38
monotone__operators, 25
Nonlinear system, in generalized divergence form, 30
of differential operators, 26
Nonsmooth boundary data, 184
Normal coordinates, 105
PDE, third order, 186
Parabolic, 6, 53
boundary value problems, 25
equations, 37
quasi-linear
uniformly, 10
Partial gradient, 48
Peano, theorem due to, 51
Penrose (See Debever)

Petrov-Pirani classification, 203
Physically reasonable, 124, 141
Picard, theorem of, 51
Piola (See Stress tensor)
Pirani (See Petrov)
Prandtl system, 185
Pressure vector, 125
Propagator, operator, 52
temporal, 216
Pure matter, 193
Quantum, electrodynamics, 212
field, 220
Regular, 50 equations, 51
Reference configuration, 94
Relativistic, invariance, 220
field theory, 214
Helmholtz equations, 195-196
scalar_equations, 218
Relativity, general, 200 special, 199
Resolvent operator, 52
Response function, 95
Ricci tensor, 189, 200
Riemann, curvature tensor, 200 space, 200

Sachs (See Goldberg)
Scattering, operator, 218-219 theory, 218
Schauder (See Leray)
Schwarz reflection principle, 113
Schwarzschild metric, 201
Scalar meson equation, 219
Self-interacting field, 214
Semiboundedness, 24
Semiconvexity, 47-48
Semigroup, analytic, 53
contraction, 53, 61
of class $C_{0}, 53,56$
strongly continuous, 53
theory, 50
Semilinear equations, 7
Shear of a null geodesic congruence, 203
Shell, 105 interior__equations, 105
Singular, 50
Sobolev's lemma, 108 inequality, 55
Solenoidal extension field, 184
Solitary wave, 115
Solution, manifold, 222, 225
operator, 52
stationary, 122
strict, 52
Space-time, 189, 199
Spectrum, 160
Splash, 112
Stability, 100
Stationary solutions, 122
Stokes (See Navier)
Stored-energy function, 96
Strain, 93
principal, 103
tensors, 96
Stress, relation, 95
strain relations, 104
Stress tensor, 122, 125
Cauchy, 94
first Piola-Kirchhoff, 94
Successive approximations, 115
Symplectic structure, 223
Tangent functions, 223
Tensor, Ricci, 189, 200 energy, 195
Riemann curvature, 200 truncated, 135, 139
vortex, 195-196
Turbulence, 211, 225
Typical length, 106
Uniform reference, 95
Unique continuation, 13
Uniqueness, 186
global, 211
local, 100
Vacuum, 211, 214, 220
Variational boundary value problems, 27
Vortex tensor, 195-196
$W^{m, p}(\Omega), 27$
Wake region, 141, 143
Water entry, 112
Wave, lengths, 103, 106
nonlinear__equation, 37,55
operator, 218-219
solitary, 115
Weak solutions, 218
Weakly continuous, 47
Weyl tensor, 202
World line, 199
Yukawa equation, 214

[^0]: ${ }^{1}$ These abstracts are reprinted from the Notices of the American Mathematical Society, Volume 11, April, 1964.

