AMS SHORT COURSE LECTURE NOTES
Introductory Survey Lectures
A Subseries of Proceedings of Symposia in Applied Mathematics

Volume 36 APPROXIMATION THEORY
Edited by Carl de Boor (New Orleans, Louisiana, January 1986)

Volume 35 ACTUARIAL MATHEMATICS
Edited by Harry H. Panjer (Laramie, Wyoming, August 1985)

Volume 34 MATHEMATICS OF INFORMATION PROCESSING
Edited by Michael Anshel and William Gevirtz (Louisville, Kentucky, January 1984)

Volume 33 FAIR ALLOCATION
Edited by H. Peyton Young (Anaheim, California, January 1985)

Volume 32 ENVIRONMENTAL AND NATURAL RESOURCE MATHEMATICS
Edited by R. W. McKelvey (Eugene, Oregon, August 1984)

Volume 31 COMPUTER COMMUNICATIONS
Edited by B. Gopinath (Denver, Colorado, January 1983)

Volume 30 POPULATION BIOLOGY

Volume 29 APPLIED CRYPTOLOGY, CRYPTOGRAPHIC PROTOCOLS,
AND COMPUTER SECURITY MODELS
By R. A. DeMillo, G. I. Davida, D. P. Dobkin, M. A. Harrison, and R. J. Lipton
(San Francisco, California, January 1981)

Volume 28 STATISTICAL DATA ANALYSIS
Edited by R. Gnanadesikan (Toronto, Ontario, August 1982)

Volume 27 COMPUTED TOMOGRAPHY
Edited by L. A. Shepp (Cincinnati, Ohio, January 1982)

Volume 26 THE MATHEMATICS OF NETWORKS
Edited by S. A. Burr (Pittsburgh, Pennsylvania, August 1981)

Volume 25 OPERATIONS RESEARCH: MATHEMATICS AND MODELS
Edited by S. I. Gass (Duluth, Minnesota, August 1979)

Volume 24 GAME THEORY AND ITS APPLICATIONS
Edited by W. F. Lucas (Biloxi, Mississippi, January 1979)

Volume 23 MODERN STATISTICS: METHODS AND APPLICATIONS
Edited by R. V. Hogg (San Antonio, Texas, January 1980)

Volume 22 NUMERICAL ANALYSIS
Edited by G. H. Golub and J. Oliger (Atlanta, Georgia, January 1978)

Volume 21 MATHEMATICAL ASPECTS OF PRODUCTION AND
DISTRIBUTION OF ENERGY
Edited by P. D. Laz (San Antonio, Texas, January 1976)
AMS SHORT COURSE LECTURE NOTES

Introductory Survey Lectures
published as a subseries of
Proceedings of Symposia in Applied Mathematics
CONTRIBUTORS

E. W. Cheney, Department of Mathematics, University of Texas at Austin, Austin, Texas

Ronald A. DeVore, Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina

Klaus Höllig, Computer Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin

Charles A. Micchelli, IBM T. J. Watson Research Center, Yorktown Heights, New York

A. Pinkus, Department of Mathematics, Technion, Haifa, Israel

E. B. Saff, Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, Florida
Approximation Theory
Carl de Boor, Editor
The AMS Short Course Series is sponsored by the Society's Committee on Employment and Education Policy (CEEP). The series is under the direction of the Short Course Advisory Subcommittee of CEEP.

Library of Congress Cataloging-in-Publication Data
Approximation theory.
(Proceedings of symposia in applied mathematics, ISSN 0160-7634; v. 36)
(Proceedings of symposia in applied mathematics; v. 36. AMS short course lecture notes)
Includes bibliographies and index.
QA221.A653 1986 511'.4 86-10846

COPYING AND REPRINTING. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940.

The appearance of the code on the first page of an article in this book indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

1980 Mathematics Subject Classification (1985 Revision).
Primary 41-01; Secondary 41-02, 30E10, 65Dxx.
Copyright ©1986 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.
This volume was printed directly from copy prepared by the authors.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
CONTENTS

Preface xi
Approximation of Functions 1
RonalD A. DeVore
Polynomial and Rational Approximation in the Complex Domain 21
E. B. Saff
N-Widths and Optimal Recovery 51
A. Pinkus
Algorithms for Approximation 67
E. W. Cheney
Algebraic Aspects of Interpolation 81
Charles A. Micchelli
Multivariate Splines 103
Klaus H"ollig
Index 129
PREFACE

This book is the result of the 1986 American Mathematical Society Short Course entitled Approximation Theory given at the annual meeting at New Orleans, on January 5-6, 1986.

Approximation Theory is properly a subfield of Analysis, but derives much of its impetus from applications such as data fitting, the representation of curves and surfaces for design and display, the reconstruction of functions from partial information, the numerical solution of functional equations and the like. For this reason, Approximation Theory offers ready-made applications of the basic ideas of Analysis.

The first lecture describes and illustrates the basic concerns of Approximation Theory. The other lectures are intended to provide a quick introduction into some of the areas of current research interest. Topics highlighted are: Approximation in the complex domain, n-width, optimal recovery, interpolation, algorithms for approximation, and splines, with strong emphasis on a multivariate setting in the last three topics.

I thank the authors very much for the considerable and selfless effort they have put into the preparation of the lectures and these notes.

Carl de Boor
Madison, Wisconsin
March, 1986
INDEX

adaptive, 18
alternating algorithm, 75
alternation, 4–5, 71–72
analytic
 continuation, 44
 function, 17, 22, 35, 89
approximation,
 adaptive, 17–18
 best, 2, 67
 L2, 22, 24
 complex, 21
 good, 10
 linear, 55
 near-best, 22
 nonlinear, 16, 72
 polynomial, see polynomial
 rational, see rational
attenuation factors, 88
Bernstein, 10, 12, 16, 34, 56, 111, 115
Bézier representation
 of a pp function, 103
Bezout’s theorem, 92
bivariate, 76–78
Blaschke product, 31
blending methods, 76
box spline, 100, 116–125
B-spline, 87, 92, 100, 103
calculation of b.a., 8
Carathéodory-Fejér Theorem, 32
capacity, 29
CF approximation, 32
characterization
 of b.a., 5, 30
Chebyshev
 expansion or series, 28
 polynomials, 9, 11, 28, 31, 57
 space, 6
 system, 6, 85–86, 89
Chebyshev’s Theorem, 4
Christoffel numbers, 42
circularity (of the error), 31–32
computer-aided design, 116
continued fraction, 38
control polygon, 123
convexity
 strict, 3
convolution, 13
degree of approximation, 12, 23, 34,
 43–44, 121
differential correction (algorithm), 72
Diliberto-Straus (algorithm), 74
dist, 2, 67–68
divided difference, 82
duality, 57, 68, 92
eigenvalues, 32, 59, 96–97
electrostatics, 29
entire (functions), 23, 40
equi-oscillation (criterion), 71–72
exchange method, 70
existence, 2, 43
exponentials, 6
Faber
 polynomials, 26
 series, 26–28
Favard, 12
Fejér, 32
Fekete points, 29
finite element, 117
Fourier
 series, 8, 88
 transform, 119
discrete, 88
 fast, 85
INDEX

Gauss quadrature, 42
Gel'fand n-width, 57, 65
von Golitschek (algorithm), 76

Haar space, 6, 30, 70, 72
Hankel matrix, 32
Hardy space, 89
Hermite, 23, 28, 82
- Genocchi formula, 83, 104

interpolation, 10, 56, 81–102
by polynomials, 9, 21, 23, 28, 82–84
 good points for, 11, 28–29
 quasi-, 16
intrinsic error, 60
Jackson
 kernel, 14
Jackson’s Theorem, 12, 34, 53
Joukowski transformation, 27

Kergin interpolation, 97–98
Kolmogorov
 - Arnold Theorem, 76
 criterion, 30
 n-width, 52

Lagrange form, 11, 82, 84, 86, 92, 100
Lebesgue function, 11
least-squares, 22
lifting of a map, 99–100
linear
 n-width, 55–56
 programming, 68, 74
Markov inequality, 57
Marsden’s identity, 112
Mergelyan’s theorem, 33
minimization, 67–68
modulus of continuity, 12, 108
multipoint, 42
multiquadric surface, 96
multivariate, 42, 76–78, 89–100, 103
near circularity, 31
von Neumann (algorithm), 75
Neville-Aitken formula, 83
Newman’s approximation
 to the absolute value, 16–17, 44
Newton form, 83
nonlinear, 16, 55, 72
nomographic (functions), 76

n-width, 51–60
 Bernstein, 56
 Gel’fand, 57, 65
 linear, 55
optimal
 algorithm, 60
 interpolation, 93–95
 recovery, 60
 spline interpolation, 89, 93
 subspace, 53
 asymptotically, 55
orthogonal, 8, 22
 polynomial, 41
 projector, 55
Padé
 approximant, 35
 multipoint, 44
 multivariate, 44
 table, 37
partition of unity, 19
periodic (spline), 88
Perron, 40
piecewise polynomials, 14–15, 16
see also spline
Pólya frequency sequence, 40
polynomials,
 algebraic, 1, 5, 9, 11, 16–17, 21–22, 55
 trigonometric, see trigonometric
positive definite,
 conditionally, 96
potential, 29
power function, 6
 truncated, 14
projector or projection, 10, 22
 minimal, 10, 22
proximity map, 75
 central, 75
quasi-interpolant, 16
Radon transform, 99
rational (function)s, 16, 18, 32, 33, 35,
 42–45, 72–74
realist, 27
recovery,
 optimal, 61–66
recurrence relations, 104–106, 109–110,
 117–118
Remez algorithm, 68, 70
INDEX

Riemann mapping theorem, 25
ridge function, 91
Rouché's theorem, 31
Runge's theorem, 25, 33
scattered data, 91
Schoenberg, 87, 104, 109, 122
shape preservation, 122
signature
 extremal, 33
simplex spline, 109–116
singular value decomposition, 60
Sobolev space,
 n-width of, 58–59
spline, 14–15, 54–55, 86–89
 box, see box spline
 B-, see B-spline
cardinal, 117
free knot, 17
"natural", 93
perfect, 89
periodic, 88
polyhedral, 100
simplex, see simplex spline
thin plate, 95
Stieltjes function, 40, 44
subdivision algorithm, 103, 123
Swiss cheese, 43
s-numbers, 59
Taylor polynomial, 14, 21–22, 26, 33, 58
tensor product, 75, 91, 117, 120, 122
Toeplitz determinant, 37
transfinite diameter, 29
trigonometric polynomials, 6, 9, 13, 52,
 84–85
truncated power, 100
uniqueness, 2, 4, 5, 43, 69
Vandermonde, 9, 29, 82
vive la difference!, 42
Walsh, 34
 array, 43
Weierstrass Approximation Theorem, 1,
 11, 33
winding number, 31

ABCDEFGHIJ–89876