Introduction to Mathematical Finance

American Mathematical Society
Short Course
January 6–7, 1997
San Diego, California

David C. Heath
Glen Swindle
Editors
Selected Titles in This Series

57 David C. Heath and Glen Swindle, Editors, Introduction to mathematical finance (San Diego, California, January 1997)
56 Jane Cronin and Robert E. O'Malley, Jr., Editors, Analyzing multiscale phenomena using singular perturbation methods (Baltimore, Maryland, January 1998)
55 Frederick Hoffman, Editor, Mathematical aspects of artificial intelligence (Orlando, Florida, January 1996)
54 Renato Spigler and Stephanos Venakides, Editors, Recent advances in partial differential equations (Venice, Italy, June 1996)
53 David A. Cox and Bernd Sturmfels, Editors, Applications of computational algebraic geometry (San Diego, California, January 1997)
51 Louis H. Kauffman, Editor, The interface of knots and physics (San Francisco, California, January 1995)
50 Robert Calderbank, Editor, Different aspects of coding theory (San Francisco, California, January 1995)
49 Robert L. Devaney, Editor, Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets (Cincinnati, Ohio, January 1994)
47 Ingrid Daubechies, Editor, Different perspectives on wavelets (San Antonio, Texas, January 1993)
46 Stefan A. Burr, Editor, The unreasonable effectiveness of number theory (Orono, Maine, August 1991)
45 De Witt L. Sumners, Editor, New scientific applications of geometry and topology (Baltimore, Maryland, January 1992)
44 Béla Bollobás, Editor, Probabilistic combinatorics and its applications (San Francisco, California, January 1991)
43 Richard K. Guy, Editor, Combinatorial games (Columbus, Ohio, August 1990)
42 C. Pomerance, Editor, Cryptology and computational number theory (Boulder, Colorado, August 1989)
41 R. W. Brockett, Editor, Robotics (Louisville, Kentucky, January 1990)
40 Charles R. Johnson, Editor, Matrix theory and applications (Phoenix, Arizona, January 1989)
39 Robert L. Devaney and Linda Keen, Editors, Chaos and fractals: The mathematics behind the computer graphics (Providence, Rhode Island, August 1988)
38 Juris Hartmanis, Editor, Computational complexity theory (Atlanta, Georgia, January 1988)
37 Henry J. Landau, Editor, Moments in mathematics (San Antonio, Texas, January 1987)
36 Carl de Boor, Editor, Approximation theory (New Orleans, Louisiana, January 1986)
35 Harry H. Panjer, Editor, Actuarial mathematics (Laramie, Wyoming, August 1985)
34 Michael Anshel and William Gewirtz, Editors, Mathematics of information processing (Louisville, Kentucky, January 1984)
33 H. Peyton Young, Editor, Fair allocation (Anaheim, California, January 1985)
32 R. W. McKelvey, Editor, Environmental and natural resource mathematics (Eugene, Oregon, August 1984)
31 B. Gopinath, Editor, Computer communications (Denver, Colorado, January 1983)
30 Simon A. Levin, Editor, Population biology (Albany, New York, August 1983)

(Continued in the back of this publication)
Introduction to Mathematical Finance

American Mathematical Society
Short Course
January 6–7, 1997
San Diego, California

David C. Heath
Glen Swindle
Editors
Lecture Notes Prepared for the
American Mathematical Society Short Course
Mathematical Finance
Held in San Diego, California
January 6–7, 1997

The AMS Short Course Series is sponsored by the Society's Program Committee for
National Meetings. The series is under the direction of the Short Course
Subcommittee of the Program Committee
for National Meetings.

2000 Mathematics Subject Classification. Primary 91B28;
Secondary 60H30, 91B24, 93E20.
Contents

Preface ix
Quantitative methods for portfolio management
 STEVEN E. SHREVE 1
An introduction to option pricing and the mathematical theory of risk
 MARCO AVellaneda 25
Non-arbitrage and the fundamental theorem of asset pricing: Summary of
 main results
 FREDDY DELBAEN AND WALTER SCHACHERMAYER 49
Introduction to models for the evolution of the term structure of interest
 rates
 DAVID HEATH 59
Transition densities for interest rate and other nonlinear diffusions
 YACINE AïT-SAHALIA 65
Transaction costs in portfolio management and derivative pricing
 THALEIA ZARIPHOPOULOU 101
Index 165
Preface

Nearly 100 years ago Bachelier, in his fundamental work "Théorie de la spéculation," laid the foundation for the subject now known as Mathematical Finance. In the same work, he provided the first treatment of Brownian motion. The pace of work in this area has grown rapidly. About 50 years ago, Markowitz developed his mean-variance based model for portfolio selection. A little over 25 years ago, the works of Black, Merton, Scholes and Samuelson identified and illuminated the important (and shocking) consequences of assuming that markets present no opportunities for arbitrage. A few years later, Harrison and Kreps demonstrated the fundamental role of martingales and stochastic calculus in constructing and understanding models for financial markets. This connection opened the door for a virtual flood of mathematicians to contribute to developments over the past 20 years.

Concurrently with these mathematical developments, markets have developed and grown. For example, the Chicago Board Options Exchange (CBOE), founded in 1973, revolutionized options trading by creating standardized, listed stock options. Financial institutions now write custom (derivative) contracts for other firms allowing these firms to reduce their interest rate, foreign currency, and credit risks. The level of activity has grown rapidly. The total notional of derivatives written by U.S. commercial banks was $20 trillion in 1996, an order of magnitude greater than the federal budget.

Research activity in this area, both in academia and in industry, has continued to grow. There are now several journals devoted to this subject, and many universities have developed special programs to educate students in this area. One manifestation of this activity was the Short Course on Mathematical Finance, given in San Diego, CA in January of 1997; papers delivered at this course constitute the contents of this volume.

We would like to thank the AMS for their enthusiastic support and their encouragement of the publication of this collection.
Index

\(\beta \), 7, 22, 23
\(\alpha \)-admissible, 52
\(\omega \)-admissible, 59
“buy region”, 117
“no-trading region”, 117
“sell region”, 117
“static” options hedge, 44
admissible, 52
American, 29
Ansel-Stricker and Jacka, 56
arbitrage opportunity, 31
Arbitrage Pricing Theory, 35
ARCH-GARCH, 42
Bessel process, 56, 73
Bishop-Phelps theorem, 57
Black and Scholes valuation formula, 133
Black-Scholes, 31
Black-Scholes formula, 31
bounds to reservation prices, 145
Brownian motion, 9, 11–14, 16, 73
Brownian motions, 18
buy-and-hold strategy, 52
Capital Asset Pricing Model, 1
capital asset pricing model, 2
Capital Asset Pricing Theorem, 7, 22
Central Limit Theorem, 12
d dominated measure, 54
dominated strategies, 52, 59
dynamic hedging, 25, 35
Dynamic Programming Principle, 109
efficient frontier, 4, 6–8
efficient portfolios, 1
Emery and Chou, 58
enhanced volatility, 147
equivalent local martingale measure, 57
equivalent martingale measure, 51, 53, 62
European, 29
European call, 133
exercise price, 29
exotic options, 33
expiration date, 29
exponential local martingale, 55
exponential utilities, 137
fixed transaction costs, 130
foreign currency, 56
forward rates, 63
fractional Brownian motion, 57
Fundamental Theorem of Asset Pricing, 51
general admissible integrands, 53
general risk functionals, 146
geometric Brownian motion, 2, 17
Girsanov’s Theorem, 73
Hamilton-Jacobi-Bellman equation, 19, 21, 110
hedging, 51
hedging error, 147
Hermite expansion, 72
Ho and Lee, 65
homotheticity properties, 116
imperfect hedging strategies, 147
imperfectly replicating policies, 132
implied volatility, 36
instantaneous covariance, 22
insurance models, 58
interest rate models, 67
intermediate trading, 137
Itô’s formula, 15–18, 20, 30

Kreps, 53
Kullback-Leibler relative entropy distance, 46
Lagrangian uncertain volatility model, 45
Leland’s approach, 148
Leland’s enhanced volatility, 148
local martingale, 54
local quadratic loss criterion, 151
local times, 117
locally bounded semi-martingales, 54
long-run expected growth rate, 130

market portfolio, 6–8, 21
markets with frictions, 131
Markov process, 68
Markov property, 10–12
Martingale, 12
martingale, 10, 11, 14
martingale measure, 36
martingale theory, 51
mathematical finance, 51
maximal element, 55
maximum-likelihood, 68
mean reversion, 86
mean-variance analysis, 1–3
mean-variance optimization, 28
method of fractional steps, 124
minimal super-replicating strategies, 136
minimization of the “local risk”, 151
modeling financial risk, 25
money market account, 62
monotone scheme, 123
monotonicity, 123
mutual fund, 2, 22

no arbitrage property (NA), 53
No Free Lunch (NFL), 53
No Free Lunch with Vanishing Risk Property (NFLVR), 53
no trading region, 129
non-arbitrage, 51
obstacle problem, 33
option hedge-ratios, 44
option replication, 35
option spreads, 41
options, 29
Ornstein-Uhlenbeck, 74

paradoxical situation, 56
perfectly replicating (hedging) strategies, 134

physical measure, 63
portfolio optimization, 18
pricing of contingent claims, 64
proportional transaction costs, 107
pure discount transaction costs, 61
put-call parity, 37

quadratic variation, 10, 11, 13, 14, 16
random walk, 9–11
reflecting diffusion, 117
relative entropy, 46
representing measure, 51
reservation write price, 142
return, 26
risk, 26
risk neutral measure, 51
risk premia, 22
risk premium, 7, 8, 22
risk-neutral probability, 35
risk-neutral probability measures, 25

semi-martingale, 52
separation theorem, 7, 22
sigma martingale measure, 59
sigma-martingale, 58
skew, 42
Skorohod problem, 121
small transaction costs, 130, 151
smile, 42
spot interest rate, 62
spot yields, 63
stability, 123
stable scheme, 123
static mean-variance, 1
stochastic calculus, 1, 2, 9, 14, 18
stochastic differential equation, 18, 20, 22
stochastic differential equations, 67
stochastic dominance, 137, 138
stochastic integral, 14
stochastic integration, 51
stochastic model, 30
stock index, 32
strict local martingale, 55
subjective discount rate, 108
super-replicating strategies, 132, 135
term structure, 62
the utility maximization theory, 137
time splitting method, 124
time-decay, 39
totally inaccessible stopping times, 58
transaction costs, 38
transaction costs are “small”, 133
transition function, 68
two-fund theorem, 1

U.S. Treasury Strips, 61
unbounded claims, 58
unbounded jumps, 58
uncertain volatility models, 41
uniformly integrable martingales, 57
utility, 2, 19, 21, 22
utility function, 108

valuation of contingent claims under uncertainty, 25
value line, 6, 8
Vasicek, 65
Vasicek’s Model, 74
Vega, 40
viscosity solutions, 110
viscosity subsolution, 110
viscosity supersolution of (3.1), 110
volatility, 17, 18
volatility uncertainty beliefs, 45

weak* closure, 53
weight function, 59
worst-case scenario, 43
write price, 142

yield, 26
Selected Titles in This Series

(Continued from the front of this publication)

29 R. A. DeMillo, G. I. Davida, D. P. Dobkin, M. A. Harrison, and R. J. Lipton,
Applied cryptology, cryptographic protocols, and computer security models (San Francisco, California, January 1981)
28 R. Gnanadesikan, Editor, Statistical data analysis (Toronto, Ontario, August 1982)
27 L. A. Shepp, Editor, Computed tomography (Cincinnati, Ohio, January 1982)
26 S. A. Burr, Editor, The mathematics of networks (Pittsburgh, Pennsylvania, August 1981)
25 S. I. Gass, Editor, Operations research: mathematics and models (Duluth, Minnesota, August 1979)
24 W. F. Lucas, Editor, Game theory and its applications (Biloxi, Mississippi, January 1979)
23 R. V. Hogg, Editor, Modern statistics: Methods and applications (San Antonio, Texas, January 1980)
22 G. H. Golub and J. Oliner, Editors, Numerical analysis (Atlanta, Georgia, January 1978)
21 P. D. Lax, Editor, Mathematical aspects of production and distribution of energy (San Antonio, Texas, January 1976)
20 J. P. LaSalle, Editor, The influence of computing on mathematical research and education (University of Montana, August 1973)
19 J. T. Schwartz, Editor, Mathematical aspects of computer science (New York City, April 1966)
18 H. Grad, Editor, Magneto-fluid and plasma dynamics (New York City, April 1965)
17 R. Finn, Editor, Applications of nonlinear partial differential equations in mathematical physics (New York City, April 1964)
16 R. Bellman, Editor, Stochastic processes in mathematical physics and engineering (New York City, April 1963)
15 N. C. Metropolis, A. H. Taub, J. Todd, and C. B. Tompkins, Editors, Experimental arithmetic, high speed computing, and mathematics (Atlantic City and Chicago, April 1962)
14 R. Bellman, Editor, Mathematical problems in the biological sciences (New York City, April 1961)
13 R. Bellman, G. Birkhoff, and C. C. Lin, Editors, Hydrodynamic instability (New York City, April 1960)
12 R. Jakobson, Editor, Structure of language and its mathematical aspects (New York City, April 1960)
11 G. Birkhoff and E. P. Wigner, Editors, Nuclear reactor theory (New York City, April 1959)
10 R. Bellman and M. Hall, Jr., Editors, Combinatorial analysis (New York University, April 1957)
9 G. Birkhoff and R. E. Langer, Editors, Orbit theory (Columbia University, April 1958)
8 L. M. Graves, Editor, Calculus of variations and its applications (University of Chicago, April 1956)
7 L. A. MacColl, Editor, Applied probability (Polytechnic Institute of Brooklyn, April 1955)
6 J. H. Curtiss, Editor, Numerical analysis (Santa Monica City College, August 1953)

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/.