An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology

American Mathematical Society Short Course
January 8–9, 2001
New Orleans, Louisiana

James Sneyd
Editor
AMS SHORT COURSE LECTURE NOTES
Introductory Survey Lectures
published as a subseries of
Proceedings of Symposia in Applied Mathematics
Proceedings of Symposia in Applied Mathematics

Volume 59

An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology

American Mathematical Society Short Course
January 8–9, 2001
New Orleans, Louisiana

James Sneyd
Editor
p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 59. AMS short course lecture notes)
Includes bibliographical references and index.
ISBN 0-8218-2816-9 (alk. paper)

Library of Congress Cataloging-in-Publication Data
p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 59. AMS short course lecture notes)
Includes bibliographical references and index.
ISBN 0-8218-2816-9 (alk. paper)

2000 Mathematics Subject Classification. Primary 92C05, 92C20, 92C30, 92C37; Secondary 92D10, 92D30.

Library of Congress Cataloging-in-Publication Data
p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 59. AMS short course lecture notes)
Includes bibliographical references and index.
ISBN 0-8218-2816-9 (alk. paper)

Library of Congress Cataloging-in-Publication Data
p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 59. AMS short course lecture notes)
Includes bibliographical references and index.
ISBN 0-8218-2816-9 (alk. paper)

Library of Congress Cataloging-in-Publication Data
p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 59. AMS short course lecture notes)
Includes bibliographical references and index.
ISBN 0-8218-2816-9 (alk. paper)

Library of Congress Cataloging-in-Publication Data
p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 59. AMS short course lecture notes)
Includes bibliographical references and index.
ISBN 0-8218-2816-9 (alk. paper)
Contents

- **Introduction**
 - James Sneyd
 - vii

- **Figure and table credits**
 - xi

- **Dynamics of singularly perturbed neuronal networks**
 - David Terman
 - 1

- **Mathematics in visual neuroscience: The retina**
 - Daniel Tranchina
 - 33

- **Arrhythmias by dimension**
 - James P. Keener
 - 57

- **Calcium excitability**
 - James Sneyd
 - 83

- **Disease gene dynamics in a population isolate**
 - Kenneth Lange and Benjamin Redelings
 - 119

- **Modeling viral infections**
 - Alan S. Perelson and Patrick W. Nelson
 - 139

- **Index**
 - 173
Introduction

In the past few years there has been such a tremendous explosion of interest in mathematical biology that one could claim, without undue exaggeration, that biology is now one of the principal sources of mathematical applications. Spurred on in large part by advances in computing power, biological applications have reached deep into almost every traditional area of mathematics, and research in the generic field of mathematical biology is now so broad and vast that it has itself splintered into a multitude of separate sub-disciplines.

However, although mathematical biology has tremendous vitality and energy, there are still substantial barriers to any mathematician wishing to enter the field. Firstly, research in mathematical biology is done along very different lines than is most other mathematical research, as it is judged entirely on the quality of the science, not on the complexity or elegance of the mathematics involved. This requires not only a rather different mindset from the mathematician, but also from that mathematician’s colleagues, who may be sitting on review or promotion committees. Secondly, it requires a substantial investment in time to learn the biological vocabulary and facts, and to establish collaborations with experimentalists. The personal skills necessary to work with a group of experimentalists, each with their own agenda and opinions, are not always those fostered by a degree in mathematics.

Breaking down these barriers is to the benefit of all mathematicians, as the close involvement of mathematics in the biological sciences greatly enriches both disciplines. In addition (to raise more mercenary points) such interdisciplinary efforts tend to be highly regarded by funding agencies and academic administrations.

The goal of this volume is to present a selected number of topics in mathematical biology to a mathematical audience. It aims to show how research in the field is done, what kind of mathematics is used, how one might best enter the field, what the outstanding questions are, as well as a brief historical survey of each topic so as to put current research into perspective. Because mathematical biology is such a huge field, ranging from studies of individual molecules such as DNA, to the study of entire populations, it is simply not possible to provide an overview of the entire field in a single volume. Thus, this volume consists of a series of talks covering a relatively restricted range of topics, with greater coverage of one topic, that of excitable cell physiology.

Electrically excitable cells form the basis of all neuronal activity and muscular contraction, and for this reason they have been a subject of intense investigation for well over a hundred years. Fortunately, because of the electrical nature of the cellular activity, it is possible to make experimental measurements with high
accuracy and reproducibility, a fact that makes them ideal for mathematical investigation. Thus, it is in the study of electrically excitable cells that mathematics and physiology have traditionally had their closest links.

The opening chapter of this volume provides an introduction to the mathematics of electrically excitable cells. It discusses the basic theories of the action potential, including the Hodgkin-Huxley equations and the Morris-Lecar model. It provides the first glimpse of the complex types of oscillations found in various neurons, and of the complexities to be expected when individual neurons are connected to one another by synapses.

In the second chapter we delve into the visual system in more depth. This, again, involves the study of neurons, but this time in a different context from the previous chapter, and with a more specific physiological focus. This chapter discusses basic theories of edge detection, receptive fields, light adaptation, and orientation detection, including an overview of the structure of the visual system.

Muscle cells are a particular kind of electrically excitable cell, one designed to convert an electrical signal to a force. Thus their physiology is similar in many respects to that of other excitable cells, but the context is very different, and the mathematics has a different flavour. An understanding of the electrical properties of cardiac muscle is crucial for our understanding of what causes the heart to fail, an occurrence which kills millions of people every year. In the third chapter we discuss how we may use mathematics to study and understand cardiac arrhythmias.

The fourth chapter appears to digress somewhat from this overall theme of excitability, discussing as it does the dynamics of calcium inside cells which are, in general, not electrically excitable. This divergence, however, is less great than it might appear at first, as intracellular calcium homeostasis depends on the phenomenon of calcium excitability, as opposed to electrical excitability. The mathematical equations are similar to those of electrical excitability, but, once again, the context and physiology are quite different. The study of calcium dynamics is one of the most recent of the topics discussed in this volume, being only about eleven or twelve years old. It is a fine example of how new physiological observations can be understood, at least in part, by appealing to a more general mathematical theory that was developed in a different physiological context.

With those four chapters we leave the overview of the modelling of excitable cells, and their applications to physiological problems, and move on to a wider range of topics. From a very long list of possible topics we have chosen to discuss two that represent highly important areas of mathematical biology, areas in which there are already many mathematicians working.

The first topic, human genetics, involves modelling on a level rather more macroscopic than that of an individual cell, being concerned instead with the genetic properties of entire populations. In addition, the mathematics used is of a different kind, with much more of a probability flavour. The particular topic presented, that of modeling the dynamics of genetic diseases in isolated populations, is an example of how analytical and numerical approaches can be combined to study large real-world data sets.

Finally, we discuss some models in immunology, particularly models of the HIV virus. For obvious reasons there is a tremendous amount of experimental and theoretical work being performed in this area. Our chapter highlights the (often overlooked) fact that very simple mathematical models can be used to great effect. As we show, even the simplest of mathematical models, when combined
with experimental data, can be used to obtain results that, in hindsight, should have been obvious, but, without the model, rarely are.

Despite the breadth of this volume, the vast majority of mathematical biology remains unaddressed here. Our aim is merely to show how, in the few areas considered here, mathematics has played an important role in the study of a biological problem. In many respects, biology is the new frontier for applied mathematicians. We hope that the demonstration of how mathematics can be usefully used in biology will encourage yet more mathematicians to join our ranks.

James Sneyd
University of Auckland
New Zealand
August 2002
Figure and Table Credits

The American Mathematical Society gratefully acknowledges the kindness of the following institutions and individual in granting these permissions:

W. B. Saunders Co.

Figure 1, p. 58; from R. R. Rushmer, *Structure and function of the cardiovascular system*, 2nd ed., W. B. Saunders Co., Philadelphia, PA, 1976; with permission of W. B. Saunders Co.

Figure 2. p. 59; ibid; with permission of W. B. Saunders Co.

Figure 3, p. 61; ibid; with permission of W. B. Saunders Co.

Figure 12, p. 71; from D. P. Zipes and J. Jalife, *Cardiac electrophysiology; from cell to bedside*, 2nd ed., W. B. Saunders Co., Philadelphia, PA, 1995; with permission of W. B. Saunders Co.

Elsevier Science

Figure 13, p. 73; reprinted from A. V. Panfilov and J. P. Keener, *Reentry in 3-dimensional Fitzhugh-Nagumo medium with anisotropy*, Physica D 84 (1995), 545–552; with permission from Elsevier Science.

Springer-Verlag

Table 1, p. 89; from J. Keener and J. Sneyd, *Mathematical Physiology*, Springer-Verlag, New York, 1998; Table 5.1, p. 166; with permission from Springer-Verlag.

Table 3, p. 99; ibid., Table 12.1, p. 341; with permission from Springer-Verlag.

Figure 13, p. 112; ibid., Figure 12.10, p. 353; with permission from Springer-Verlag.

SIAM

Figure 1, p. 141; from A. S. Perelson and P. W. Nelson, *Mathematical models of HIV dynamics in vivo*, SIAM Review 41 (1999), 3–44, Figure 1.1, p. 5; courtesy of SIAM.
Figure 2, p. 142; ibid, Figure 1.2, p. 6; courtesy of SIAM.
Table 2, p. 155; ibid, Table 6.1, p. 30; courtesy of SIAM.

A. V. Panfilov

Figure 14, p. 74; with permission of A. V. Panfilov.
Index

3TC, 156
acetylcholine, 101
ACh, see also acetylcholine
action potential, 2–5, 7, 27, 35, 48, 58, 62
at the AV node, 61, 62
duration, 66, 70
Hodgkin-Huxley model, 3
in the AV node, 66
in the heart, 59
rate, 35
speed, 68
through the AV node, 61
adaptation, 53
contrast gain control, 54
light adaptation, 53
network adaptation, 54
AIDS, 139–141, 167
Airy equation, 152
alternans, 66, 70, 72
amacrine cells, 35, 54
antiretroviral
drug, 141, 142, 169
therapy, 144, 151, 156, 160, 169
Aplysia R-15 neuron, 10, 16
asymptomatic
carriers, 120
infection, 141
period, 140, 141, 160
ATP, 85, 113
atria, 58, 60–62, 67, 70, 72
atrial-ventricular septum, 58, 66
atrio-ventricular node, 58, 61–63, 67
AV block, 59, 64, 65
averaging, 16
axon, 1, 3, 4, 27, 34, 35
collaterals, 3
squid giant axon, 3, 48
AZT, 156
basal ganglia, 28, 29
bifurcation
homoclinic, 12, 13, 15, 16
Hopf, 12–16, 90, 91, 95, 98
saddle node of periodics, 15
binomial distribution, 129, 154
binomial expansion, 163
binomial sampling, 134
bipolar cells, 33, 35, 37, 52, 53
birth-death process, 122–123
extinction, 123
Finnish example, 128
generating function, 123
mean and variance, 123
bistability, 12, 14–16, 24, 25
branching process, 120
bretylium, 74
Brownian motion, 129
cable equation, 48
calcium
buffering, 86, 99
channels, 5, 84, 85
conductance, 3
current, 5, 46
effects on IP3 receptors, 85
fluorescent dye, 86
fluorescent video microscopy, 87
influx, 84, 85, 91, 104, 106
intracellular concentration, 3, 84
release from the endoplasmic reticulum, 85
spikes, 101
waves, 83
calcium-induced calcium release, 89, 91
carbachol, 101
chaotic dynamics, 2, 11, 13, 27–29, 66, 114
cholecystokinin, 101
cilia, 108
circle map, 62, 65, 66
combination therapy, 154, 156, 159, 167–169
compression of trajectories, 22, 23
cones, 33, 35, 46, 48
input to bipolar cells, 52
light adaptation, 53
network of, 47–49
photocurrent, 49
sensitivity, 43
spectral sensitivity, 35, 47
synapses from horizontal cells, 35
transfer function, 51, 52
continuous spiking, 12–14
contrast, 33, 35–39, 51, 54
corner frequency, 43
cortex, 10, 29
coupling
by diffusion, 71
electrical, 49, 58
excitation-contraction, 85
excitatory, 2, 18, 22
gap junction, 5, 13, 113
homogeneous, 24
inhibitory, 2, 18, 24, 27, 29
nearest neighbour, 23
day vision, 35
dendrites, 1, 3
detailed balance, 103
Devil’s Staircase, 66
diacetyl monoxin, 74
diastole, 61
diffusion process, 121, 129
 approximate distribution, 130
 center of probability, 131
 recurrence for, 133
 special functions, 132
 forward equation, 130
 simulation, 130
Dirac delta function, 38, 42
DNA, 145, 154
dominant disease gene, 120
diffusion model, 130
 Finnish example, 128
 largest clan, 127
 number of carriers, 126
 number of extinct clans, 126
 number of extinct clans, 127
 selection-mutation balance, 121
ectopic focus, 59, 75
dehedged detection, 44
effector cell, 141
eikonal-curvature equation, 71
electrocardiogram, 58
endoplasmic reticulum, 84, 101, 108, 109
endothelial cells, 108, 110, 144
epidemics, 139
epithelial cells, 106, 108–111
ER, see also endoplasmic reticulum
excitable
 calcium release, 86, 90
 cells, 10, 21, 25, 26
 tissues, 71
fast threshold modulation, 22, 23
fibrillation, 70, 73–75
FitzHugh-Nagumo equations, 86, 90, 92, 98
Fourier transform, 34, 39, 40, 49–51, 126
gain-bandwidth product, 43
gamma distribution, 166, 167
gap junctions, 5, 13, 47, 106, 108, 113
gene frequency model, 121
glial cells, 108
Heaviside function, 18, 42, 164
hepatitis, 139, 140
hepatocytes, 92, 113
Hill coefficient, 94, 98, 103, 109
Hill function, 98
hippocampus, 10
Hodgkin-Huxley equations, 2, 3, 48, 59, 86,
 96–98
homoclinic orbits, 11, 12, 14, 16
horizontal cells, 35, 37, 46–51
hormones, 83, 85
horseshoe crab retina, 34
human genome, 119
Huntington’s disease, 29
hysteresis, 12, 15, 16, 68
immune response, 140, 169
impedance, 49
 of a bipolar cell membrane, 53
 of a cone membrane, 49
 of a horizontal cell membrane, 51
impulse response, 38, 40–42, 44
 exponential, 43
 of a transducer, 40
 of cones, 51
 of retinal ganglion cells, 43, 47
 spatiotemporal, 39
 spatiotemporal separable, 43
index
 chemical, 5
 inositol 1,4,5-trisphosphate, 85, 91
 inositol 1,4,5-trisphosphate receptor, 85, 87,
 88, 98
 insulin, 10, 12
IP3, see also inositol 1,4,5-trisphosphate
 ischemia, 60
lateral geniculate nucleus, 34
linear systems, 34, 40, 43
logistic function, 143
luminance, 37, 45, 46
tymphocytes, 169
Mach bands, 33, 44, 46, 47
macrophages, 158, 168
malaria, 139
mass action, law of, 93, 103, 143
membrane potential, 3–7, 18, 27, 35, 49, 51,
 52, 58, 83, 84, 87

inhibitory, 2, 18, 24, 27, 29
 nearest neighbour, 23

HSP, see also inositol 1,4,5-trisphosphate
INDEX

mitochondria, 84, 104, 113, 114
Morris-Lecar equations, 5
multiple time scale analysis, 2, 11
muscle, 84
cardiac, 85
nelfinavir, 156
nerve impulse, see also action potential neuron, 1, 3, 84
action potential, 7
activity patterns, 1
Aplysia R-15, 10, 16
as a linear filter, 40
bursting oscillations, 10
coupled, 18
Hodgkin-Huxley model, 3
in primary visual cortex, 46
integrate and fire model, 2
light response, 34
membrane potential, 7
models, 1
Morris-Lecar model, 5
nonlinear, 54
postsynaptic, 5
receptive field, 34
response to applied current, 6
retinal, 33–35, 38, 48, 84
rodent trigeminal, 15
synaptic coupling, 2
thalamic, 15
visual, 53
neurotransmitters, 5, 83, 85
nevirapine, 154, 155
night vision, 35
nuclear layer
inner, 35
outer, 35
Ohm’s Law, 4, 49
optic nerve, 34
optimal filtering, 43
oscillations
antiphase, 18, 23, 25
asynchronous, 1, 2, 18
bursting, 1, 2, 10, 114
clustered, 27, 28
relaxation, 7, 17, 22
synchronous, 1, 2, 18, 20, 27–29, 58
oscillators
autonomous, 58
coupled, 21, 23, 59, 60
networks of, 17
neural, 28
phase locked, 60, 65
pacemaker, 67, 68
pallidotomy, 29
pancreatic acinar cells, 101
pancreatic beta cells, 10, 12
parasystole, 59, 66, 68
Parkinson’s disease, 29
pattern generation, 12
permeability
of the cell membrane, 3
sodium, 3
phase resetting, 60
phase resetting curve, 60
phase space methods, 5, 6
phosphorylation, 101, 102, 104–106
photoreceptors, 35, 37
cones, 43
information encoding, 35
synapses, 35
plexiform layer, 35, 36
inner, 35
outer, 35, 46
Poincaré map, 14, 61
Poincaré oscillator, 60
Poincaré, 60
Poisson process, 124–125
Campbell’s formula, 124
dominant mutations, 125
marking, 125
population isolate, 120
bottleneck, 120, 135
Finnish dominant diseases, 128
Finnish recessive diseases, 134
postinhibitory rebound, 7–9, 27
postsynaptic conductance, 18
membrane, 5
neuron, 5
potential, 5
potassium channel, 3, 4
conductance, 4, 48
current, 4, 5
extracellular concentration, 3
intracellular concentration, 3
presynaptic membrane, 5
neuron, 5, 53
potential, 18
terminal, 5
primary infection, 140, 141
protease inhibitor, 141, 142, 145–150, 153, 156, 160, 161, 163
psychophysical experiments, 34
pumps calcium, 84–86, 88, 89, 94, 97, 98, 104, 106, 109
effect on heartbeat, 67
sodium and potassium, 3
Purkinje fibers, 58, 59, 67
radial isochron clock, 60
reaction-diffusion equations, 83
receptive field, 34
 bipolar cell, 52, 53
 center, 34, 39
 center-surround, 33, 44, 46, 51
 cone, 51
 ganglion cell, 33
 ganglion cells, 45
recessive disease gene, 120
 diffusion model, 130
 Finnish bottleneck, 136
 Finnish density function, 134
 Finnish extinction probability, 135
 selection-mutation balance, 121
reentrant
 arrhythmias, 67, 70, 72, 75
 oscillator, 68
 pattern, 68, 70
 patterns, 74
 tachycardias, 73
 waves, 67, 68, 71, 73
resting potential, 3, 59
restitution curve, 66, 68, 70, 72, 74, 75
retina, 33, 34
 and contrast, 37
 and light adaptation, 53, 54
 as a nonlinear system, 53
 as a transducer, 34
 cat, 45
 circuitry, 35
 diagram of, 36
 horseshoe crab, 34
 information encoding, 35
 information processing, 33
 peripheral, 47
 primate, 35, 45
retinal ganglion cells, 33–35, 43
 firing rate, 35
 impulse response, 43
 in Mach bands, 45
 receptive field, 45, 46
 spatial sensitivity, 45
 spatiotemporal function, 43
 spatiotemporal response properties, 42
 synaptic input, 53
reverse transcriptase inhibitors, 145, 146, 149,
 155, 156, 158, 160
rigor mortis, 84
ritonavir, 147, 148, 155, 163
RNA, 142, 145, 147, 148, 152, 154, 160, 163
rods, 35
 light adaptation, 53
 rotation number, 64
ryanodine, 85
ryanodine receptor, 85, 87, 88, 113
sarcoplasmic reticulum, 84, 85
scroll waves, 72, 73, 75
secretion
 hormonal, 84
 of digestive enzymes, 101
 singular perturbations, 2, 6, 11, 14, 20
 sinoatrial node, 58, 62, 63
 sleep rhythm
 delta, 29
 spindle, 28, 29
 thalamic, 29
 Smale horseshoe, 13, 14
 smallpox, 139
 sodium
 channel, 4
 channel gating, 4
 channels, 3
 conductance, 3, 4, 48
 current, 4
 intracellular concentration, 3
 reversal potential, 4
 soma, 1, 3
 spatial sensitivity profile, 33, 34, 45
 spectral sensitivity, 35, 47
 spike train, 35
 as a digital encoder, 35
 firing rate, 35
 rate of firing, 10
 stochastic, 35
 spiral
 Archimedean, 71
 calcium waves, 87, 92, 99, 100
 wave breakup, 72, 75
 wave drifting, 72
 waves, 70–72
 Starling’s Law, 61
 subthalamic nucleus, 29
synapse
 direct, 18
 electrical, 5
 excitatory, 1, 2, 5, 18, 20, 22, 27–29
 indirect, 19
 inhibitory, 1, 2, 5, 18, 24, 25, 27, 29
 synaptic cleft, 5
 synaptic coupling, 1, 2, 18, 29, 48
 synaptic current, 51
 synaptic depression, 12
 systole, 61
tachycardia, 70, 73, 75
target cells, 143, 147, 153, 154, 165
thalamic neurons, 15, 28
thalamic sleep rhythms, 29
Torsade de Pointe, 70
transfer function, 38–41, 43, 45, 49
 of bipolar cells, 53
 of cone network, 51
 of cones, 51, 52
 of horizontal cell network, 51
 spatiotemporal, 51
van der Pol equation, 60
vena cavae, 58, 67, 71
verapamil, 74
viral
 clearance, 147, 150, 159, 160, 163, 164, 166, 167
 concentration, 140
decay, 147
dynamics, 142, 145, 151, 158, 164
elimination, 140
eradication, 168
evolution, 144
generation time, 154, 167
half-life, 167
load, 140–142, 144, 155, 157
production, 142, 143, 148, 159, 161
replication, 168
visual angle, 33
visual cortex, 28, 46
voltage clamp, 97
waves
 lurching, 27
 periodic, 61, 83, 99, 113
 reentrant, 67, 68, 73
 scroll, 72, 73, 75
 smooth, 27
 spiral, 70–72, 99, 100
Wenckebach rhythm, 61, 64
WPW syndrome, 66
Wright-Fisher model, 121, 129
 bottleneck, 136
density function, 134
diffusion approximation, 130
extinction probability, 135
Finnish example, 134
 numerical methods for, 133
Xenopus oocytes, 87, 92, 97–99
Titles in This Series

59 James Sneyd, Editor, An introduction to mathematical modeling in physiology, cell biology, and immunology (New Orleans, Louisiana, January 2001)

58 Samuel J. Lomonaco, Jr., Editor, Quantum computation: A grand mathematical challenge for the twenty-first century and the millennium (Washington, DC, January 2000)

57 David C. Heath and Glen Swindle, Editors, Introduction to mathematical finance (San Diego, California, January 1997)

56 Jane Cronin and Robert E. O’Malley, Jr., Editors, Analyzing multiscale phenomena using singular perturbation methods (Baltimore, Maryland, January 1998)

55 Frederick Hoffman, Editor, Mathematical aspects of artificial intelligence (Orlando, Florida, January 1996)

54 Renato Spigler and Stephanos Venakides, Editors, Recent advances in partial differential equations (Venice, Italy, June 1996)

53 David A. Cox and Bernd Sturmfels, Editors, Applications of computational algebraic geometry (San Diego, California, January 1997)

51 Louis H. Kauffman, Editor, The interface of knots and physics (San Francisco, California, January 1995)

50 Robert Calderbank, Editor, Different aspects of coding theory (San Francisco, California, January 1995)

49 Robert L. Devaney, Editor, Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets (Cincinnati, Ohio, January 1994)

47 Ingrid Daubechies, Editor, Different perspectives on wavelets (San Antonio, Texas, January 1993)

46 Stefan A. Burr, Editor, The unreasonable effectiveness of number theory (Orono, Maine, August 1991)

45 De Witt L. Sumners, Editor, New scientific applications of geometry and topology (Baltimore, Maryland, January 1992)

44 Béla Bollobás, Editor, Probabilistic combinatorics and its applications (San Francisco, California, January 1991)

43 Richard K. Guy, Editor, Combinatorial games (Columbus, Ohio, August 1990)

42 C. Pomerance, Editor, Cryptology and computational number theory (Boulder, Colorado, August 1989)

41 R. W. Brockett, Editor, Robotics (Louisville, Kentucky, January 1990)

40 Charles R. Johnson, Editor, Matrix theory and applications (Phoenix, Arizona, January 1989)

39 Robert L. Devaney and Linda Keen, Editors, Chaos and fractals: The mathematics behind the computer graphics (Providence, Rhode Island, August 1988)

38 Juris Hartmanis, Editor, Computational complexity theory (Atlanta, Georgia, January 1988)

37 Henry J. Landau, Editor, Moments in mathematics (San Antonio, Texas, January 1987)

36 Carl de Boor, Editor, Approximation theory (New Orleans, Louisiana, January 1986)

35 Harry H. Panjer, Editor, Actuarial mathematics (Laramie, Wyoming, August 1985)

34 Michael Anshel and William Gewirtz, Editors, Mathematics of information processing (Louisville, Kentucky, January 1984)

33 H. Peyton Young, Editor, Fair allocation (Anaheim, California, January 1985)

32 R. W. McKelvey, Editor, Environmental and natural resource mathematics (Eugene, Oregon, August 1984)
TITLES IN THIS SERIES

31 B. Gopinath, Editor, Computer communications (Denver, Colorado, January 1983)
30 Simon A. Levin, Editor, Population biology (Albany, New York, August 1983)
28 R. Gnanadesikan, Editor, Statistical data analysis (Toronto, Ontario, August 1982)
27 L. A. Shepp, Editor, Computed tomography (Cincinnati, Ohio, January 1982)
26 S. A. Burr, Editor, The mathematics of networks (Pittsburgh, Pennsylvania, August 1981)
25 S. I. Gass, Editor, Operations research: mathematics and models (Duluth, Minnesota, August 1979)
24 W. F. Lucas, Editor, Game theory and its applications (Biloxi, Mississippi, January 1979)
23 R. V. Hogg, Editor, Modern statistics: Methods and applications (San Antonio, Texas, January 1980)
22 G. H. Golub and J. Oliker, Editors, Numerical analysis (Atlanta, Georgia, January 1978)
21 P. D. Lax, Editor, Mathematical aspects of production and distribution of energy (San Antonio, Texas, January 1976)
20 J. P. LaSalle, Editor, The influence of computing on mathematical research and education (University of Montana, August 1973)
19 J. T. Schwartz, Editor, Mathematical aspects of computer science (New York City, April 1966)
18 H. Grad, Editor, Magneto-fluid and plasma dynamics (New York City, April 1965)
17 R. Finn, Editor, Applications of nonlinear partial differential equations in mathematical physics (New York City, April 1964)
16 R. Bellman, Editor, Stochastic processes in mathematical physics and engineering (New York City, April 1963)
15 N. C. Metropolis, A. H. Taub, J. Todd, and C. B. Tompkins, Editors, Experimental arithmetic, high speed computing, and mathematics (Atlantic City and Chicago, April 1962)
14 R. Bellman, Editor, Mathematical problems in the biological sciences (New York City, April 1961)
13 R. Bellman, G. Birkhoff, and C. C. Lin, Editors, Hydrodynamic instability (New York City, April 1960)
12 R. Jakobson, Editor, Structure of language and its mathematical aspects (New York City, April 1960)
11 G. Birkhoff and E. P. Wigner, Editors, Nuclear reactor theory (New York City, April 1959)
10 R. Bellman and M. Hall, Jr., Editors, Combinatorial analysis (New York University, April 1957)
9 G. Birkhoff and R. E. Langer, Editors, Orbit theory (Columbia University, April 1958)
8 L. M. Graves, Editor, Calculus of variations and its applications (University of Chicago, April 1956)
7 L. A. MacColl, Editor, Applied probability (Polytechnic Institute of Brooklyn, April 1955)

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
In many respects, biology is the new frontier for applied mathematicians. This book demonstrates the important role mathematics plays in the study of some biological problems. It introduces mathematicians to the biological sciences and provides enough mathematics for bioscientists to appreciate the utility of the modelling approach. The book presents a number of diverse topics, such as neurophysiology, cell biology, immunology, and human genetics. It examines how research is done, what mathematics is used, what the outstanding questions are, and how to enter the field. Also given is a brief historical survey of each topic, putting current research into perspective. The book is suitable for mathematicians and biologists interested in mathematical methods in biology.