Proceedings of Symposia in Applied Mathematics

Volume 62

Public-Key Cryptography

American Mathematical Society Short Course January 13-14, 2003 Baltimore, Maryland

Paul Garrett
Daniel Lieman
Editors

AMS SHORT COURSE LECTURE NOTES
 Introductory Survey Lectures
 published as a subseries of
 Proceedings of Symposia in Applied Mathematics

Proceedings of Symposia in Applied Mathematics

Volume 62

Public-Key
 Cryptography

American Mathematical Society
Short Course
January 13-14, 2003
Baltimore, Maryland

Paul Garrett
Daniel Lieman
Editors

Editorial Board

Mary Pugh Lenya Ryzhik Eitan Tadmor (Chair)

LECTURE NOTES PREPARED FOR THE AMERICAN MATHEMATICAL SOCIETY SHORT COURSE PUBLIC-KEY CRYPTOGRAPHY HELD IN BALTIMORE, MARYLAND JANUARY 13-14, 2003

The AMS Short Course Series is sponsored by the Society's Program Committee for National Meetings. The series is under the direction of the Short Course Subcommittee of the Program Committee for National Meetings.

2000 Mathematics Subject Classification. Primary 54C40, 14E20, 14G50, 11G20, 11T71, $11 \mathrm{Yxx}, 94 \mathrm{Axx}, 46 \mathrm{E} 25,20 \mathrm{C} 20$.

Library of Congress Cataloging-in-Publication Data

Public-key cryptography / Paul Garrett, Daniel Lieman, editors.
p. cm. - (Proceedings of symposia in applied mathematics ; v. 62)

Papers from a conference held at the 2003 Baltimore meeting of the American Mathematical Society.

Includes bibliographical references and index.
ISBN 0-8218-3365-0 (alk. paper)

1. Computers-Access control-Congresses. 2. Public key cryptography-Congresses. I. Garrett, Paul, 1952- II. Lieman, Daniel, 1965- III. American Mathematical Society. IV. Series.

QA76.9.A25P82 2005
$005.8^{\prime} 2$ - dc 22
2005048178

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
(c) 2005 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles.

Printed in the United States of America.The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface vii
Cryptographic primitives
Paul Garrett 1
Cryptography in the real world today
Daniel Lieman 63
Public-key cryptography and proofs of security Nick Howgrave-Graham 73
Elliptic curves and cryptography
Joseph H. Silverman 91
Towards faster cryptosystems, I
William Whyte 113
Towards faster cryptosystems, II
William D. Banks 139
Playing "hide-and-seek" with numbers: the hidden number problem, lattices, and exponential sums
Igor E. Shparlinski 153
Index 179

Preface

For the Baltimore 2003 meeting of the A.M.S. Daniel Lieman organized an expository and tutorial conference on public-key cryptography for mathematicians. This volume is the collection of papers that grew out of that conference.

By contrast to a number of lower-level introductory texts aimed at undergraduates, and which therefore necessarily dilute discussion of specific cryptographic issues with discussion of elementary mathematics, the aim here was to provide a survey and introduction to public-key cryptography assuming considerable mathematical maturity and considerable general mathematical knowledge. Thus, we hoped to make clearer the cryptographic issues that fall outside the scope of standard or typical mathematics.

The papers are mostly expository, with the mathematical level of the exposition meant to be palatable to experienced mathematicians not already too much acquainted with this subject.

An important part of the context is the extra-mathematical aspect. That is, many motivations and crucial issues for genuine cryptography are difficult or impossible to understood purely in terms of formal algorithmic or other mathematical notions. (And the very validity of that last assertion is a subject of debate.) It is necessary to have some idea of the complications entailed by real-life implementations of cryptographic systems. In particular, and in considerable contrast to formal mathematics, we cannot assume that everyone plays by the rules. Further, indeed, by contrast to most mathematical and scientific research contexts wherein there is no antagonist other than a merely disinterested Nature, the presence of an active antagonist is a singular aspect of the practice of cryptography.

Some of the authors of the papers are academic mathematicians, some are professional cryptographers outside academe, and some have been in both situations. All the papers were reviewed for literal correctness and for aptness for our espoused purposes.

Paul Garrett

Index

"academic" constructions, 65
active attacker, 84
AddKey, 19
Adleman, 1
advantage of the algorithm, 80
AES, 16, 18
alphabet, 54
anagrams, 15
anonymity, 63,68
Arazi's cryptosystem, 170
Arithmetica key exchange, 35
Artin group, 36
asymmetric cipher, 1
Atlantic City algorithm, 10
atmospheric noise, 58
attacks, 171
authentication, 1, 37, 69
authenticity, 63
avalanche effect, 18
avoiding inversions, 132
Bell's theorem, 13
big primes, 26
big random primes, 27
binary symmetric channel, 55
binding an identity, 68
bit commitment schemes, 41
bit operations, 8
bit security, $79,169,171$
bit security problem, 153
blinded, 143
Blum, 53
Blum-Blum-Shub pRNG, 57
Blum integers, 4
braid group, 36
brute force attacks, 142
ByteSub, 19
canonical height, 103
Carmichael number, 21
CCA1-security, 86
CCA2-secure, 85
CCA2-security, 86
certifiable large primes, 41
certificate, 67
certificate chains, 68
channel, 55, 73
channel capacity, 56
character values HNP, 164
Chinese Remainder Theorem, 20
chord-and-tangent rule, 126
chosen ciphertext security, 84
chosen ciphertext security (CCA1), 85
ciphertext space, 74
class NP, 9
class P, 9
classical efficient algorithms, 75
closest vector problem (CVP), 164
cofactor multiplication, 123
coin flipping over the phone, 41
collision, 168
collision search, 107
common modulus, 5
complexity, 8
compression, 55
compression permutation, 17
computability, 9
computational Diffie--Hellman assumption, 76
computing roots, 5
confidentiality, 63
conjugacy problem, 36
continued fractions, 27, 47
Coppersmith's short pad attack, 7
coupon collector's test, 57
Coxeter groups, 36
CR-HNP, 163
Cramer-Shoup CCA2-secure encryption scheme, 85
cryptograms, 15
CryptoLib, 170
decay of radioactive isotopes, 58
decisional Diffie-Hellman assumption, 76
decryption, 74
decryption exponent, 3
decryption oracle, 76
decryption step, 4

Deligne, 159
Δ-homogeneously distributed modulo m, 157
DES, 16
deterministic pRNGs, 57
/dev/random, 58
/dev/urandom, 58
dictionary attack, 53, 67, 77
différential cryptanalysis, 17
difficulty of factoring, 6
Diffie-Hellman, 1, 114
Diffie-Hellman key exchange, $3,8,76,92$
Diffie-Hellman problem, 93
Diffie-Hellman secret key, 153
Digital Signature Scheme, 155
Digital Signature Standard, 38
Diophantine equation, 101
Dirichlet's Theorem, 24
discrepancy, 166
discrete logarithm, 3, 22, 82
discrete logarithm attacks, 147
discrete logarithm problem, 76, 91, 92, 114
discrete logs, 31
discriminant, 94
distillation, 57
Dixon's algorithm, 48
DSA, 116
E-box, 18
eavesdropper, 3
EC-HNP, 161
efficient, 74
Einstein-Podolsky-Rosen, 13
El Gamal, 83
electronic money, 41
electronic voting, 41
ElGamal ciphers, 31
ElGamal encryption, 115
ElGamal signature, 38
elliptic curve, 91, 93, 124
elliptic curve algorithms, 53
Elliptic Curve Discrete Logarithm
Problem, 94, 128
elliptic curve DSA, 157
elliptic curves in characteristic 2,105
Ellis-Cocks-Williamson, 1
encoding step, 4
encryption, 74
encryption exponent, 3
Enigma, 15
ENROOT, 139, 148
entropy, 53, 54
equidistribution, 57
equivalence, 3
Euclidean algorithm, 20
Euler totient function, 4
Euler's criterion, 22
Euler's theorem, 4, 21

Euler-Fermat trick, 43
exhaustive search, 107
expansion permutation, 18
exponential sums, 153,166
exponential time, 9
Extended Riemann Hypothesis, 25
factor base, 47
factoring, 5
factoring attacks, 1
factorization algorithms, 43
factorization attacks, 146
failure modes, 16
failure rate, 26
faking the key, 146
fast cryptosystems, 139
fast exponentiation, 6
Feistel network, 17
Fermat prime, 3
Fermat pseudoprime base, 21
Fermat's Little Theorem, 21
Fiege-Fiat-Shamir, 40
finite field, 94
Floyd's cycle-detection, 45
forward search attack, 7
futility of trial division, 22
Gaussian normal basis, 134
generic random squares, 47
generic-HNP, 154
genuine randomness, 58
GMP, 22
group law, 91
group law on an elliptic curve, 95
hard-core, 80
hard-core bit, 80
hash functions, 65, 66
hash-function, 167
Hasse, 104
Hastad's broadcast attack, 7
Hensel's lemma, 30
hidden Markov, 55
hidden number problem, 153
HNP, 154
HNP on elliptic curves, 161
HNP over unknown algebraic number fields, 162
"how hard is factoring?", 72
hybrid encryption, 83
identity, 64
i.i.d., 55
index, 22
index calculus, 117, 128
infeasibly large number, 76
information, 53
information leakage, 142
information rate, 56
information theory, 56
integrity, 63
introductory texts, 1
Jacobi symbol, 23
Katz, 159
key distribution, 16
key exchange, 1,36
key̆ generation, 6, 16, 74
key scheduling, 17
knapsack ciphers, 31
knapsack problem, 31
knapsack vector, 32
Koblitz curves, 106
Kolmogoroff complexity, 11
large multiples of a point, 100
Las Vegas algorithm, 10
lattice attacks, 143, 147
lattice basis reduction, 156, 164
lattice basis reduction algorithms, 153
lattice problems, 139
lattices, 164
lava lamps, 58
LCGs, 12
leakage of information, 6
Legendre symbol, 22
Lehmer, 42
Lehmer's continued fraction factorization attack, 7
Lenstra, 164
LFSRs, 12
linear complexity, 12
linear congruential generators, 13
linear cryptanalysis, 17
linear feedback shift register, 12
Linux, 59
LLL, Lenstra-Lenstra-Lovasz algorithm, 33
Lovász, 164
low-level tests, 56
LUC cryptosystems, 155
Lucas, 42
Lucifer, 16
malleability, 142
Markov, 55
Mazur, 102
Merkle, 1
message (or plaintext) space, 74
Miller-Rabin, 3, 25
Miller-Rabin strong pseudoprime test, 6
Miller-Rabin test base b, 26
MixColumn, 19
models, 74
Monte Carlo algorithm, 10
multiple anagramming, 15
multiple transmission attacks, 142
mutual-authentication, 69

Naor, 53
Néron, 103
no-biased, 10
non-malleability, 84
non-repudiation, 63
nonce, 167
NP-complete, 9
NP-hard, 9
nth convergent, 27
NTRU, 33, 139
NTRU Public Key Cryptosystem, 139
number field sieve, 53
Nyberg-Rueppel, 155
OAEP, 143
Occam's razor, 75
1024-bit RSA, 141
one-time pads, 16
one-way function, $76,78,148$
optimal extension fields, 134
oracle, $9,40,75$
OTA, 64
padding, 6
padding schemes, 77, 78
Paillier's scheme, 81
partial disclosure, 7
patents, 124
Perl, 59
permutation ciphers, 15
Pocklington, 42
point at infinity, 94, 127
poker test, 57
Pollard's algorithms, 118
Pollard's $p-1,45$
Pollard's rho, 6, 44, 119
Pollard's ρ method, 108
Polya, 166
polyalphabetic ciphers, 15
polynomial HNP, 161
polynomial-time algorithms, 8
primality certificate, 41
primality testing, 1
Prime Number Theorem, 24
primitive roots, 22
principal square root, 40
privacy, 63
private key, 4,65
private-key cipher, 1
pRNG, 57
probabilistic algorithms, 10
probable primes, 25
program (-length) complexity, 11
protocol sketches, 37
pseudoprimes, 25
pseudorandom bits, 164
pseudorandom generators, 171
pseudorandom number generators, 170
public key, 4, 65
public key infrastructure, 87
public key space, 74
public-key cipher, 1
public-key infrastructure (PKI), 68
purification, 57
Purple, 15
quadratic reciprocity, 22
quadratic sieve, 47, 49
quadratic symbol, 22
quantum algorithm, 7
quantum algorithms, 13, 161, 162, 172
quantum channels, 13
quantum computers, 7, 76
quantum particles, 76
quantum teleportation, 13
Rabin, 3, 25
random bits, 3
random numbers, 4
random oracle (model), 76
random oracle model, 76,86
random primes, 4
randomness, 53
rank, 102
reduction, 3
reductionist view, 75
redundancy, 55
Reingold, 53
RFID security, 71
Riemann Hypothesis, 24
Rijndael, 16, 18
Rivest-Shamir-Adleman, 1
rounds, 17
RSA, 1, 3
RSA cryptosystem, 76
RSA decryption, 22
RSA moduli, 4
RSA modulus, 3
S-boxes, 18
secret key space, 74
secret-sharing schemes, 38
Secure Sockets Layer, 68
security failure, 64
security primitives, 65
semantic security, 7,79
serial test, 57
server-only authentication, 69
set-up, 3
SHA-1, 86
Shamir, 40
Shamir message passing scheme, 157
Shamir's trick, 131
Shannon's noiseless coding, 55
Shannon's noisy coding theorem, 56
shared secret, 8
ShiftRow, 19
Shor's algorithm, 14

Shub, 53
side channel attacks, 87
Siegel, 103
sieving, 50
sign, 66
signature, 1, 37, 66
small decryption exponent attack, 7
small public exponent attacks, 7
small subgroup attacks, 130
small subgroups, 119
smooth, 45,47
Solovay-Strassen test, 25
source, 54
sparse polynomial interpolation, 162
SPIFI, 139
SPIFI identification scheme, 143
spoofing, 64
square roots modulo primes, 28
square-and-multiply, 6, 21
SSL, 68
statistical randomness, 56
strong modular multiplication, 33
strong pseudoprime base $b, 26$
subexponential algorithms, 10
subexponential sieve methods, 6
subexponential time algorithm, 108
subkey, 17
substitution boxes, 18
substitution cipher, 15
Sun-Ze, 20
superincreasing, 32
symmetric cipher, 1,14
\mathcal{T}-Approx-HNP, 158
\mathcal{T}-CTP-HNP, 159
\mathcal{T}-HNP, 156
Tate, 103
Tate pairing, 109
τ-sparse, 144
testing, 162
thresh-hold schemes, 38
timed-release crypto, 158
timing, power attacks, 7
timing/power attacks, 170
TLS, 68
torsion subgroup, 102
trace of Frobenius, 105
Transport Layer Security, 68
trapdoor, 3
trapdoor one-way function, 76
trial division runtimes, 22
tripartite Diffie-Hellman, 110
trust, 68
Turing machines, 73
Vernam cipher, 16
Vigenère cyphers, 15
Vinogradov, 166
Vinogradov method, 157

Waring problem, 153
Weil bound, 157, 164
word, 35
word problem, 36
XTR, 155
yes-biased, 10
zero-knowledge proofs, 39

