Applications of Knot Theory

American Mathematical Society
Short Course
January 4–5, 2008
San Diego, California

Dorothy Buck
Erica Flapan
Editors
AMS SHORT COURSE LECTURE NOTES
Introductory Survey Lectures
published as a subseries of
Proceedings of Symposia in Applied Mathematics
Proceedings of Symposia in Applied Mathematics

Volume 66

Applications of Knot Theory

American Mathematical Society
Short Course
January 4–5, 2008
San Diego, California

Dorothy Buck
Erica Flapan
Editors
Applications of knot theory : AMS Short Course Applications of Knot Theory, January 4–5, 2008, San Diego, California / Dorothy Buck, Erica Flapan, editors.

p. cm.—(Proceedings of symposia in applied mathematics ; v. 66)
Includes bibliographical references and index.
ISBN 978-0-8218-4466-3 (alk. paper)
QA612.2.A465 2008
514’.224–dc22 2008044393

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2009 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
Contents

Preface vii

A Brief Introduction to Knot Theory from the Physical Point of View
 COLIN ADAMS 1

Topological Chirality and Symmetries of Non-rigid Molecules
 ERICA FLAPAN 21

DNA Topology
 DOROTHY BUCK 47

Knots and Physics
 LOUIS H. KAUFFMAN 81

Synthetic Single-Stranded DNA Topology
 NADRIAN C. SEEMAN 121

Long Tangled Filaments
 JONATHAN SIMON 155

Index 183
Preface

The original motivation for understanding and classifying knots was due to Lord Kelvin who theorized in the 1880s that atoms were knotted or linked vortex rings in the “ether”, and that different elements were determined by the knot or link type of the vortex ring. By the early 1900s, Kelvin’s theory had been proven wrong. However topologists continued to study the knot theory as an area of pure mathematics. Over the past 20-30 years, knot theory has rekindled its historic ties with biology, chemistry, and physics as a means of creating more sophisticated descriptions of the entanglements and properties of natural phenomena—from strings to organic compounds to DNA.

For example, DNA knots and links have been implicated in a number of cellular processes since their discovery in the late 1960s. In particular, they have been found during replication and recombination, and as the products of protein actions, notably with topoisomerases, recombinases, and transposases. The variety of DNA knots and links observed makes biologically separating and distinguishing these molecules a critical issue. While DNA knots and links can be visualized via electron microscopy, this process can be both difficult and time-consuming. So topological methods of characterizing and predicting their behavior can be helpful.

Chemists have been interested in molecular chirality since Pasteur first described it in 1848. For example, since the two mirror forms of the same molecule can interact with a host’s metabolism very differently, predicting whether or not a molecule will be chiral is important to pharmaceutical companies as they develop new medications. While the geometry of a rigid molecule determines whether or not it is chiral, for flexible or even partially flexible molecules, knot theory can play a role in determining chirality.

In addition to the examples described above, there are many other deep interactions between knot theory and various areas of scientific investigation. The 2008 AMS Short Course Applications of Knot Theory, on which this volume is based, was intended to introduce the area of applied knot theory to a broad mathematical audience. The aim of the Short Course and this volume, while not covering all aspects of applied knot theory, is to provide the reader with a mathematical appetizer, in order to stimulate the mathematical appetite for further study of this exciting field.

No prior knowledge of topology, biology, chemistry, or physics is assumed. In particular, the first three chapters of this volume introduce the reader to knot theory (by Colin Adams), topological chirality and molecular symmetry (by Erica Flapan), and DNA topology (by Dorothy Buck). The second half of this volume is focused on three particular applications of knot theory. Lou Kauffman presents a chapter on applications of knot theory to physics, Ned Seeman presents a chapter
on how topology is used in DNA nanotechnology, and Jon Simon presents a chapter on the statistical and energetic properties of knots and their relation to molecular biology. The articles and their authors are described in more detail below.

Description of articles and their authors

Chapter 1: A Brief Introduction to Knot Theory from the Physical Point of View by Colin Adams

This article introduces the mathematical theory of knots, including Reidemeister moves, surfaces, types of knots, and various invariants associated to knots, including the new superinvariants. It also touches on the stick number for knots and its implications for chemistry.

Colin Adams is the Thomas T. Read Professor of Mathematics at Williams College. He authored the now-standard undergraduate knot theory text, “The Knot Book”, and is renowned for his witty and deceptively sophisticated introductory geometry and topology talks. His own research focuses on hyperbolic knots and 3-manifolds. He has involved numerous undergraduates in annual summer research projects at Williams. He is a recipient of the Deborah and Franklin Tepper Haimo Distinguished Teaching Award from the MAA, and has been selected as a Polya Lecturer for the MAA as well as a Sigma Xi Distinguished Lecturer.

Chapter 2: Topological Chirality and Symmetries of Non-rigid Molecules by Erica Flapan

This article explains the concept of chirality and why it is important, and discusses the differences between chemical, geometric, topological, and intrinsic chirality. It then introduces four different techniques to show that a molecule is topologically chiral. The article concludes by presenting different approaches to classifying molecular symmetries. In particular, it compares the point group to the topological symmetry group, and explains how the topological symmetry group can be used to analyze the symmetries of non-rigid molecules.

Erica Flapan is the Lingurn H. Burkhead Professor of Mathematics at Pomona College. Her research is in knot theory, 3-dimensional topology, and applications of topology to chemistry and biology. Her book “When Topology Meets Chemistry”, is jointly published by the Mathematical Association of America and Cambridge University Press. From 2000 to 2004, she was the principal investigator on an NSF-CCLI grant entitled “Enhancing the mathematical understanding of students in chemistry”. As part of this grant, she developed a course entitled “Problem Solving in the Sciences”, to help students with weak math skills succeed in general chemistry, and together with Daniel O’Leary (an organic chemist), she developed an interdisciplinary upper division course entitled “Symmetry and Chirality”.

Chapter 3: DNA Topology by Dorothy Buck

This article introduces DNA, and explains the contributions of knot theory to its study. In particular, it explores the topological techniques used to understand both DNA itself, and how it interacts with proteins in the cell. As an extended example, it gives an overview of the tangle model and its variations to understand
the molecular process of site-specific recombination. It also discusses various mathematical contributions to several open questions involving DNA, including how a protein can effectively unknot DNA.

Dorothy Buck is a Mathematical Biologist at Imperial College, London in the Department of Mathematics and Centre for Bioinformatics. She specializes in 3-manifold topology and its applications to mathematical biology. Her training is in both mathematics and microbiology. She spent six years working in molecular biology labs at the University of Texas at Austin and Johns Hopkins Medical School. Before joining the faculty at Imperial, she was an NSF Postdoctoral Fellow with Craig Benham at the Genome Center at the University of California at Davis, and an Assistant Professor in the Applied Mathematics Department at Brown University.

Chapter 4: Knots and Physics by Louis H. Kauffman
Knots are mathematical abstractions of the topological properties of rope in physical space. As such, there are immediate relationships of knots with the physics of ropes, weaves, long-chain molecules and other knotting phenomena in nature. There are also beautiful and surprising relationships of knot theory with the structures and methods of statistical mechanics and quantum theory. This article surveys some of the author’s favorite interactions between knots and physics.

Louis Kauffman is Professor of Mathematics at University of Illinois-Chicago. He authored the interdisciplinary text “Knots and Physics”. He discovered the bracket polynomial state model for the Jones polynomial, and the first direct relationship between statistical mechanics models and knot invariants. As a topologist, he is omnivorous, working in knot theory and its relationships with statistical mechanics, quantum theory, algebra, combinatorics, and more recently, biology. He is the Editor of the Journal of Knot Theory and its Ramifications.

Chapter 5: Synthetic Single-Stranded DNA Topology by Nadrian C. Seeman
The double helical nature of the DNA molecule has a wide variety of topological implications. Most biologists are familiar with the notion that circular DNA molecules are catenanes/links, so that the strands are linked about once every 10 nucleotides. Consequently, biological systems contain topoisomerases which change the linking topology of the molecule, thereby solving a variety of problems in the metabolism of the genetic material. Today, the realm of DNA extends beyond its biological role as a molecule with an unbranched helix axis. Branched DNA molecules exist as intermediates in genetic recombination, but for 25 years synthetic branched DNA molecules have been built for a variety of purposes that are important for nanotechnology and for molecular computation. The ability to assemble branched DNA backbones has enabled the deliberate construction of single-stranded knots, polyhedral catenanes and Borromean rings. New branched DNA motifs have been derived by using techniques from knot theory. Branched DNA molecules have enabled the deliberate construction of periodic and aperiodic DNA crystals. The applications of these systems include analysis of biological systems, nanoelectronics and nanorobotics.
This article presents the features of synthetic DNA topology, from the design of branched, knotted and linked motifs, to the construction of objects, arrays and devices.

Ned Seeman is the Margaret and Herman Sokol Professor of Chemistry at New York University. He founded the field of structural DNA nanotechnology. His lab has characterized the interactions of synthetic DNA knots with topoisomerases, developed a general algorithm for the construction of any DNA knot, synthesized a DNA molecule that can be built to yield four different topological species, and discovered an RNA topoisomerase. For his innovation, he was awarded the Feynman Prize in Nanotechnology, the Emerging Technology Award from Discover Magazine and elected Fellow of the Royal Society of Chemistry. He is the Founding President of the International Society for Nanoscale Science, Computation and Engineering. Most impressively, in 2008 he was awarded the Nichols Medal from the American Chemical Society.

Chapter 6: Long Tangled Filaments by Jonathan Simon
This article considers filaments, from rope and string and hair to DNA and proteins, anything that might be understood as one-dimensional strands wiggling and tangling in three-dimensional space.

If the filaments are short, we can try to describe their exact geometric shape and understand how their shape relates to physical behavior. If the filaments are somewhat long and flexible, then topological knot type can be very useful, as evidenced by the success of topological methods for studying the actions of DNA enzymes. But if the filaments are very long (think of a complicated 3-dimensional scribble) or somehow random (think of a lot of complicated 3-dimensional scribbles) then it may be impractical to try to describe the exact shapes or even knot types. We need to develop a vocabulary of ideas and models that describe physically important geometric/topological properties of long tangled things.

This article presents ideas, experiments, and theorems dealing with packing, curvature, tangling, and knotting of individual complicated filaments as well as statistical ensembles. It explores some of the work that has been done, some open research problems, and some topics that seem well-suited for undergraduate research activities.

Jon Simon is Professor of Mathematics at the University of Iowa. He pioneered the rigorous applications of knot theory to chemistry, in particular by proving the topological chirality of molecular Möbius ladders. He co-developed the idea of Möbius energy of thick knots. His current research also includes particular knotting and tangling of filaments; “energy” of knots; and applications to molecular biology, in particular, knotted DNA loops.

Acknowledgements

We wish to thank the AMS staff, particularly—Wayne Drady, Edward Dunne, Christine Thivierge, and Luann Cole—for their assistance in preparing both the Short Course and this volume.

Dorothy Buck, Erica Flapan
This page intentionally left blank
Index

(2, m)-torus knot or link, 51
K_5, 37
$K_{3,3}$, 37
$T(2, m)$, 51
W_r, 52
α_0, 55
λ Int, 65
σ, specific linking difference, 53
\bar{T}, 70
2-fold branched covers, 32
4-plat, 69
4-plats, 59
accessory proteins, 64
Adenine, 48
agarose gel electrophoresis, 61
Alexander theorem, 85
alternating knots, 7, 11
ambient isotopy, 83
antibiotics, 57
antijunction, 131
anyons, 118
Artin Braid Group, 84
atomic force microscopy, 133
automorphism group of Γ, 41
automorphism of a graph, 36
average crossing number (ACN), 9,
159–162, 171–178
B-DNA, 122
B-Z transition, 135
base-stacking, 124
Berge, John, 60
Bleiler, S., 69
Bohr, Niels, 94
Borromean rings, 84, 122
bounds for ropelength, 169
bounds on tangling (ACN), 176, 177
bracket polynomial, 14, 85, 87
braid, 84
braid index, 7, 18
branched junctions, 123
bridge index, 5
bridge number, 170
Buck, D., 65, 73
Buck, G., 58
Călugăreanu, G., 50
catenanes, 50, 122
chemical symmetry group, 43
chemically achiral, 25
chemically chiral, 25
Chern-Simons action, 105
compaction, 166, 171, 177
complete bipartite graph on two sets of
three vertices, 37
complete graph on five vertices, 37
composite knot, 3
composition, 3, 5, 6, 12, 15
conformation, 2
connection, 107
connectivity, 124
constant curvature, 168
Conway, J.H., 68
Cozzarelli, N.R., 68
Cre, 65
Crick, Francis, 48
Crisona, N.J., 72
crossing index, 2, 17, 18
crossing number, 170, 174, 175
crossing sphere, 9, 16
crossover sites, 63
crossovers, 126
cube, 128
curvature, 51, 164, 166, 168, 170
Cytosine, 48
Darcy, Isabel, K., 60
DeBroglie, 94, 95, 96
Einstein, 96
Dennis, M.R., 53
Deoxyribonucleic Acid, 48
design, 124
distance between two vertices, 37
distributive recombination, 64
DNA, 48, 121, 157, 166, 172
gyrase, 57
origami, 139
replication, 56
topology, 47
double cohesion, 133
double helix, 48
DX molecules, 126
edge number, 167, 168
electron microscopy, 60
electrophoretic migration, 60
embedded four-term relation, 90
energy function, 8
enhancer sequences, 64
epsilon tensor, 109
equivalent tangles, 68
Ernst, C., 68
Euclidean rubber glove, 28
exchange identity, 88
exchange identity for Vassiliev invariants, 89
ferrocenophane, 38
Feynman path integral, 98
Feynman path integral formulation of quantum mechanics, 99
figure-8 knot, 130
finite type \(k\), 89
Flapan, E., 65
Flp, 65
flypes, 12
for random packing, 160
four term relation from categorical Lie algebra, 92
four term relation from topology, 91
Franklin, Rosalind, 48
free energy, 54
Frenet framing, 51
Fuller, F. B., 50
functional derivatives, 103
gate segment, 58
gauge field \(A(x)\), 107
Gauss, 174
Gauss integral, 176
Gauss' integral, 51
Gaussian integrals, 99
genus \(g\), 59
genuinely achiral, 26
genuinely chiral, 26
globular (packing), 160, 161, 175, 176
 glueball, 118
Gordian distance, 58
Guanine, 48

hairpins, 132
Hannay, J. H., 53
Heegaard splitting, 73
Heegaard-Floer knot homology, 59
helicity, 124
histones, 54
Holliday junction, 64, 123
HOMFLY polynomial, 65
Hopf algebras, 87
ideal configuration, 62
integration without integration, 101, 114
intrinsically chiral, 40
invariant, 3
invertases, 64
isometries, 41
Jacobi identity, 91, 92
Jones polynomial, 31, 65, 85, 87
Kanenobu, T., 59
Kauffman polynomial, 14
Kelvin, Lord, 47
knot, 2, 82
knot invariant, 83
knot ladder, 62
knot polynomials, 31
knot type, 2
KnotPlot, 159, 162, 173, 177
knots, 122
knots and physics, 81
knots, braids and bracket polynomial, 82
knotted glueballs, 118
Kohn, P., 59
Kontsevich, 89
Kronheimer, P., 74
Kuhn length, 166
Kuhn statistical segment, 165

laminar (packing), 160, 161, 175, 176
 length, 156, 157, 159, 160, 162–164,
166–168, 171, 175–177
Lie algebra, 93
Lie algebra weights, 93
linear (packing), 160, 161, 175, 176
linking number, 12, 50, 51, 174
links, 122
locally knotted tangle, 68
loop quantum gravity, 115
loop transform \(\psi(K)\), 115
loop transform and quantum gravity, 114
lungfish, 54
MCN, 61
mesojunction, 131
minimal crossing number, 61
minimum crossing number, 158, 173
Möbius transformations, 168
molecular Möbius ladder, 22, 41
momentum as an operator, 97
Montesinos knot or link, 69
Mrowka, T., 74
Murakami, H., 59
N-connected, 124
nanomechanical devices, 122
INDEX

networks, 124
non-randomness, 175
nucleotides, 48
numerator closure, 69
occlusion, 171, 172
opacity, 171, 172
order of an automorphism, 37
Ozsváth, P., 59, 74
packing density, 160, 166
parallel translation, 107
partition function, 87
pentose sugar, 49
persistence length, 165
plectonemic supercoiling, 53
Pohl, William F., 53
point group, 41
polarity, 126
polymer, 157, 159, 166, 172
polymers, 161, 162, 165
Potts model, 87
prime knot, 3
prime tangle, 68
probability, 95
processive recombination, 64
products, 60
projection, 2
protein, 172
protein shape descriptors, 159
proteins, 56, 160
PX molecule, 126
PX-JX2 device, 137, 143
quantization of Einstein gravity, 114
quantum groups, 87
quantum mechanics, 94
quark-antiquark string, 118
random closed polygons, 162
random filament systems, 178
random filaments, 172
random polygons, 163, 177
random polymers, 177
random systems, 172, 175
random tangles, 177
random walk, 165
random walks, 161, 162
randomly generated polygons, 162
Rasmussen, J.A., 59
rational knot, 69
rational tangle, 68
reciprocal exchange, 125
recombinase complex B, 63
recombination, 50
reduced, 11
regular projections, 2
regularly isotopic, 85
Reidemeister moves, 12, 83
replication, 50
restriction endonuclease, 128
rigid symmetries, 41
rope length, 8
rope length, 164, 168–170, 175
scaffolds, 127
scale, 159
scales for filamentary structures, 157
scales of filament size, 157
Schrödinger’s equation, 97
Schrödinger’s equation and the Feynman
path integral, 94
Schubert, H., 65, 70
Seifert circle sphere, 18
Seifert circles, 8
sequence assignment, 124
serine recombinases, 64
Serret-Frenet equations, 52
set strands, 137
Simmons-Paquette molecule, 39, 41, 42
site-specific recombinases, 63
site-specific recombination, 63
solenoidal supercoiling, 53
solid support, 128
spatial packing regime, 175
spatial packing regimes, 159, 160
specific linking difference, 53
Stasiak, A., 60
state summation, 86
stereoisomers, 40
stick figures, 124
stick index, 9, 17
stick polyhedra, 122
sticky-end, 123
strand passage distance, 58
strand switch, 129
string theory, 118
structural DNA nanotechnology, 123
structure of DNA, 48
substrate, 64
Sumners, D.W., 60, 68
superbraid index, 18
superbridge index, 15
superkissing index, 17
superunknotting index, 18
Switchback DNA, 135
symmetry groups, 44
synaptic complex, 64
Szabó, Z., 59, 74
Tait, Peter Guthrie, 47
tangle T, 68
tangle model, 68
tangle sum, 69
tangle surgery, 73
tangling, 159, 160
tangling complexity, 161, 170, 172
tertiary structure, DNA, 50
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thickness</td>
<td>160, 163, 164, 170</td>
</tr>
<tr>
<td>thickness radius</td>
<td>164</td>
</tr>
<tr>
<td>Thymine</td>
<td>48</td>
</tr>
<tr>
<td>Tn3 resolvase</td>
<td>64</td>
</tr>
<tr>
<td>topoisomerase</td>
<td>130, 157</td>
</tr>
<tr>
<td>topoisomerases</td>
<td>56</td>
</tr>
<tr>
<td>Type I</td>
<td>56</td>
</tr>
<tr>
<td>Type II</td>
<td>56, 57</td>
</tr>
<tr>
<td>topoisomers</td>
<td>55</td>
</tr>
<tr>
<td>topological ball</td>
<td>63</td>
</tr>
<tr>
<td>topological enzymology</td>
<td>60, 157</td>
</tr>
<tr>
<td>topological protection</td>
<td>133</td>
</tr>
<tr>
<td>topological quantum field theory</td>
<td>117</td>
</tr>
<tr>
<td>topological rubber glove</td>
<td>28</td>
</tr>
<tr>
<td>topological simplification</td>
<td>58</td>
</tr>
<tr>
<td>topological symmetry group</td>
<td>42</td>
</tr>
<tr>
<td>topologically achiral</td>
<td>30</td>
</tr>
<tr>
<td>topologically chiral</td>
<td>30</td>
</tr>
<tr>
<td>Torisu, I.</td>
<td>60</td>
</tr>
<tr>
<td>torus knot</td>
<td>10</td>
</tr>
<tr>
<td>torus knots</td>
<td>15</td>
</tr>
<tr>
<td>total curvature</td>
<td>16, 164, 165, 168, 170, 171, 175, 177</td>
</tr>
<tr>
<td>transported segment</td>
<td>58</td>
</tr>
<tr>
<td>trefoil knot</td>
<td>130</td>
</tr>
<tr>
<td>triple layered naphthalenophane</td>
<td>34</td>
</tr>
<tr>
<td>truncated octahedron</td>
<td>128</td>
</tr>
<tr>
<td>twist, 50, 52</td>
<td></td>
</tr>
<tr>
<td>two-bridge knots</td>
<td>7</td>
</tr>
<tr>
<td>tyrosine recombinases</td>
<td>64</td>
</tr>
<tr>
<td>unknotting index</td>
<td>5</td>
</tr>
<tr>
<td>unknotting sphere</td>
<td>18</td>
</tr>
<tr>
<td>valence of a vertex</td>
<td>37</td>
</tr>
<tr>
<td>variation of the Chern-Simons action S</td>
<td>109</td>
</tr>
<tr>
<td>variation of the Wilson loop</td>
<td>106</td>
</tr>
<tr>
<td>Vassiliev invariants and invariants of rigid vertex graphs</td>
<td>88</td>
</tr>
<tr>
<td>Vassiliev invariants from the Jones polynomial</td>
<td>94</td>
</tr>
<tr>
<td>Verjovsky, Marcotte</td>
<td>73</td>
</tr>
<tr>
<td>Vinograd</td>
<td>50</td>
</tr>
<tr>
<td>Vologodskii, A.V.</td>
<td>58</td>
</tr>
<tr>
<td>Wasserman, S.A.</td>
<td>68</td>
</tr>
<tr>
<td>Watson, James</td>
<td>48</td>
</tr>
<tr>
<td>Watson-Crick base pairing</td>
<td>124</td>
</tr>
<tr>
<td>wave packet</td>
<td>96</td>
</tr>
<tr>
<td>Weber, Claude</td>
<td>52, 53</td>
</tr>
<tr>
<td>weight system</td>
<td>93</td>
</tr>
<tr>
<td>White, J.H.</td>
<td>50</td>
</tr>
<tr>
<td>Wilson loop</td>
<td>106</td>
</tr>
<tr>
<td>Wilson loop mechanics</td>
<td>107</td>
</tr>
<tr>
<td>Witten’s functional integral</td>
<td>88, 89, 105</td>
</tr>
<tr>
<td>writhe, 14, 50, 52, 174</td>
<td></td>
</tr>
<tr>
<td>XerCD</td>
<td>65</td>
</tr>
<tr>
<td>Yang-Baxter equation</td>
<td>87, 117</td>
</tr>
<tr>
<td>Z-DNA</td>
<td>122</td>
</tr>
<tr>
<td>Zeichiedrich, L.</td>
<td>58</td>
</tr>
</tbody>
</table>
Titles in This Series

66 Dorothy Buck and Erica Flapan, Editors, Applications of knot theory (San Diego, California, January 2008)
65 L. L. Bonilla, A. Carpio, J. M. Vega, and S. Venakides, Editors, Recent advances in nonlinear partial differential equations and applications (Toledo, Spain, June 2006)
64 Reinhard C. Laubenbacher, Editor, Modeling and simulation of biological networks (San Antonio, Texas, January 2006)
63 Gestur Ólafsson and Eric Todd Quinto, Editors, The radon transform, inverse problems, and tomography (Atlanta, Georgia, January 2005)
62 Paul Garrett and Daniel Lieman, Editors, Public-key cryptography (Baltimore, Maryland, January 2003)
60 Susan G. Williams, Editor, Symbolic dynamics and its applications (San Diego, California, January 2002)
59 James Sneyd, Editor, An introduction to mathematical modeling in physiology, cell biology, and immunology (New Orleans, Louisiana, January 2001)
58 Samuel J. Lomonaco, Jr., Editor, Quantum computation: A grand mathematical challenge for the twenty-first century and the millennium (Washington, DC, January 2000)
57 David C. Heath and Glen Swindle, Editors, Introduction to mathematical finance (San Diego, California, January 1997)
56 Jane Cronin and Robert E. O’Malley, Jr., Editors, Analyzing multiscale phenomena using singular perturbation methods (Baltimore, Maryland, January 1998)
55 Frederick Hoffman, Editor, Mathematical aspects of artificial intelligence (Orlando, Florida, January 1996)
54 Renato Spigler and Stephanos Venakides, Editors, Recent advances in partial differential equations (Venice, Italy, June 1996)
53 David A. Cox and Bernd Sturmfels, Editors, Applications of computational algebraic geometry (San Diego, California, January 1997)
51 Louis H. Kauffman, Editor, The interface of knots and physics (San Francisco, California, January 1995)
50 Robert Calderbank, Editor, Different aspects of coding theory (San Francisco, California, January 1995)
49 Robert L. Devaney, Editor, Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets (Cincinnati, Ohio, January 1994)
47 Ingrid Daubechies, Editor, Different perspectives on wavelets (San Antonio, Texas, January 1993)
46 Stefan A. Burr, Editor, The unreasonable effectiveness of number theory (Orono, Maine, August 1991)
45 De Witt L. Sumners, Editor, New scientific applications of geometry and topology (Baltimore, Maryland, January 1992)
44 Béla Bollobás, Editor, Probabilistic combinatorics and its applications (San Francisco, California, January 1991)
43 Richard K. Guy, Editor, Combinatorial games (Columbus, Ohio, August 1990)
42 C. Pomerance, Editor, Cryptology and computational number theory (Boulder, Colorado, August 1989)
41 R. W. Brockett, Editor, Robotics (Louisville, Kentucky, January 1990)
TITLES IN THIS SERIES

40 Charles R. Johnson, Editor, Matrix theory and applications (Phoenix, Arizona, January 1989)
39 Robert L. Devaney and Linda Keen, Editors, Chaos and fractals: The mathematics behind the computer graphics (Providence, Rhode Island, August 1988)
38 Juris Hartmanis, Editor, Computational complexity theory (Atlanta, Georgia, January 1988)
37 Henry J. Landau, Editor, Moments in mathematics (San Antonio, Texas, January 1987)
36 Carl de Boor, Editor, Approximation theory (New Orleans, Louisiana, January 1986)
35 Harry H. Panjer, Editor, Actuarial mathematics (Laramie, Wyoming, August 1985)
34 Michael Anshel and William Gewirtz, Editors, Mathematics of information processing (Louisville, Kentucky, January 1984)
33 H. Peyton Young, Editor, Fair allocation (Anaheim, California, January 1985)
32 R. W. McKelvey, Editor, Environmental and natural resource mathematics (Eugene, Oregon, August 1984)
31 B. Gopinath, Editor, Computer communications (Denver, Colorado, January 1983)
30 Simon A. Levin, Editor, Population biology (Albany, New York, August 1983)
28 R. Gnanadesikan, Editor, Statistical data analysis (Toronto, Ontario, August 1982)
27 L. A. Shepp, Editor, Computed tomography (Cincinnati, Ohio, January 1982)
26 S. A. Burr, Editor, The mathematics of networks (Pittsburgh, Pennsylvania, August 1981)
25 S. I. Gass, Editor, Operations research: mathematics and models (Duluth, Minnesota, August 1979)
24 W. F. Lucas, Editor, Game theory and its applications (Biloxi, Mississippi, January 1979)
23 R. V. Hogg, Editor, Modern statistics: Methods and applications (San Antonio, Texas, January 1980)
22 G. H. Golub and J. Oliger, Editors, Numerical analysis (Atlanta, Georgia, January 1978)
21 P. D. Lax, Editor, Mathematical aspects of production and distribution of energy (San Antonio, Texas, January 1976)
20 J. P. LaSalle, Editor, The influence of computing on mathematical research and education (University of Montana, August 1973)
19 J. T. Schwartz, Editor, Mathematical aspects of computer science (New York City, April 1966)
18 H. Grad, Editor, Magneto-fluid and plasma dynamics (New York City, April 1965)
17 R. Finn, Editor, Applications of nonlinear partial differential equations in mathematical physics (New York City, April 1964)
16 R. Bellman, Editor, Stochastic processes in mathematical physics and engineering (New York City, April 1963)
15 N. C. Metropolis, A. H. Taub, J. Todd, and C. B. Tompkins, Editors, Experimental arithmetic, high speed computing, and mathematics (Atlantic City and Chicago, April 1962)

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.