PROCEEDINGS OF

SYMPOSIA IN PURE MATHEMATICS

Volume II

LATTICE THEORY

PROCEEDINGS OF THE
 SECOND SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY

Held at the U.S. Naval Postgraduate School
Monterey, California
April 16-18, 1959

WITH the financlal support of the
NATIONAL SCIENCE FOUNDATION
R. P. Dilworth

EDITOR

PROCEEDINGS OF
 SYMPOSIA IN PURE MATHEMATICS

VOLUME II

LATTICE THEORY

AMERICAN MATHEMATICAL SOCIETY
190 hope street, providence, rhode island

Library of Congress Catalog Number 50-1183

Prepared by the American Mathematical Society under Grant No. NSF-G8292 with the National Science Foundation

Copyright © 1960 by the American Mathematical Society. Printed in the United States of America. All rights reserved except those granted to the United States Government. Otherwise, this book, or parts thereof, may not be reproduced in any form without permission of the publishers.

CONTENTS

Preface vii
PART I. LATTICE STRUCTURE THEORY
Structure and decomposition theory of lattices 3
By R. P. Dilworth
Status of word problems for lattices 17
By P. M. Whitman
Generalized partitions and lattice embedding theorems 22
By Juris Hartmanis
Sublattices of free lattices 31
By R. A. Dean
Prime ideal characterization of generalized Post algebras 43
By C. C. Chang and Alfred Horn
PART II. COMPLEMENTED MODULAR LATTICES
Complemented modular lattices 51
By Israel Halperin
Extensions of von Neumann's coordinatization theorem 65
By B. Jónsson
Coordinates in non-Desarguesian complemented modular lattices 71
By K. D. Fryer
The normal completion of a complemented modular point lattice 78
By J. E. McLaughlin
PART III. BOOLEAN ALGEBRAS
Cylindric algebras83By Leon Henkin and Alfred Tarski
Injective and projective Boolean algebras 114
By P. R. Halmos
Cardinal and ordinal multiplication of relation types 123
By C. C. Chang
Some questions about complete Boolean algebras 129
By R. S. Pierce
Retracts in Boolean algebras 141
By Philip Dwinger
PART IV. APPLICATIONS OF LATTICE THEORY
Lattices in applied mathematics 155
By Garrett Birkhoff
On the lattice of normal subgroups of a group 185
By Marshall Hall, Jr.
Locally compact topological lattices 195By L. W. Anderson
Function lattices 198
By F. W. Anderson
Index 205

PREFACE

This volume contains the papers presented at the Symposium on Partially Ordered Sets and Lattice Theory held in conjunction with the Monterey meeting of the American Mathematical Society in April 1959. The Symposium was sponsored by the American Mathematical Society and supported by a grant from the National Science Foundation. The interest and support of these organizations is gratefully acknowledged.

Some twenty-one years earlier, on April 15, 1938, the first general symposium on lattice theory was held in Charlottesville in conjunction with a regular meeting of the American Mathematical Society. The three principal addresses on that occasion were entitled: Lattices and their Applications, On the Application of Structure Theory to Groups, and The Representation of Boolean Algebras. It is interesting to observe that the first and last of these titles appear again as section titles for the present Symposium. Furthermore the second title is still of current interest as evidenced by the paper of Marshall Hall. Nevertheless there have been major changes in emphasis and interest during the intervening years and thus some general comments concerning the present state of the subject and its relationship to other areas of mathematics appear to be appropriate.

The theory of groups provided much of the motivation and many of the technical ideas in the early development of lattice theory. Indeed it was the hope of many of the early researchers that lattice-theoretic methods would lead to the solution of some of the important problems in group theory. Two decades later, it seems to be a fair judgment that, while this hope has not been realized, lattice theory has provided a useful framework for the formulation of certain topics in the theory of groups (for example, generalizations of the Jordan-Hölder theorem) and has produced some interesting and difficult group-theoretic problems (cf. the excellent monograph of M. Suzuki). On the other hand, the fundamental problems of lattice theory have, for the most part, not come from this source but have arisen from attempts to answer intrinsically natural questions concerning lattices and partially ordered sets; namely, questions concerning the decompositions, representations, imbedding, and free structure, of such systems. It should be pointed out that group theory and other areas of mathematics have furnished concepts and methods which have proved to be useful in the study of these questions. Thus the techniques associated with the study of composition series and chief series in group have been successfully applied to the structure of modular and semi-modular lattices. Set topology and ring theory have been the source of many fruitful ideas in the study of Boolean algebras. Also the theory of linear vector spaces and projective
geometries have contributed some of the basic methods for the development of the theory of complemented modular lattices and, in particular, continuous geometries. Nevertheless, as the study of these basic questions has progressed, there has come into being a sizable body of technical ideas and methods which are peculiarly lattice-theoretic in nature. These conceptual tools are intimately related to the underlying order relation and are particularly appropriate for the study of general lattice structure.

At the 1938 Symposium, lattice theory was described as a "vigorous and promising younger brother of group theory". In the intervening years it has developed into a full-fledged member of the algebraic family with an extensive body of knowledge and a collection of exciting problems all of its own. Such outstanding problems as the construction of a set of structure invariants for certain classes of Boolean algebras, the characterization of the lattice of congruence relations of a lattice, the imbedding of finite lattices in finite partitions lattices, the word problem for free modular lattices, and the construction of a dimension theory for continuous, non-complemented, modular lattices, have an intrinsic interest independent of the problems associated with other algebraic systems. Furthermore, these and other current problems are sufficiently difficult that imaginative and ingenious methods will be required in their solutions. A vigorous group of mathematicians are attacking these problems and the results of some recent progress may be found in the papers included in this volume.

R. P. Dilworth

California Institute of Technology

INDEX

Abstract (L)-space, 174, 180
Addition
cardinal, 123
ordinal, 123
square, 123
Algebra
α-dimensional cylindric, 97
α-dimensional quantifier, 97
Baer, 76
cylindric, 83
cylindric set - of dimension α, 100
$f-167$
free, 94, 116
generalized Post, 44
l-, 167
of formulas, 84, 86
Post, 43
projective, 111
quantifier, 83
quotient, 90
relation, 111
relativized cylindric set, 104
special cylindric, 87
special cylindric set, 92
special quantifier, 87
Algebra, Boolean, 10, 23, 25, 83, 85, 114, 174
cardinal property of, 130
complete, 114
countable, 117
free, 19
homogeneous, 129
K-, 200
Algebraic, 59
α-complete retract, 141, 144
α-dimensional cylindric algebra, 97
α-dimensional quantifier algebra, 97
Alternative ring, 58
Arguesian, 65
Arithmetical class, 96
Ascending
chain condition, 9
continuity, 51
Atomistic $\mathbf{C A}_{\alpha}, 100$
Atoms, 55
Automorphism, 60

Averaging
ergodic, 172
operators, 163, 165
Axiomatizability, finite, 96, 107
Baer
algebra, 76
non-Desarguesian complemented modular lattices, 75
Base, 92, 100
Basis, 66
homogeneous, 57
homogeneous -_ of order n, 71
Bernstein (See Cantor)
Boolean algebra, 10, 23, 25, 83, 85, 114, 174
cardinal property of, 130
complete, 114
countable, 117
free, 19
homogeneous, 129
K-, 200
$\mathbf{C A}_{\boldsymbol{\alpha}}$
atomistic, 100
dimensionally complemented, 98
ideal J in, 99
locally finite dimensional, 98
representable, 100
Calculus
predicate, 85
predicate - with α variables, 105
sentential, 83
Cancellation problem
for cardinal multiplication, 127
for ordinal multiplication, 125
Canonical forms, 32
Cantor-Bernstein problems
for cardinal multiplication, 126
for ordinal multiplication, 127
Cardinal
addition, 123
factorization, 124
property of Boolean algebras, 130
relation, 123
type, 124

Cardinal multiplication, 123
cancellation problem for, 127
Cantor-Bernstein problems for, 126
square root problem for, 127
Cartesian number system, 76
Center, 52
Central
cover, 55
decomposition, 55
Chain
separating, 200
weakly separating n-, 199
Chain condition, 51
ascending, 9
Close, 24
Compact, 11
Compactly generated, 11-12
Comparability theorem, 54-55
Complemented, 51
dimensionally ——— $\mathbf{C A}_{\alpha}, 98$
Complemented modular lattices
Baer non-Desarguesian, 75
Desarguesian, 71
Moufang non-Desarguesian, 72
normal completion of, 78
Complete
Boolean algebra, 114
lattice, 51
retract, 141, 145
Completely free
lattice, 18, 32
sublattices, 32
Completeness theorem, 107
for predicate calculus, 94
Congruence relations, 3, 90
permuting, 5
Connected, 123
Continuity
ascending, 51
descending, 51
Continuous
geometry, 51
lattice operations, 51
lattices of - functions, 201
part, 55
ring, 59
Convex, locally, 195
Coordinatization
procedure, 58
theorem, 57
Countable Boolean algebras, 117
Criticality, 178

Cylindric algebras, 83
α-dimensional, 97
special, 87
Cylindric field, 92, 100
of subsets, 92
Cylindric set algebra
of dimension $\alpha, 100$
relativized, 104
special, 92
Cylindrification, 88
parallel to the k th axis, 92
Decision problem, 19, 96, 107
Decompositions
central, 55
irredundant, 6
replaceable, 12
Desargues, Theorem of, 185
Desarguesian complemented modular lattices, 71
Baer non-, 75
Moufang non-, 72
Descending continuity, 51
Detachment, 84, 86
Diagonal
element, 88
set, 92
Dimension
function, 55-56
set, 89,98
Dimensionally complemented $\mathbf{C A}_{\boldsymbol{\alpha}}, 98$
Direct
product, 118
union, 4
Discrete part, 55
Distributive
free -_ lattices, 19
locally, 9
quotients, 192
Domain, 123
Dual ideal, 9
Elementary class, 96
universal, 101
Embedded, 26
neatly, 100, 102
Embedding, 22
neat, 99
theorems, 26
Equational class, 96, 105
Equidimensionality, 54
Equivalence relations, 54
lattices of, 22

Ergodic
averaging, 172
quasi- - hypothesis, 173
theorem, 173
Extension, 115
f-algebra, 167
Factor, 51
factorization
cardinal, 124
ordinal, 125
Field, 123
cylindric, 92, 100
cylindric ——of subsets, 92
Finite
axiomatizability, 96
dimensional lattice, 7
locally _ dimensional $\mathbf{C A}_{\alpha}, 98$
Finitely generated subalgebra, 101
Finiteness, 54
Frame, normalized, 71
Free
algebra, 94, 116
Boolean algebra, 19
completely —— sublattices, 32
sum, 118
Free lattice, 17
completely, 18, 32
distributive, 19
modular, 18, 190
on n generators, 31

Generalized
partitions, 22
Post algebra, 44
regular ring, 67
Geometric lattice, 185
Geometries
lattice of, 22, 24
lattice of all, 22
Geometry, 22-23
continuous, 51
projective, 28-29, 51
Group modular lattice, 191

Hilbert space, 51
Homogeneous, 66
basis, 57
basis of order $n, 71$
Boolean algebras, 129
Homomorphic images, 90, 104
Homomorphisms, 26, 29

Ideal
dual, 9
in an SCA, 91
J in a $\mathbf{C A} A_{\alpha}, 99$
principal right, 57
R-, 168
Idempotent, R-, 168
Importance function, 183
Indecomposable
directly, 90
subdirectly, 90
Independence, 52
Independent
residually, 53
strongly, 53
Injective, 115
retract, 115
Irreducible, 6, 51
completely, 6
$r-, 11$
subdirectly, 4
Irredundant decompositions, 6
Isomorphism, 123
Isotone operators, 164
K-Boolean algebras, 200
K-function lattice, 199
l-algebra, 167
(L)-space, abstract, 174, 180

Lattice, 22
complete, 51
continuous -_ operations, 51
finite dimensional, 7
geometric, 185
group modular, 191
identity, 58
K-function, 199
non-modular, 161
normal completion of complemented modular, 78
of all geometries, 22
of continuous functions, 201
of equivalence relations, 22
of geometries, 22,24
of subspaces, 23-24, 26, 28-29
orthocomplemented modular, 156
semi-modular, 161
skew, 19
symmetric orthocomplemented, 161
topological, 195
word, 32

Lattice, free, 17
completely, 18, 32
distributive, 19
modular, 18, 190
on n generators, 31
Lattices, Desarguesian complemented modular, 71
Baer non-, 75
Moufang non-, 72
Lifting, 115
Linear operator, primitive, 180
Locally
convex, 195
distributive, 9
finite dimensional $\mathbf{C A}_{\alpha}, 98$
modular, 9
projective, 67
Markoff
Hypothesis of, 175
processes, 174
Matrix, primitive, 179
Metric
completion, 60
projective, 181
Model, 94, 106
Modular, 51
locally, 9
pair, 56
Modular lattice
free, 18, 190
group, 191
non-, 161
orthocomplemented, 156
semi-, 161
Modular lattices, complemented
Baer non-Desarguesian, 75
Desarguesian, 71
Moufang non-Desarguesian, 72
normal completion of, 78
Moufang non-Desarguesian complemented modular lattices, 72
Multiplication, cardinal, 123
cancellation problems for, 127
Cantor-Bernstein problems for, 126
square root problem for, 127
Multiplication, ordinal, 123
cancellation problems for, 125
Cantor - Bernstein problems for, 127
square root problem for, 126
Multiplicative processes, 178, 180
n-chain, weakly separating, 199
Non-modular lattice, 161
Normalized frame, 71
Number system, cartesian, 76
Numerical dimension function, 54
Observables, 157
Operators
averaging, 163, 165
isotone, 164
primitive linear, 180
regular Reynolds, 169
Reynolds, 165
transition, 178
Order, 66
type, 124
Ordered relation, 123
Ordinal
addition, 123
factorization, 125
Ordinal multiplication, 123
cancellation problems for, 125
Cantor-Bernstein problems for, 127
square root problem for, 126
Ore's theorem, 15
Orthocomplemented, 53
modular lattice, 156
symmetric - lattice, 161
Partitions, 22
generalized, 22
of type $n, 23$
superposing, 56
Permuting congruence relations, 5
Perspective, 53
Perspectivity, transitivity of, 53
Positive, uniformly, 180
Post algebra, 43 generalized, 44
Predicate calculus, 85
completeness theorem, 94
with α variables, 105
Predictions, 157
Primitive
linear operator, 180
matrix, 179
Principal right ideals, 57
Product
direct, 118
subdirect, 98
Projective, 53, 115
algebras, 111
geometry, 28-29, 51

Projective continued
locally, 67
metric, 181
retract, 115
spaces, 56
Quantification, universal, 86
Quantifier algebras, 83
α-dimensional, 97
special, 87
Quantum
logic, 156
mechanical, 61
Quasi-Ergodic Hypothesis, 173
Quotient
algebras, 90
distributive, 192
R-ideal, 168
R-idempotent, 168
r-irreducible, 14
Range, 123
Rank, 59
Recursive, 96
Reduct, 99
finite, 99
Reflexive relations, 123
Regular Reynolds operators, 169
Regular ring, 57, 65
generalized, 67
Related, 24
Relation
algebras, 111
cardinal, 123
ordered, 123
reflexive, 123
square, 123
type of, 123
Relativized cylindric set algebras, 104
Replaceable decompositions, 12
Replacement property, 7
Representable $\mathbf{C A}_{\boldsymbol{\alpha}}, 100$
Representation, subdirect, 56
Representation theorem for BA's, 93
Representation theorem for SCA's, 93 first, 95
second, 95
Retract, 114
α-complete, 141, 144
complete, 141, 145
injective, 115
projective, 115
Reynolds operators, 165
regular, 169

Right ideals, principal, 57
Ring
alternative, 58
continuous, 59
regular, 57, 65
regular generalized, 67
Semantical systems, 106
Semiatomic, 13
Semimodular, 8, 10
lattice, 161
Sentential calculus, 83
Separating chain, 200
Separating n-chain, weakly, 199
Set algebra
cylindric - of dimension $\alpha, 100$
relativized cylindric, 104
special cylindric, 92
Simple, 90, 100
Simultaneous substitution, 109
for individual variables, 86-87
Skew lattice, 19
Spaces, projective, 56
Spectral subspaces, 162
Square
addition, 123
relation, 123
type, 124
Square root problem
for cardinal multiplication, 127
for ordinal multiplication, 126
States, 157
Subalgebra, 90
finitely generated, 101
Subdirect
product, 98
representation, 56
union, 4, 198
Subdirectly irreducible, 5
Sublattices, completely free, 32
Subsets, cylindric field of, 92
Subspaces, 23
lattice of, 23-24, 26, 28-29
Superposing partitions, 56
Symmetric orthocomplemented lattice, 161
Syntactical systems, 106
Transcendental, purely, 59
Transition
operators, 178
probabilities, 61
Transitive, 56
Transitivity of perspectivity, 53

Type

cardinal, 124
of a relation, 123
order, 124
square, 124
Uniformly positive, 180
Union
direct, 4
subdirect, 4, 198

Unit, 59
set, 92
Universal
elementary class, 101
quantification, 86
Weakly separating n-chain, 199
Word problems, 17

