Convexity
Convexity

Victor L. Klee, Editor

AMERICAN MATHEMATICAL SOCIETY
PROVIDENCE, RHODE ISLAND
CONTENTS

Preface .. vii

Introduction .. ix

On systems of linear inequalities in Hermitian matrix variables 1

By Richard Bellman and Ky Fan

Minimum area of a set of constant width 13

By A. S. Besicovitch

On semicircles inscribed into sets of constant width 15

By A. S. Besicovitch

A cage to hold a unit-sphere 19

By A. S. Besicovitch

On singular points of convex surfaces 21

By A. S. Besicovitch

On the set of directions of linear segments on a convex surface 24

By A. S. Besicovitch

The support functionals of a convex set. 27

By Errett Bishop and R. R. Phelps

Topological classification of convex sets 37

By Harry Corson and Victor Klee

An upper bound for the number of equal nonoverlapping spheres
that can touch another of the same size 53

By H. S. M. Coxeter

Rotundity ... 73

By D. F. Cudia

A characterization of the circle 99

By Ludwig W. Danzer

Helly's theorem and its relatives 101

By Ludwig Danzer, Branko Grünbaum and Victor Klee

An extremal problem for plane convex curves 181

By Chandler Davis

Notions generalizing convexity for functions defined on
spaces of matrices .. 187

By Chandler Davis

Some near-sphericity results 203

By Aryeh Dvoretzky

On the Krein-Milman theorem 211

By Ky Fan

On Lipschitzian mappings of convex bodies 221

By David Gale

Neighborly and cyclic polytopes 225

By David Gale

Measures of symmetry for convex sets 233

By Branko Grünbaum
Borsuk's problem and related questions .. 271
 By Branko Grünbaum
On polyhedral graphs .. 285
 By Branko Grünbaum and Theodore S. Motzkin
Convex curves of constant Minkowski breadth 291
 By Preston C. Hammer
Semispaces and the topology of convexity .. 305
 By Preston C. Hammer
On simple linear programming problems ... 317
 By A. J. Hoffman
Total positivity and convexity preserving transformations 329
 By Samuel Karlin
Infinite-dimensional intersection theorems .. 349
 By Victor Klee
Endovectors ... 361
 By T. S. Motzkin
Representation of points of a set as linear combinations of
 boundary points ... 389
 By T. S. Motzkin and E. G. Straus
Support cones and their generalizations .. 393
 By R. R. Phelps
Convex spaces associated with a family of linear inequalities 403
 By H. Poritsky
A combinatorial lemma on the existence of convex means
 and its application to weak compactness ... 437
 By Vlastimil Pták
Convex cones and spectral theory .. 451
 By Helmut H. Schaefer
The dual cone and Helly type theorems .. 473
 By F. A. Valentine
Unsolved Problems .. 495
Index of Unsolved Problems ... 500
Appendix .. 501
Author Index .. 503
Subject Index .. 509
PREFACE

Of the thirty-two papers in this volume, seventeen were presented at the Symposium on Convexity and the others were submitted later. (Symposium speakers were Besicovitch, Coxeter, Danzer, Davis, Day, Dvoretzky, Fan, Gale, Grünbaum, Hammer, Hoffman, Karlin, Klee, Motzkin, Phelps, Pták, Schaefer, and Valentine.) The thirty-third "paper" included here is a report on unsolved problems, based on the Symposium's session devoted to them, on informal discussions during the Symposium, and on later communications from the participants.

The papers are arranged alphabetically by author, since this seems most convenient for reference purposes. Interrelationships of the various papers, and their relation to the theory as a whole, are discussed in the Introduction. Since some of the individual bibliographies were so long and in such a state of flux, a common list of references did not seem feasible. However, the Author Index (in conjunction with the individual bibliographies) should be a fair substitute for such a list, and also makes it easy to learn which of the thirty-three papers cite the work of a given author. There are also a Subject Index and an Index of Unsolved Problems.

The editor is indebted to Professors Gale and Grünbaum for their assistance in planning the Symposium, to Dr. Pták and Professors Besicovitch, Coxeter, Day, Fan, and Motzkin for presiding at Symposium sessions, and to Dr. Danzer and Professors Besicovitch, Corson, Firey, Grünbaum, McMinn, and Motzkin for refereeing some of the papers. In particular, the advice and assistance of Branko Grünbaum have been invaluable.

The details of publication have been capably handled by Miss Ellen Swanson, Head of the American Mathematical Society's Editorial Department.

Victor Klee
INTRODUCTION

The systematic study of convex sets was initiated by H. Brunn and H. Minkowski. For most of the important notions in the field, at least a germ can be found in the latter’s collected works (1911). Not only does the theory of convexity play a central role in Minkowski’s geometry of numbers, but it also shares some of the nontechnical aspects of elementary number theory. Its basic notions are simple, natural, and of strong intuitive appeal. The subject is primarily one of ideas rather than machinery, and does not lend itself readily to unified treatment. It abounds in attractive special problems, and many mathematicians working mainly in other fields have published one or two papers on convexity. These aspects have accounted for the rapid but disorganized growth of the theory.

The 1934 survey by T. Bonnesen and W. Fenchel was an excellent summary of a large body of material, and is still a standard source of information in the field. Though selective in coverage, they cited more than 450 references; a current survey of the same degree of completeness would be a tremendous undertaking, probably not feasible. More than half of their book emphasized various quantitative notions such as diameter, area, volume and mixed volumes. Since 1934 these same notions have continued to play an important role. However, more striking (since less predictable) has been the intensive development of several qualitative aspects of the theory, including the combinatorial geometry associated with intersection and covering properties, the refinement and application (especially in functional analysis and game theory) of such notions as extremal structure and separation properties, the study of convexity in infinite-dimensional spaces, increasing use of convexity as a descriptive tool, and the evolution of various analogues and generalizations of convexity.

Though several quantitative investigations are included here, the Symposium was intended primarily to emphasize the more qualitative aspects of the theory. In particular, the five aspects listed above are all represented in the present volume. Among the unavoidable omissions, two are especially regretted by the editor. There is nothing here about the geometry of convex surfaces and the associated development of metric methods in differential geometry, carried out by A. D. Aleksandrov and his students in the Soviet Union and in this country by H. Busemann. Also omitted are the important results on infinite-dimensional simplexes, boundaries and extremal structure which have been developed in the past few years by G. Choquet and others.

In addition to the wide range of topics treated here, there is much variety of approach. Some of the shorter papers treat a single problem in full detail, while at the other extreme are several long papers which include very few proofs but survey broad areas in the field of convexity.

* * * * * * * * * * * *

Four of the papers are set in the Euclidean plane E^2. BESICOVITCH’s first paper gives a short proof of the known fact that a set of given constant width
INTRODUCTION

has minimum area when it is a Reuleaux triangle. His second paper solves affirmatively a special case of the following problem: Must a set of constant width \(w \) contain a semicircle of diameter \(w \)? **DANZER** gives a short proof of the known result that if \(C \) is a closed convex curve in \(E^2 \) which does not contain exactly three vertices of any rectangle, then \(C \) is a circle. In his first paper, **DAVIS** characterizes rectangles by means of an extremal area property involving inscribed crosses and also discusses a related conjecture of Ungar on extremal perimeters.

HAMMER's first paper is set in an arbitrary Minkowski plane where by the use of outwardly simple line families he is able to give an analytic representation for all convex curves of constant Minkowski width. He also summarizes his earlier work on diametral lines and associated convex bodies.

BESICOVITCH's third paper discusses Coxeter's problem of finding the smallest cage (edges of a convex polyhedron) which will hold a unit-sphere in \(E^3 \) without permitting it to escape. His other two papers give new proofs of known results concerning smoothness properties of a convex body \(K \) in \(E^3 \) and concerning directions of line segments in the boundary of \(K \). In **GALE's** first paper he uses the Borsuk-Ulam mapping theorem (involving antipodal points) to prove that if a convex body of width \(w' \) in \(E^* \) is obtained from one of width \(w \) by means of a homeomorphism which decreases distances, then \(w' \leq w \).

COXETER proposes an exact upper bound for the number of equal non-overlapping spheres in \(E^n \) that can touch another of the same size. The difficulty of this problem is indicated by the following quotation: "...Can a rigid material sphere be brought into contact with 13 other such spheres of the same size? Gregory said 'Yes' and Newton said 'No', but 180 years were to elapse before a conclusive answer was given." His historical survey of the problem in \(E^n \) extends from a paper by Kepler in 1611 to the latest published works. The problem is treated as the case \(\phi = \pi/6 \) of the problem of packing \((n-2)\)-spheres of angular radius \(\phi \) on an \((n-1)\)-sphere, and the proposed upper bound is attained when the \((n-2)\)-spheres are inscribed in the cells of a regular polytope \(\{p,3,\ldots,3\} \). Though the bound is not fully established, much supporting evidence is given. Some related material is also discussed, such as the growth of the number of spheres as \(n \rightarrow \infty \) and the known results for other values of \(\phi \).

PORITSKY treats a system of linear inequalities of the form \(x_1f_1(\theta) + \cdots + x_nf_n(\theta) \leq g(\theta) \), where \(g \) and the \(f_i \)'s are real analytic functions of the real variable \(\theta \) ranging over a bounded or unbounded interval \(I \). He studies the convex region consisting of all points \(x = (x_1, \ldots, x_n) \in E^n \) which satisfy the given system of inequalities (for all \(\theta \in I \)), and is especially concerned with describing the region's boundary in terms of the envelope curve \(C \) and its tangent and osculating flats of various dimensions, where \(C \) is the set of all points \(x \) such that for some \(\theta \in I \), \(\sum_{i=1}^nx_if_i^{(j)}(\theta) = g^{(j)}(\theta) \) for \(0 \leq j \leq n - 1 \) (\(^{(j)} \) indicating the \(j \)th derivative).

DVORETZKY reviews his earlier results on near-sphericity in \(E^n \), one of which asserts that for each \(\varepsilon \in]0,1[\) and each positive integer \(k \) there exists \(N(k,\varepsilon) \) such that every convex body of dimension \(\geq N(k,\varepsilon) \) admits a \(k \)-dimen-
sional section which is spherical to within \(\varepsilon \). He derives new corollaries, including some on orthogonal projections, and discusses some open problems.

Two papers treat the facial structure of convex polyhedra. GALE's second paper is concerned with cyclic polytopes in \(\mathbb{R}^{2m} \), these being convex polyhedra which are combinatorially equivalent to the convex hull of an \(n \)-pointed subset of the moment curve \(\{(t, t^3, \cdots, t^{2m}) : t \in R\} \). They have the remarkable property of being \(m \)-neighborly in the sense that each \(m \) vertices determine a face. He computes the number of \((2m - 1) \)-dimensional faces of such a polytope and this is conjectured to be the maximum attained for convex polyhedra in \(\mathbb{R}^{2m} \) which have \(n \) vertices. Certain neighborly polytopes are proved to be cyclic, and regular cyclic polytopes are constructed in \(\mathbb{E}^{2m} \).

GRUNBAUM AND MOTZKIN call an abstract graph \(k \)-polyhedral provided it is isomorphic with the graph formed by the edges and vertices of a \(k \)-dimensional convex polyhedron. They prove that each \(k \)-polyhedral graph contains as subgraph a refinement of \(C_{k+1} \), the complete graph with \(k + 1 \) nodes. As Gage's result shows, the graph \(C_{k+1} \) is \(j \)-polyhedral whenever \(4 \leq j \leq k \); however, this and other sorts of ambiguity are excluded for graphs which are \(2 \)-polyhedral or \(3 \)-polyhedral.

VALENTINE deals mainly with known results on the intersection properties of convex sets. He obtains refinements and new proofs for many of these, his aim being to show what can be accomplished by systematic exploitation of dual cones. His viewpoint is well expressed by the following quotation: ‘‘... since it is a rare coincidence for the proofs of a theorem and its dual to be of equal difficulty, there is a double reason to investigate the dual. One may gain either a simpler proof or a less obvious theorem.’’

Five of the papers are expository surveys of a sort which should be valuable in any field, and especially in the field of convexity where so many results have been rediscovered so many times and where there are so many elementary unsolved problems. Though including few proofs or none at all, they give rather complete descriptions of known results and existing literature in their respective areas. Some of them include new results as well, and most of them discuss many unsolved problems. Since the papers are themselves summaries, it is hardly feasible to summarize them here, but it may be helpful to list their section headings.

GRUNBAUM, Borsuk's problem and related questions — reductions of the problem; partial solutions; universal covers; other results on partitions; coverings by translates; finite sets; related problems.

GRUNBAUM, Measures of symmetry for convex sets — distance-functions for spaces of convex sets; invariant points and sets; a property of some measures of symmetry; general methods for geometric definitions of measures of symmetry; known results on special measures of symmetry; some extremal problems which possibly lead to measures of symmetry; an interesting functional; some generalizations.

DANZER, GRUNBAUM AND KLEE, Helly's theorem and its relatives — proofs of Helly's theorem; applications of Helly's theorem; the theorems of Carathéodory and Radon; generalizations of Helly's theorems; common transversals; some covering problems; intersection theorems for special families;
other intersection theorems; generalized convexity. (The last section makes little contact with the others. It contains a rather complete survey of existing generalizations of the notion of convex set.)

KLEE, Infinite-dimensional intersection theorems — intersection theorems for infinite families (also in \mathbb{R}^n); intersection theorems involving the weak topology; intersection properties of metric cells.

CUDIA, Rotundity — rotundity and smoothness properties; comparison of properties; product spaces, quotient spaces, and subspaces; duality; geometry and reflexivity.

Like those of Cudia and Klee, the papers by **BISHOP AND PHELPS** and by **PHELPS** are concerned with the geometry of infinite-dimensional convex sets. The principal result of Bishop and Phelps is that if C is a closed convex subset of a Banach space, then the support points of C are dense in the boundary of C. They show also that for each bounded closed convex subset C of a Banach space E, the members of the conjugate space E^* which attain their maximum on C are dense in E^* (norm topology). Several other interesting results are obtained by the same methods. The paper by Phelps treats some of the more technical points which arise when the space is not normable. In particular, he uses supporting cones to give a new proof of the existence of relative extreme points, where a convex cone K with vertex x is said to support the convex set C provided $C \cap K = \{x\}$.

CORSON AND KLEE show that the topological classification problem for closed convex bodies in a normed linear space E can be reduced to that for E’s unit cell and its closed linear subspaces of finite deficiency. For all \mathbb{R}^s-dimensional spaces as well as for a wide variety of infinite-dimensional Banach spaces, the problem is solved by proving that all closed convex bodies in E are homeomorphic with E itself. The main tool is the fact that certain spaces are homeomorphic with their positive cones. Also obtained are some results on uniformly continuous transformations of convex sets.

The remaining papers are not so directly concerned with convex sets as such, though in each case some sort of convexity is essential either in the paper itself or for its motivation. Both Karlin and Davis deal with convex functions. For real intervals X and Y, **KARLIN** considers the functional transformation T carrying a real function f on Y into the function $g = Tf$ on X given by the formula $g(x) = \int_Y K(x, y)f(y)dy$, the kernel K being a bounded measurable function on the rectangle $X \times Y$. He is especially interested in conditions on K which insure that g is convex whenever f is bounded and convex; a similar problem for monotone functions is also considered.

The conditions obtained involve the total positivity or sign-regularity of K, where K is said to be sign-regular of order r provided there exists a sequence of numbers (ε_m), each either $+1$ or -1, such that whenever $x_1 < x_2 < \cdots < x_m$, $y_1 < y_2 < \cdots < y_m$, $x_i \in X$, $y_j \in Y$, and $1 \leq m \leq r$, then $\varepsilon_m K(x_1, \ldots, x_m; y_1, \ldots, y_m) \geq 0$, where the expression $K(\cdots, \cdots)$ is the determinant of the matrix which has $K(x_i, y_i)$ in the ith row and the jth column; K is totally positive of order r provided this condition holds with all the ε_m’s equal to $+1$. Inter-relation-
ships among various classes of kernels are studied, and many examples are given.

In his second paper, DAVIS studies various classes of real-valued convex functions (of one or several real variables) where for each class the defining condition involves the class H_n of $n \times n$ (real) symmetric matrices. For example, if f is a function of one real variable and the matrix $A \in H_n$ has spectral representation $A = \sum \lambda_i P_i$, it is customary to write $f(A) = \sum \lambda_i f(\lambda_i) P_i$. In this way f can be regarded as a function on H_n to H_n. The function f is called matrix-convex provided $f((1 - \lambda)A + \lambda B) \leq (1 - \lambda)f(A) + \lambda f(B)$ for all $\lambda \in [0, 1]$ and $A, B \in H_n$, where the ordering is that induced in H_n by agreeing that a member of H_n is non-negative if and only if it is positive semidefinite. The matrix-convex functions form a proper subclass of the ordinary convex functions and are closely related to the matrix-monotone functions of Loewner. The paper is devoted to an exposition of Loewner's theory along with related ideas for several variables due to Korányi, Sherman, and Davis himself.

In addition to the paper of Poritsky mentioned earlier, two other papers are included here because of the close connections between convex sets and linear inequalities. BELLMAN AND FAN study systems of linear inequalities in which the variables are Hermitian matrices and the ordering is defined as in the paper of Davis just mentioned. They find consistency conditions for various systems of inequalities, the conditions being quite analogous to those in the classical situation except that in each case the consistency of an auxiliary system must be assumed. Also included are several interesting examples, as well as results on the minimum and maximum of the traces of certain matrices related to the systems in question.

HOFFMAN supplies a unified approach to some linear programming problems which are amenable to "obvious" solutions. His guide is the observation by Monge that if unit quantities are to be transported from points X and Y to points Z and W (not necessarily respectively) so as to minimize the total distance traveled, then the two routes cannot intersect. He defines a Monge sequence to be an ordering of the set $\{(i, j) : 1 \leq i \leq m, 1 \leq j \leq n\}$ and introduces the notion of such a sequence being consonant with a given $m \times n$ matrix. An algorithm is given whereby a solution for the transportation problem associated with a given matrix can be derived from a Monge sequence consonant with the matrix. The warehouse problem of Cahn is transformed into one to which this algorithm is applied and many other problems are mentioned to which the same idea is applicable.

The many new notions in MOTZKIN's paper are treated in 79 theorems distributed among 50 sections. The paper is concisely written and can hardly be summarized here, but we shall describe its basic idea. Let R be a (not necessarily commutative) ring with unit 1 and let V be a left module over R. Let \hat{R} be the set of all finite sequences $\lambda = (\lambda_1, \cdots, \lambda_k)$ of members of R. When $S \subset V$, the vector λ is said to be an endovector of S, or S is said to be endo-λ, provided S includes the point $\sum_{i=1}^{k} \lambda_i s_i$ for every choice of $s_1, \cdots, s_k \in S$. For $A \subset R$, S is said to be endo-A provided S is endo-λ for each $\lambda \in A$. Since the family of all endo-A sets in V is intersectional, the A-hull of S is defined
as the smallest endo-\mathcal{A} set which contains S. The set \mathcal{A} is said to be complete provided for some S, \mathcal{A} is the set of all endovectors of S. These and related notions are studied in some detail, where of course the most important cases are those in which R is the real field and the condition $(\lambda_1, \ldots, \lambda_n) \in \mathcal{A}$ is equivalent to one of the following: (i) $\lambda \in \tilde{R}$; (ii) $\sum \lambda_i = 1$; (iii) $\lambda_i \geq 0$; (iv) $\sum \lambda_i = 1$ and $\lambda_i \geq 0$. The corresponding endo-\mathcal{A} sets are the linear subspaces (O-flats), the affine subspaces (flats), the positive cones (convex cones with vertex O), and the convex sets.

MOTZKIN AND STRAUSS are concerned with representing the points of a set as linear combinations of boundary points. Their principal result asserts that if $a_1 + \cdots + a_n = 1$ and $\sum_{i \neq j} |a_i| \geq |a_j|$ for $1 \leq j \leq n$, then for very general sets S it is true that each point of S can be represented in the form $p = \sum a_i x_i$ for points x_i of the outer boundary of S.

PTAK presents a unified treatment of several important results on weak compactness, all of which are shown to follow from a combinatorial lemma which gives conditions for the existence of certain convex means. For an infinite set S, let $M(S)$ denote the set of all functions λ on S to $[0, \infty[$ for which the set $N(\lambda)$ is finite and $\sum_{s \in S} \lambda(s) = 1$, where $N(\lambda) = \{s \in S : \lambda(s) > 0\}$.

Let \mathcal{H} be a family of subsets of S, and for $\varepsilon > 0$ and $H \subset S$ let $M(H, \mathcal{H}, \varepsilon)$ denote the set of all $\lambda \in M(S)$ such that $N(\lambda) \subset H$ and $\sum_{w \in W} \lambda(w) < \varepsilon$ for all $W \in \mathcal{H}$. The lemma asserts the equivalence of the following two conditions: (1) $M(H, \mathcal{H}, \varepsilon) = \emptyset$ for some infinite $H \subset S$ and some $\varepsilon > 0$; (2) there exists a sequence (s_n) of distinct points of S and a sequence (W_n) of members of \mathcal{H} such that $\{s_1, \ldots, s_n\} \subset W_n$ for all n. With the aid of this lemma he proves that if A is a subset of a complete convex space E and A satisfies a certain double limit condition, then the closed convex hull of A is weakly compact. This includes the well-known theorems of Krein and Eberlein on weak compactness. The same lemma is employed to yield an extensive series of results on weak convergence and weak compactness in locally convex spaces and especially in spaces of continuous functions.

SCHAEFER is concerned with spectral properties in an ordered locally convex algebra A, where this is a locally convex algebra (usually over the complex field) with unit e and with an associated positive cone $K \ni e$ such that K is closed, proper, includes the product of any commuting pair of its elements, and is normal in the sense that there is a family of pseudonorms p on E which generate the topology and are such that $p(x + y) \geq p(x)$ for all $x, y \in K$. The principal motivating example of such an A is the algebra of all continuous endomorphisms of a Hilbert space, where K is the cone of positive Hermitian operators and the topology is that of either bounded or pointwise convergence. (There are other important examples also.) The paper contains much interesting material on such algebras A, its principal results showing that the spectral behavior of certain members of K is quite analogous to that in the finite-dimensional case. In particular, the members of K whose spectrum is bounded have spectral behavior like that of positive matrices, while those in the unit interval of K (i.e., those $a \in A$ for which $0 \leq a \leq e$—diagonal positive matrices in the classical case) behave spectrally like positive Hermitian operators.
FAN’s paper is motivated by the Krein-Milman extreme point theorem. He establishes a general lemma which is purely set-theoretical in character, involving neither topological nor vector space concepts, from which the Krein-Milman theorem follows. (Another lemma, in a sense dual to the first, is shown to imply theorems on filters due to Wallman and Stone.) He then considers a set Φ of real-valued functions on a set S, calling a set $X \subset S$ convex provided X is an intersection of sets of the form $\{x \in S : f(x) \geq a\}$. Since the family of Φ-convex sets is intersectional, the Φ-hull can be defined in the natural way. The notion of Φ-betweenness is defined for points of S and in terms of this the Φ-extreme points of subsets of X are defined. These notions appear in several theorems which generalize known results on extreme points and are related to the abstract minimum principal of Bauer.

HAMMER’s second paper is motivated by his notion of a semispase at a point p in a linear space L, this being a maximal convex subset of $L \sim \{p\}$. He reviews some of the known results on semispaces, including their connection with extreme points and the fact that the semispaces form a minimal intersection base for the convex subsets of L. He then describes his system of extended topology which arose from an attempt to consider certain processes and concepts associated with convexity (and especially with semispaces) as topological in character. Many new notions are introduced, complications arising mainly from the fact that in place of the usual topological closure operation he considers an arbitrary expansive function g—i.e., one associating with each set some superset thereof. After discussing the extended topology, he interprets the various notions in terms of convexity, where gX is the union of X with all the line segments determined by points of X. Several unsolved problems are mentioned.
UNSOLVED PROBLEMS

Like elementary number theory, the subject of convexity lends itself readily to the statement of interesting unsolved problems. Many of these can be appreciated on an intuitive level and may be accessible to anyone with a bright idea, for the subject (on the whole) is one of many ideas and specific approaches but little machinery. The discussion of unsolved problems was an important part of the Symposium, both informally and in a special session devoted to them; several of the papers published here originated in such discussion. Unsolved problems are found in many of the papers, and the list below contains other problems stated during the Symposium or sent later to the editor.

V. K.

W. CHENEY

Let $\| \cdot \|_p$ denote the pth-power norm in \mathbb{R}^n, M a linear subspace of \mathbb{R}^n, and for each $x \in \mathbb{R}^n$ let $\pi_{\pi}x$ be the (unique) point of M which is nearest to x with respect to $\| \cdot \|_p$. What can be said about the behavior of $\pi_{\pi}x (M, x$ fixed) as $p \to \infty$?

H. S. M. COXETER

If the edges of a convex polyhedron all touch a sphere of unit radius so as to form a “crate” from which the sphere cannot escape, prove or disprove that their total length is at least $9 \sqrt{3}$. (Cf. [1] for discussion of the related problem in which the requirement of touching is omitted.)

L. DANZER

Given a convex body (i.e., a convex, compact point-set with nonempty interior) C in \mathbb{R}^n. Say its (euclidean) width (minimal distance between two parallel supporting hyperplanes) is $d(C)$. Define its k-dimensional width $d_k(C)$ to be the maximal width attained by any intersection of C with a k-dimensional flat. Clearly $d_1(C) = \text{diam} (C) \geq d_n(C) = d(C)$.

I ask for the numbers

$$q(k; n) = \inf \{ d_k(C) | d(C) \} : C \text{ a convex body in } \mathbb{R}^n \ (1 \leq k \leq n) \} ,$$

in particular, for $q(2; 3)$.

It is trivial that
496 UNSOLVED PROBLEMS

\[q(k + 1; n + 1) \leq q(k; n) , \]

but is it true, that also

\[q(k; n + 1) \leq q(k; n) ? \]

Note that \(q(2; 3) < 1 \), as shown in [1]. The example there could be simplified (using a regular tetrahedron instead of a cube), but certainly that method is not good to prove \(q(2; 3) < .995 \) nor will it yield lower bounds for \(q(k; n) \).

Of course one may ask the same questions for any Minkowskian metric over \(R^n \) instead of the euclidean one.

C. DAVIS

In \(n \)-space \((n > 2)\) it is natural to consider, along with the diameter \(D \) and width \(d \) of a convex body \(K \), intermediate measures. In particular, let \(D_k(K) = \min D(P_k K) \), where \(P_k \) means projection to an \((n - k + 1)\)-flat and the minimum is over all \(P_k \); and \(d_k(K) = \max d(s_{n-k+1} K) \), where \(s_i \) means section by an \(i \)-flat and the maximum is over all \(s_{n-k+1} \). For ellipsoids, one proves from the Fischer-Courant principle that \(D_{n-k+1} = d_k \), the length of the \(k \)th principal axis. In general, of course, \(d_n = D_1 = D \) and \(D_n = d_1 = d \); however, the extension of the ellipsoid case can not go far, even for centrally symmetric \(K \).

Problem. In 3-space, find the possible range of variation of \(d_2/D_2 \). Perhaps even the dependence of this range on \(d/D \) could be found; see Besicovitch’s problem. It is clear that \(d_2/D_2 \leq 1 \), and it is equal to 1 not only for ellipsoids but for a variety of other bodies including all those with rotational symmetry. It is equal to \(\sqrt{15}/4 \) for the regular tetrahedron. The smallest value I know is \(\sqrt{3}/2 \), attained for a class of centrally symmetric octahedra including the regular, and including others of arbitrarily small \(d/D \).

For \(n > 3 \) other possibilities arise: let \(D_{k_1,k_2}(K) = \max D_{k_1,s_{n-k_2+1}}(K) \), provided \(k_1 + k_2 \leq n \); similarly \(d_{k_1,k_2} \), \(D_{k_1,k_2,s_1} \), \(\ldots \). I do not claim to see hope of proving anything about these compound quantities for general \(K \).

(Cf. Danzer’s problem.)

A. DVORETZKY

For a Minkowski space \(E \) and positive integer \(k \), define

\[v_k(E) = \max_{||x_i||=1} \min \| \pm x_1 \pm x_2 \pm \cdots \pm x_k \| , \]

where the minimum is over all \(2^k \) possible choices of + and − signs and the maximum is over all \(k \)-tuples \(x_1, \ldots, x_k \) of unit vectors. What can be said about the numbers \(v_k(E) \)?
K. FAN

Problem. Are the following two rotundity properties of a Banach space X equivalent?
(1) Every sequence (x_n) in X with $\lim_{n,m \to \infty} \| (x_n + x_m)/2 \| = 1$ is convergent.
(2) Every sequence (x_n) in X with $\lim_{n,m \to \infty} \| (x_n + x_m)/2 \| = 1$ and having no weak cluster point of norm < 1 is convergent.

Problem. What can be said of the structure of the lattice of all closed bounded convex sets in a normed linear space?
(For results of this nature, see [1; 2].)

B. GRÜNBAUM

Characterizations of circles and spheres

Besicovitch was the first to establish [1] the conjecture of V. Mizel that the circle is the only closed convex curve C in the plane with the property
(i) Whenever three vertices of a rectangle belong to C, the fourth vertex also belongs to C.
A simpler proof of Besicovitch’s result was found by Danzer [2]. In view of this result, the following questions seem to arise rather naturally.
1. Is the circle the only closed convex curve (resp. simple closed curve) C with the property:
 (ii) Whenever three edges of a rhombus R support C, the fourth edge of R also supports C?
2. Is the circle the only convex curve of constant width with the property:
 (iii) Each point of C is the vertex of a square, all of whose vertices belong to C?
 It is well known that the circle is not the only convex curve with property (iii), even if all the squares are required to be of the same size.
3. Is the $(n - 1)$-dimensional sphere the only surface S of constant width in E^n with the property:
 (iv) Every point of S is the vertex of a regular n-dimensional octahedron, all of whose vertices belong to S?
 For $n \geq 3$ it is even conceivable that property (iv) alone characterizes spheres among all convex surfaces.
B. GRÜNBAUM—T. S. MOTZKIN

A graph is k-polyhedral if its nodes and edges can be identified with the vertices and edges of a k-dimensional convex polyhedron. (See [1] for references and for some properties of polyhedral graphs.) For $n \geq 5$, the complete graph with n nodes is known to be 4-polyhedral. Conjecture: For $k \geq 4$, every k-polyhedral graph is 4-polyhedral.

P. C. HAMMER

1. **Reflection over a convex curve in the plane** (B. H. Neumann). Let C be a closed convex curve in the plane with no line segments in its boundary. From a point p exterior to C choose that line of support through p which has C on its left (looking from p). Let $q = fp$ be the reflection of p through the point of contact on the line of support.

Problem. Is there a simple closed curve B (other than C) such that $fB = B$?

Remarks (Hammer). It may be shown that there are n-point sets X for each $n \geq 3$ such that $fX = X$ and that the union of all of these is unbounded in the plane. Moreover if Y is an open “annulus” bordering C, then $X = \bigcup \{f^n Y : -\infty < n < \infty\}$ is an open set and its boundary is fixed under f. However, is X bounded and if so is its boundary a simple closed curve for some Y? That there is a large class of convex curves C with solution curves B may be seen as follows:

Let B be a closed convex curve and in each family of parallel chords of B take the two which cut a fixed smaller area α from B ($\alpha < 4/9$ area B). Then the intersection C of all closed strips between such parallel chords determine a convex curve C such that $fB = B$.

On the other hand it is easy to construct a convex curve C such that $\{f^n p\} n \geq 1$, for certain points p converges to a point on C. Whether or not one may find a curve C such that $\{f^n p\}$ is unbounded for some p we have not settled.

Note that the transformation f is area preserving and that the problem is actually affine.

2. **The X-ray problems** (Hammer). Suppose there is a convex hole in an otherwise homogeneous solid and that X-ray pictures taken are so sharp that the “darkness” at each point determines the length of a chord in C along an X-ray line. (No diffusion, please.) How many pictures must be taken to permit exact reconstruction of the body if:

a. The X-rays issue from a finite point source?

b. The X-rays are assumed parallel?

For the planar counterpart, we have shown that two perpendicular directions are insufficient for (a) and we conjecture that 3 directions are sufficient, although
whether or not such directions must be strategically chosen is also open.

3. **Self-circumference (Hammer).** Let C be a closed convex curve in the plane. Then, as Minkowski first proved, to each interior point p of C there is determined an (asymmetric) metric with C as the unit circle, i.e., $d(p, q) = 1$ for $q \in C$. Hence to each p interior to C there is determined two circumferences $a_+(p)$ and $a_-(p)$ of C.

Problem. What are the properties of the set of points such that $a_+(p) = a_-(p)$? In particular, if p_0 is the point such that the minimum value of the set $\min [a_+(p), a_-(p)]$ is achieved at p_0 is $a_+(p_0) = a_-(p_0)$? Moreover are $\min a_+(p)$ and $\min a_-(p)$ achieved at the same point?

Remarks. If C is symmetrical with respect to a point then $a_+(p) = a_-(p)$ for each p interior to C. The minimum value of circumference might be called the *self-circumference* of C. These circumferences are affine invariant.

4. **Self-circumference (Golab via B. Grünbaum).** Let the situation be as in (3). What is the maximum self-circumference for all convex curves C?

Remarks (Hammer). For the triangle the self-circumference is achieved and p_0 is the centroid. In this case $a_+(p_0) = a_-(p_0)$. Laugwitz showed that the regular hexagon has minimal self-circumference 6 and the square maximal self-circumference 8 among convex curves with a center. Presumably 6 is the absolute minimum self-circumference. This is one of the few cases in which the circle does not appear as an extreme solution.

V. Klee

Suppose K is a compact convex subset of a Hausdorff linear space. Must the topology of K be locally convex; i.e., is it true that for each $x \in K$ and each neighborhood U of x there exists a neighborhood V of x relative to K such that V is convex and $V \subset U$? Must K have the fixed point property? Must K have an extreme point?

A. Kosinski

For $0 < n < m$ and $0 \leq k \leq n - 1$, an m-dimensional compactum in E^m will be called (n, k)-convex provided its intersection with each n-dimensional affine subspace is k-acyclic. Then $(1, 0)$-convexity is (by definition) equivalent to ordinary convexity, and $(n, n - 1)$-convexity is also known to be equivalent to ordinary convexity. There exists a simple geometric characterization of $(2, 0)$-convex sets in E^3.

Problem. Find a geometric characterization of (n, k)-convexity.

T. S. Motzkin

Find an intrinsic characterization of those n-tuples (k_0, \cdots, k_{n-1}) such that
there exists an \(n \)-dimensional convex polyhedron having (for \(0 \leq i \leq n - 1 \)) exactly \(k_i \) faces of dimension \(i \).

R. R. PHelps

Suppose \(K \) is a compact convex set in a locally convex Hausdorff linear space. Must \(K \) include a point \(x \) such that for each \(y \in K \sim \{ x \} \), \(\sup fK = fx > fy \) for some continuous linear functional \(f \)?

H. H. Schaefer

I. Let \(E \) denote a (Hausdorff) locally convex vector space over \(R \), \(K \) a convex cone of vertex 0 in \(E \), and \(K' \) the dual cone (of linear forms non-negative on \(K \)) in the topological dual \(E' \) of \(E \). Does there always exist \(K \subset E \) such that \(E = K - K \) and \(E' = K' - K' \)? (In a normed space, the cone \(K \) spanned by a ball of radius \(r > 0 \) and with center at a distance \(> r \) from the origin, answers the question affirmatively.)

II. Denote by \(A \) an algebra over \(R \), provided with a locally convex vector space topology under which multiplication is separately continuous. A spectral element of \(A \) is an element contained in a subalgebra which is the continuous homomorphic image of some \(C(X) \) (\(X \) compact). Is a subalgebra of \(A \), consisting entirely of spectral elements, necessarily commutative? (This question arises in connection with Part II, §3 of [1].)

F. A. Valentine—E. G. Straus

Does there exist a nonempty compact set \(S \) in \(R^n \) such that \(2 \leq m(x) \leq \infty \) for all \(x \in S \), where \(m(x) \) is the number of convex subsets of \(S \) which are maximal relative to being convex, including \(x \), and having dimension \(\geq n - 1 \)?

INDEX OF UNSOLVED PROBLEMS

Bèsicovitch, A. S. 15, 19
Bishop, E. and Phelps, R. R. 34
Corson, H. and Klee, V. L. 37, 38, 42, 48, 49
Coxeter, H. S. M. 60, 61, 67
Danzer, L. 100
Danzer, L. W., Grünbaum, B. and Klee, V. L. 109, 117-120, 122-132, 137-142, 144-146, 148-155, 159-161, 163
Davis, C. 181, 185, 197, 198
Dvoretzky, A. 209
Hammer, P. C. 302, 314, 315
Klee, V. L. 349, 352-354, 357
Phelps, R. R. 393
Valentine, F. A. 490-492
Unsolved Problems 495-500
APPENDIX

See Ptáček, p. 450.

The author wishes to apologize for treating theorem (6.2) too casually. Upon re-examining the proof he has come to the conclusion that a part of it should be given in more detail. For this reason the following explanations are offered.

In the proof of (6.2) the sentence beginning “Indeed, this shows first...” should be replaced by the following:

First of all, \(r(t) \) is continuous since it may be approximated by convex combinations \(\sum \lambda_i a_i(t) \) of continuous functions. To show that \(r \) belongs to the \(o(E, E') \) closure of \(A \), take any \(y \in E' \). We may clearly assume \(|y| \leq 1 \). Suppose that \(\langle a - r, y \rangle \geq \alpha \) for all \(a \in A \) and some \(\alpha > 0 \); let \(A^{(+) \text{ and } A^{(-)} \) be the sets of those \(a \in A \) for which the difference \(\langle a - r, y \rangle \) is respectively positive or negative. Since \(r \) belongs to the closure of \(A \) in \(P \), it is in the closure of one of them, \(A^{(+)} \) say. We have \(\langle a - r, y \rangle \geq \alpha \) for each \(a \in A^{(+)} \). The same argument shows that there exists a convex mean \(m = \sum q_i \lambda_i a_i \) with \(a_i \in A^{(+)} \) such that \(\|m(t) - r(t)\| \leq \frac{1}{2} \alpha \) for each \(t \in T \); it follows that

\[
\frac{1}{2} \alpha \geq \langle m - r, y \rangle = \left\langle \sum \frac{q_i}{1} \lambda_i (a_i - r), y \right\rangle = \sum \frac{q_i}{1} \lambda_i \langle a_i - r, y \rangle \geq \alpha
\]

which is a contradiction.

Thus the only thing to be done is to show the existence of the convex means. This is only done for \(A \) and \(e \) but is obviously true also for \(A^{(+)} \) and \(\frac{1}{2} \alpha \).

AUTHOR INDEX

Italic numbers refer to pages on which a complete reference to a work by the author is given.

Roman numbers refer to pages on which a reference is made to a work of the author. For example, under Minkowski would be the page on which a statement like the following occurs: “This theorem was proved earlier by Minkowski [7, §2] in the following manner…”

Boldface numbers indicate the first page of the articles in this volume.

Abe, Y., 116, 163
Ahiezer, N. I., 82, 93
Alaoglu, L., 74, 93
Alexandroff, P., 125, 163
Allen, J. E., 160, 168
Amemiya, I., 75, 83, 93
Anderson, K. W., 82-84, 86, 88, 90, 91, 93
Anderson, R. D., 21, 23, 90, 273, 281
Ando, T., 75, 83, 86-88, 91, 92, 93
Arms, R. J., 93
Aronszajn, N., 143, 161, 163, 200, 355-357, 358
Ascoli, G., 94
Asplund, E., 86, 88, 93, 152, 163, 235, 242, 248, 253, 258, 264
Atsuji, M., 48, 49, 50
Auerbach, H., 261, 264

Bagemihl, F., 151, 163
Balinski, M. L., 287, 290
Banach, S., 49, 50, 76, 85, 94, 153, 154, 163, 450
Barlow, R. E., 347
Barlow, W., 54, 70
 Barthel, W., 302
 Bartle, R. G., 40, 50, 450
 Baston, V. J. D., 151, 164
 Bauer, H., 143, 157, 163, 164, 211, 218, 219
 Beale, E. M. L., 326, 327
 Behrend, F., 139, 164, 241, 264
 Belgodère, P., 302
 Bellman, R., 1, 11
 Bendat, J., 191, 200
 Bender, C., 54, 70
 Benzer, S., 127, 164
 Berge, C., 123, 156, 164, 354, 358
 Berkes, J., 251, 265
 Berstein, J., 164
 Besicovitch, A. S., 13, 15, 19, 20, 21, 24, 99, 100, 141, 150, 164, 233, 242, 254-256, 265
 Bessaga, C., 37, 45, 50
 Beurling, A., 80, 94
 Bieberbach, L., 257, 265
 Bing, R. H., 161, 164
 Birch, B. J., 117, 164, 247, 252, 265
 Birkhoff, G., 74, 83, 215, 219
 Bishop, E., 27, 35, 80, 92, 94, 401, 500
 Blanc, E., 160, 164
 Blaschke, W., 141, 164, 235, 244, 251, 258, 262, 265
 Blichfeldt, H. F., 60, 70
 Blumenthal, L. M., 114, 132, 138, 139, 158, 159, 161, 164
 Boas, R. P., Jr., 84, 94
 Bochner, S., 84, 94
 Böhm, J., 70
 Böhme, W., 242, 243, 265
 Boland, J. C., 104, 127, 172
 Boltyanovskii, V. G., 104, 114, 115, 132, 137, 165, 177, 242, 244, 247, 249, 251, 252, 256, 270, 274, 284
 Bonnice, W., 116, 117, 165
 Bonsall, F. F., 451, 471
 Borel, A., 126, 165
 Borsuk, K., 126, 137, 165, 271, 279, 280, 281
 Bose, R. C., 241, 249, 265
 Bourbaki, N., 35, 94, 215, 219, 349, 358, 461, 471
 Bredon, G., 248, 264
 Bremermann, H. J., 162, 163, 165
 Brézis, H., 92, 94
 Browder, F. E., 80, 94
AUTHOR INDEX

Brückner, M., 290
de Bruijn, N. G., 280, 281
Brunn, H., 116, 130, 165
Buck, E. F., 241, 260, 265
Buck, R. C., 94, 241, 260, 265
Bunt, L. H. N., 117, 165
Busemann, H., 73, 92, 93, 94, 161, 165, 303

Cahn, A. S., 317
Charnes, A., 327
Choquet, G., 143, 165, 166
Clarkson, J. A., 50, 74, 77, 84, 85, 94
Comfort, W. W., 133, 166
Cooper, W. W., 327
Corson, H. H., 37, 351, 354, 358, 500
Coxeter, H. S. M., 19, 20, 53, 54, 58, 60-62, 64, 66, 69, 70, 71, 149, 150, 166, 225, 232, 500
Croft, H. T., 278, 281
Cudia, D. F., 73, 74, 79, 80, 89, 90, 92, 94
Czipszer, J., 153, 154, 166

Daleckii, Yu. L., 190, 191, 200
Danzer, L. W., 99, 101, 131, 139, 144, 147, 149, 161, 162, 166, 241, 247, 252, 265, 272, 275-278, 281, 349, 358, 500
Davenport, H., 61, 71
David, N., 303
Davis, C., 181, 187, 200, 500
Derman, C., 327
De Santis, R., 119, 166, 481, 492
Dieudonné, J., 352, 353, 358, 450, 473, 492
Dines, L. L., 116, 166, 490, 492
Dinghas, A., 303
Dirichlet, G. L., 54, 71
Dixmier, J., 91, 94
Drandell, M., 156, 166
Dresher, M., 130, 166
Dudley, D. W., 436
Dukor, I. G., 109, 166
Dunford, N., 85
Dvoretzky, A., 109, 166, 203, 210, 263, 265, 500
Eberlein, W. A., 352, 358, 450
Edelstein, M., 46, 50, 114, 166
Eells, J., Jr., 73, 94
Efimov, N. V., 81, 92, 95
Efremović, V. A., 46, 50
Ehrhart, E., 132, 167, 247-249, 251, 252, 255, 266
Ellis, J. W., 156, 167
Erdős, P., 104, 119, 137, 149, 167, 169, 278, 280, 281, 282
Estermann, T., 237, 247, 256, 258, 266
Ewald, G., 73, 95

Fan, K., 1, 11, 77-79, 82-84, 86, 87, 91, 92, 95, 156, 167, 211
Fáry, I., 156, 167, 239, 242, 254, 256, 257, 266
Fejes Tóth, L., 54, 62, 69, 70, 71, 104, 128, 144, 149, 167, 169, 263, 266, 275, 282
Few, L., 149, 166
Firey, W. J., 244, 266
Fisher, E., 436
Floyd, E. E., 353, 359
Foguel, S. R., 90, 95
Fortet, R., 95
Franklin, S. P., 160, 167
Fréchet, M., 49, 50, 327
Frink, O., Jr., 215, 219
Frucht, R., 129, 167
Fullerton, R. E., 358, 359, 458
Fulton, C. M., 236, 237, 266
Funk, P., 251, 262, 266

Gaddum, J. W., 159, 160, 167, 170, 327
Ganapathi, P., 266
Gantmacher, F. R., 11, 340, 547
Gehér, L., 153, 154, 166, 355, 359
Gercke, H., 141, 168, 239, 262, 266, 303
Gerriets, C. J., 264
Gerstenhaber, M., 490, 492
Ghika, A., 156, 162, 168
AUTHOR INDEX

Gouila-Houri, A., 123, 168, 354, 359
Gillespie, D. C., 437, 450
Glucksberg, I., 77-79, 82-84, 86, 87, 91, 92, 95
Godbersen, C., 258, 286
Gohberg, I. C., 137, 168, 284
Goldman, A. J., 327
Goodner, D. B., 357, 359
Gordon, H., 133, 166
Gorin, E. A., 48, 50
Graves, L. M., 40, 50
Green, J. W., 160, 168
Gromer, H., 150, 168, 244, 258, 267
de Groot, J., 159, 168
Gross, W., 237, 267
Grosswald, E., 253, 264
Grothendieck, A., 357, 358, 359, 450
Grotzsch, H., 152, 168
Guinand, A. P., 56, 57, 71
Günter, S., 54, 71
Gustin, W., 114, 116, 132, 160, 168, 169, 492
Hajós, G., 61, 71
Halberg, C. J. A., Jr., 150, 170
Hales, S., 53, 71
Hall, M., 316
Hanner, O., 117, 128, 135, 142, 170, 277, 282, 357, 358, 359, 479, 480, 492
Hare, W. R. Jr., 159, 160, 170
Harrop, R., 129, 131, 170, 354, 359
Henriksen, M., 357, 359
Heppes, A., 137, 170, 274, 278, 282
Hilbert, D., 170
Hille, E., 473, 492
Hirakawa, J., 262, 267
Hirsch, W. M., 327
Hirschfeld, R. A., 95
Hirschman, I. L., 347
Hjelmslev, J., 116, 170
Hlawka, E., 150, 170
Hoffman, A. J., 317, 327
Hurons, W. A., 437, 450
Hopf, E., 170
Hopf, H., 125, 168, 279, 283
Horn, A., 121, 158, 159, 170, 479, 492
Isbell, J., 356, 359
Jacobs, W., 326, 327
James, R. C., 32, 35, 49, 50, 85, 86, 92, 93, 95, 353, 359
Jaworowski, J. W., 280, 283
Jöreson, M., 211, 218, 219
John, F., 140, 170, 241, 248, 258, 267
Johnson, S. M., 327
Jung, H. W. E., 114, 132, 158, 170, 276, 283
Jussila, O. K., 170
Jůza, M., 355, 359
Kadec, M. I., 45, 46, 49, 50, 86, 87, 95
Kadison, R. V., 75, 95
Kakutani, S., 96, 133, 170, 308
Kalisch, G. K., 161, 171
Kato, T., 200
Keller, O. H., 37, 50
Kelley, J. L., 143, 171, 215, 219, 357, 360
Kelly, L. M., 73, 95, 138, 139, 171
Kelly, F. J., 242, 287, 303
Kendall, D. G., 143, 171
Kepler, J., 53, 71
Kijne, D., 129, 171
Kirchberger, P., 114, 116, 171, 475, 488, 490, 492
Kirszebraun, M. D., 153, 154, 171
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein, M.</td>
<td>327</td>
</tr>
<tr>
<td>Knaster, B.</td>
<td>123, 171, 275, 280, 283</td>
</tr>
<tr>
<td>Kneser, H.</td>
<td>156, 171</td>
</tr>
<tr>
<td>Kneser, M.</td>
<td>155, 171</td>
</tr>
<tr>
<td>Knothe, H.</td>
<td>237, 267</td>
</tr>
<tr>
<td>König, D.</td>
<td>103, 106, 171</td>
</tr>
<tr>
<td>Konstantinesku, F.</td>
<td>92, 96</td>
</tr>
<tr>
<td>Kort, A.</td>
<td>188, 200, 201</td>
</tr>
<tr>
<td>Kosiński, A.</td>
<td>156, 171, 237, 249, 254, 267</td>
</tr>
<tr>
<td>Kőthe, G.</td>
<td>353, 360, 438, 450, 475, 493</td>
</tr>
<tr>
<td>Kofetz, Y.</td>
<td>264</td>
</tr>
<tr>
<td>Kozinec, B. N.</td>
<td>255, 267</td>
</tr>
<tr>
<td>Krčekovskii, S. N.</td>
<td>82, 96</td>
</tr>
<tr>
<td>Krasnoselsky, M. A.</td>
<td>109, 114, 171, 172</td>
</tr>
<tr>
<td>Kraus, F.</td>
<td>200</td>
</tr>
<tr>
<td>Krein, M. G.</td>
<td>82, 92, 93, 219, 340, 347, 451, 471</td>
</tr>
<tr>
<td>Krysz, J.</td>
<td>347</td>
</tr>
<tr>
<td>Kubota, T.</td>
<td>116, 163, 238, 268</td>
</tr>
<tr>
<td>Kuhn, H. W.</td>
<td>11, 156, 172</td>
</tr>
<tr>
<td>Kuiper, N. H.</td>
<td>129, 131, 159, 172</td>
</tr>
<tr>
<td>Kuratowski, C.</td>
<td>123, 171, 285, 288, 289, 290</td>
</tr>
<tr>
<td>Lagrange, R.</td>
<td>132, 172</td>
</tr>
<tr>
<td>Land, A. H.</td>
<td>327</td>
</tr>
<tr>
<td>Landau, F.</td>
<td>454</td>
</tr>
<tr>
<td>Lanner, F.</td>
<td>108, 172, 478, 493</td>
</tr>
<tr>
<td>Laugwitz, D.</td>
<td>73, 96, 139, 166, 241, 242, 265, 268, 303</td>
</tr>
<tr>
<td>Leech, J.</td>
<td>54, 61, 71</td>
</tr>
<tr>
<td>Leichtweiss, K.</td>
<td>135, 141, 172, 241, 247, 248, 258, 268, 276, 283, 303</td>
</tr>
<tr>
<td>Lelek, A.</td>
<td>161, 172</td>
</tr>
<tr>
<td>Lekkerkerker, C. G.</td>
<td>104, 127, 172</td>
</tr>
<tr>
<td>Lenz, H.</td>
<td>139, 166, 241, 258, 265, 268, 272, 275, 276, 283</td>
</tr>
<tr>
<td>Leray, J.</td>
<td>126, 172</td>
</tr>
<tr>
<td>Levin, E.</td>
<td>150, 170</td>
</tr>
<tr>
<td>Lighthall, H. Jr.</td>
<td>327</td>
</tr>
<tr>
<td>Lindenstrauss, J.</td>
<td>86, 96, 355, 357, 358, 360</td>
</tr>
<tr>
<td>Linis, V.</td>
<td>256, 268</td>
</tr>
<tr>
<td>Lippmann, H.</td>
<td>304</td>
</tr>
<tr>
<td>Livingston, A. E.</td>
<td>80, 94</td>
</tr>
<tr>
<td>Loewner, C.</td>
<td>200</td>
</tr>
<tr>
<td>Long, R. G.</td>
<td>51</td>
</tr>
<tr>
<td>Lorch, E. R.</td>
<td>73, 96</td>
</tr>
<tr>
<td>Lovaglia, A. R.</td>
<td>77, 82, 83, 86, 90, 92, 96</td>
</tr>
<tr>
<td>Löwner, K.</td>
<td>See Loewner, C.</td>
</tr>
<tr>
<td>Lusternik, L.</td>
<td>See Lyusternik, L. A.</td>
</tr>
<tr>
<td>Luxemburg, W. A. J.</td>
<td>75, 96</td>
</tr>
<tr>
<td>Lyusternik, L. A.</td>
<td>251, 254, 268, 271, 279, 280, 283</td>
</tr>
<tr>
<td>Macbeath, A. M.</td>
<td>236, 237, 268</td>
</tr>
<tr>
<td>MacColl, L. A.</td>
<td>304</td>
</tr>
<tr>
<td>MacDuffee, C. C.</td>
<td>200</td>
</tr>
<tr>
<td>Mairhuber, J. C.</td>
<td>115, 172</td>
</tr>
<tr>
<td>Marchaud, A.</td>
<td>159, 172</td>
</tr>
<tr>
<td>Marcus, M.</td>
<td>200</td>
</tr>
<tr>
<td>Markus, A. S.</td>
<td>137, 168</td>
</tr>
<tr>
<td>Matumura, S.</td>
<td>261, 268</td>
</tr>
<tr>
<td>Mayer, A. E.</td>
<td>160, 172</td>
</tr>
<tr>
<td>Mazur, S.</td>
<td>42, 51, 82, 96</td>
</tr>
<tr>
<td>Mazurkiewicz, S.</td>
<td>123, 171</td>
</tr>
<tr>
<td>McCoy, N. H.</td>
<td>116, 166, 490, 492</td>
</tr>
<tr>
<td>McMinn, T. J.</td>
<td>24, 25</td>
</tr>
<tr>
<td>McShane, E. J.</td>
<td>96, 153, 154, 172</td>
</tr>
<tr>
<td>Melzak, Z. A.</td>
<td>132, 172</td>
</tr>
<tr>
<td>Menger, K.</td>
<td>138, 160, 172</td>
</tr>
<tr>
<td>Meschkowski, H.</td>
<td>61, 71</td>
</tr>
<tr>
<td>Michael, E.</td>
<td>161, 172, 353, 360</td>
</tr>
<tr>
<td>Mickle, E. J.</td>
<td>153, 154, 172</td>
</tr>
<tr>
<td>Milman, D. P.</td>
<td>90, 96, 211, 218, 219</td>
</tr>
<tr>
<td>Miines, M. W.</td>
<td>75, 96</td>
</tr>
<tr>
<td>Milnor, J.</td>
<td>129, 173</td>
</tr>
<tr>
<td>Minkowski, H.</td>
<td>60, 71, 74, 96, 115, 147, 173, 233, 246, 247, 268, 304, 493</td>
</tr>
<tr>
<td>Minty, G. J.</td>
<td>154, 173</td>
</tr>
<tr>
<td>Miyatake, O.</td>
<td>262, 268</td>
</tr>
<tr>
<td>Molnár, J.</td>
<td>114, 125, 158, 173</td>
</tr>
<tr>
<td>Monge, G.</td>
<td>317, 327</td>
</tr>
<tr>
<td>Monna, A. F.</td>
<td>156, 173</td>
</tr>
<tr>
<td>Morton, G.</td>
<td>327</td>
</tr>
<tr>
<td>Moser, L.</td>
<td>280, 283</td>
</tr>
<tr>
<td>Moser, W.</td>
<td>280, 283</td>
</tr>
<tr>
<td>Nachbin, L.</td>
<td>135, 142, 143, 173, 277 283, 355-357, 360</td>
</tr>
<tr>
<td>Nakamura, M.</td>
<td>201</td>
</tr>
<tr>
<td>Nakano, H.</td>
<td>75, 76, 78, 82, 91, 96</td>
</tr>
<tr>
<td>Nasu, V.</td>
<td>304</td>
</tr>
<tr>
<td>Nef, W.</td>
<td>156, 173</td>
</tr>
<tr>
<td>Neumann, B. H.</td>
<td>115, 173, 247, 249-252, 268</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

Newman, D. J., 242, 251, 252, 268
Nijenhuis, A., 161, 173
Nitka, W., 161, 172
Nohl, W., 264
Nordlander, G., 96

Ohmann, D., 304
Ostrowski, A., 201

Pál, J. F., 240, 268, 272, 274, 283
Panitchpakdi, P., 143, 161, 168, 355-357, 358
Pasqualini, L., 160, 173
Pauc, C., 161, 174
Pelczyński, A., 45, 49, 50, 96
Percal, J., 272, 273, 283
Petryshyn, W. V., 80, 83, 97
Pettis, B. J., 90, 97
Petty, C. M., 237, 268, 303, 304
Phelps, R. R., 27, 35, 80, 81, 86, 90, 92, 93, 94, 97, 393, 401, 500
Phillips, R., 473, 492
Pleijel, A., 269
Plunkett, R. L., 161, 174, 357, 360
Pólya, G., 264, 333, 347
Poritsky, H., 403, 436
Poulsen, E. T., 155, 174
Prager, W., 326, 327
Prenowitz, W., 156, 174
Prochaska, J., 109, 174
Pták, V., 115, 174, 353, 360, 437, 450, 501
Pucci, C., 242, 269

Rabin, M., 109, 174
Radon, J., 103, 107, 115, 147, 159, 174, 246, 247, 262, 264, 269
Rådström, H., 117, 157, 162, 170, 174, 479, 480, 492
Radziszewski, K., 237, 254, 265, 269
Ramsey, F. P., 350, 360
Rankin, R. A., 61, 70, 71, 149, 174
Rebasso, H. L., 291
Rédei, L., 239, 254, 257, 266
Révész, E., 115, 174
Rényi, A., 151, 175
Rényi, C., 151, 175
Riesz, F., 97, 478, 493
Riesz, M., 478, 493
Ringrose, J. R., 92, 97
Rio, S. T., 305, 316
Robinson, C. V., 116, 138, 158, 175, 492, 493
Rockafellar, 89
Rogers, C. A., 60, 62, 70, 71, 137, 143, 147, 149, 166, 167, 175, 210, 257, 258, 269
Rollowicz, S., 210, 210
Roy, S. N., 240, 265
Ruben, H., 56, 71, 347
Rudin, M. E., 353, 360
Rund, H., 73, 97
Ruston, A. F., 82, 97
Rutman, M. A., 211, 218, 219, 451, 471
Rutovitz, D., 260, 269

Salkowski, E., 262, 269
Samuel, P., 215, 219
Sandgren, L., 108, 109, 120, 175, 349, 360, 473, 475, 477, 479, 490, 493
Sasaki, M., 75, 83, 93
Schaefer, H. H., 451, 471
Schlafli, L., 54, 57, 58, 71
Schnirelmann, L. See Šnirel’man, L. G.
Schopp, J., 144, 175, 251, 269, 277, 283
Schur, I., 201
Schütte, K., 54, 71
Schwartz, J., 35
Schweppe, E. J., 159, 175
Segal, I. E., 73, 97
Selfridge, J. L., 275, 283
Semadeni, Z., 356, 359
Shephard, G. C., 143, 147, 175, 236, 257, 258, 269
Sherman, S., 188, 191, 194, 200
Shimogaki, T., 92, 97
Shimrat, M., 114, 175
Shkliarsky, D., 280, 284
Sholander, M., 260, 269
Sierpiński, W., 51, 355, 360
Skornyakov, L. A., 156, 175
AUTHOR INDEX

Smith, T. J., 295, 297
Smith, W. E., 327
Smirnov, V. L., 75, 77-79, 83, 89-91, 97, 352, 360, 450
Smirn-Na, L. G., 114, 115, 175, 271, 279, 280, 283
Sobczyk, A., 247, 267, 291, 303
Sokolovsky, D., 327
Solow, P. S., 137, 175
Soos, G., 176
Stein, A., 247, 267, 291, 303
Stein, S. K., 233, 236, 237, 249, 254, 255, 266, 269
Steiner, J., 238, 269
Steinhaus, H., 249, 250, 261, 269
Steinitz, E., 115, 159, 176, 285, 290, 490, 491, 493
Sternbach, L., 51
Stewart, B. M., 255, 270
Stieltjes, T. J., 160, 176
Stinespring, W. F., 201
Stoelinga, T. G. D., 117, 176
Stoker, J. J., 37, 51
Stone, M. H., 156, 176, 211, 219
Straus, E. G., 115, 150, 161, 170, 171, 173, 389, 392
Su, B., 238, 270
Sundaresan, K., 97
Surányi, J., 151, 175
Süss, W., 136, 176, 237, 247, 251, 258, 270
Szwierczkowskio, S., 151, 176
Swinnerton-Dyer, H. P. F., 150, 176
Sz.-Nagy, B., 97, 135, 142, 176, 201, 248, 270, 277, 284
Szegö, G., 264, 347
Székeres, G., 119, 167
Tait, R. G., 285, 290
Takesaki, M., 201
Tapia, R. A., 80, 97
Taylor, A. E., 90, 97, 258, 270
Tietze, H., 150, 176
Toeplitz, O., 436
Tucker, A. W., 11, 327
Umegaki, H., 201
Ungar, P., 181, 251, 262, 270
Veblen, O., 159, 177
Verblunsky, S., 114, 132, 177
Viet, U., 136, 177, 249, 270
Vigodsky, M., 158, 177
Vincensini, P., 114, 129, 131, 159, 177, 493
Vinogradov, A. O., 82, 96
Volkov, V. I., 135, 177, 276, 284
Voronoï, G., 54, 71
de Vries, H., 159, 162
Wada, J., 86, 88, 89, 97
van der Waerden, B. L., 54, 71
Wahl, G. E., 114, 132, 164
Wallman, H., 211, 215, 219
Weil, A., 126, 177, 210
Weston, J. D., 354, 359
Whitehead, J. H. C., 177
Widder, D. V., 347
Yaglom, I. M., 104, 114, 115, 132, 174, 177, 242, 244, 247, 249, 251, 252, 256, 270, 274, 284
Yamamuro, S., 75, 83, 97
Yang, C. T., 280, 284
Yoneguchi, H., 116, 163
Young, J. W., 159, 177
Zaguskin, V. L., 139, 177, 241, 270
Zalcwasser, Z., 437, 450
Zaffiglaller, S. I., 177, 270
Zarankiewicz, K., 264
Zaustinsky, E. M., 133, 177
Zindler, K., 242, 261, 270
SUBJECT INDEX

\(\lambda\)-center, 363
\(\lambda\)-hull, 363
\(\phi\)-
 - between, 216
 - convex, 215
 - convex hull, 216
 - extreme, 216
 - supporting subset, 217
\(\cap\)-
 - inductive, 211
 - stable, 211
\(\cup\)-
 - inductive, 212
 - stable, 211

Acentricity, 389
Additive
 - functions, 309
 - semigroup, 385
Adjacent sets, 147, 149-151
Admissible
 - n-tuple, 389
 - side, 403
Affine center, 382, 384
Algebra
 - locally convex, 454
 - spectral, 454
Ambiconvex
 - hull, 378
 - pair, 378
 - polyhedral sets, 385
 - sets, 378, 384
Ambiguity, 286
Analytical representation, 291
Antimonic tone, 365
Antipodes, 222
Antitonic functions, 310
Approximation theory, 110-115
Arc length function, 299, 300
Asphericity, 203
Associated complex spectral measure, 464
Associated convex bodies, 292, 294, 296
Associated modular, 91
Asymmetry, measure of, 233
Asymptotic upper bound, 70
Autothetic sets, 375
Autothety, 362
 - centers of, 376
Autotranslation, 362
Axioms of convexity, 109, 155-160
Base, 310
Basic dimension, 365
Basis, 229
 - substitutive, 37, 41-45
Bauer's minimum principle, 211, 218
\(\text{Bd} S\), 473
Bernoulli numbers, 57
Binary intersection property, 356
Binormals, 293, 415
Borsuk's
 - conjecture, 137
 - problem, 271
Borsuk-Ulam theorem, 221, 222
Boundary points, linear combinations of, 389
Boundary, outer, 389
Breadth, equivalent, 296
Cap, 489
Carathéodory's theorem, 103, 115-117, 313
Centers
 - halfcone, 377
 - of endothety, 375, 376
 - of symmetry, 375
Central symmetry, 373
Centroid, 240
Chain, 46-48
Characteristic cone, 38-40
Chebyshev set, 81, 90, 92, 93, 401
Circle
 - a characterization of, 99
 - involute of, 419
Circular helix, 418
Circumscribed
 - bodies, 112, 134-140
 - circle, 221
Classes
 - complete, 366
 - gapless, 366
Classification, 362
Closed multiplicative semigroups, 373-375
Closure, convex, 306
Closure functions, 309
Kuratowski, 310
Cl S, 473
Combinatorial topology, 109, 125, 126, 129
Combinatorially
equivalent, 227
isomorphic, 227
Compactness, weak, 352, 353
Complemental, 362
Complementary semiflats, 378
Complete
classes, 366
devector sets, 364
families, 365
hull, 365
Compressed, 364
Complex convexity, 157, 162-163
Computation, 67
Cone
centers, 376
characteristic, 38-40
covex, 37-43, 48-50
dual, 475
generating, 456
lunar, 490
normal, 452
positive, 37, 41-43, 49, 452
support, 28
Cones, 371
Conical singular point, 23
Conics, 139
Conjugate modular, 91
Consistent, 1
Constant
projection, 356
retraction, 356
width, 141
Constant breadth, 291, 293, 294
convex curves, representation of, 291
curves, 291
relative to β, 298
surfaces, 291
with respect to β, 301
Continuity, 315
properties, 379
uniform, 38, 48
Continuous, 86
functions (spaces of), 45, 46
norm, 86
Contractive functions, 309
Conv S, 473
Convergence is almost uniform, 442
Convergence is uniform in the mean, 442
Convex bodies, 37-41, 45-47, 73, 74, 221
associated, 292, 294, 296
Convex
closure, 306
cone, 28, 107, 129, 158
curves, 181
curves and rectangles, 99
function, 123
hull, 103, 115-119, 159-160, 162, 225, 306, 308
polygons, 225, 230, 302
polyhedra, 383
region R, 403
set, analytic, 222
sets, 368
totally, 355
Convexity
axioms of, 109, 155-160
complex, 157, 162, 163
connected, 117, 118
generalized, 155-163
metric, 161, 162
preserving properties, 342
projective, 159
spherical, 157-159
Core, 362
Cover
minimal, 274
universal, 273
Covering, 111-113, 133-140, 145-150, 354
Critical
point, 246
set, 246
Cross-polytope, 61
Cubic close-packing, 53
Cuboctahedron, 53
Curvature, 73, 416
centroid, 241
Curve
evelope, 405
of regression, 413
osculating, 415
Curves, constant breadth, 291
Curves, convex, 181
of constant Minkowski breadth, representation of, 297
Cusps, 411
SUBJECT INDEX

Deficiency, 476
Densest packing of equal spheres, 60
Density, 54
Diameter, 221, 291
 affine, 254
Diametral
 chords, 292, 293, 296
 lines, 291, 294, 296
 line family, 294, 295, 298
 line family, essential, 294, 304
Differentiability of the norm, 89
Differential equivalence, 291, 294
Dimensionally ambiguous, 286
Direct product, 382, 384
Dirichlet region, 54
Distance-functions, 235
D-localized, 79, 83
Dodecahedron
 rhombic, 54
 trapezo-rhombic, 54
Domain
 bounded, 311, 313
 finite, 311
 finite function, 311, 313
 finite closure function, 312
 finite expansive function, 312
double limit condition, 448
Dual, 310
 additive functions, 309
 cone, 475
 properties, 89
Duality, 74, 88–90, 108, 140, 158, 349
Edge, 225
Element, quasi-interior, 458
Ellipsoid, Euclidean cells, 129–139, 141, 144–152, 155
Endo-λ, 363
Endomorphism, positive, 456
Endoring, 375
Endothetic sets, 373
Endotranslation, 363
Endovector sets, 364
Endovectors, 361 ff.
Envelope, 292
 curve, 405
 of family of straight lines, 406
Equivalence of breadth, 292
Equivalent, 86
 in breadth, 292, 293, 299
Essential diametral line, 296
Euclidean breadth, 292
Exact, 356
Exactness of various constants, 355
Existence set, 81, 92, 93
Expansion constant, 355
Expansion function, 309, 311, 313
Expansive function, 310
Exposed point, 75, 82
Extended strength, 381
Extended topology, 305, 310, 313
Extended topological system, 310
Extension property, 142, 357
Extreme point, 82, 215, 308, 357, 358
 relative, 398, 400
Extreme subset, 215
Euclidean geometry, 73
Even, 80, 83, 86
 modular, 88
\(f \)-
 closure function, 310
 contractive function, 310
 expansive function, 310
 interior function, 310
 limit function, 310
 limit point, 310
 primitive function, 310
\(F \)-
 exposed point, 75, 82
 hyperplane, 74
 nonsupport point, 75
 rotund, 75
 rotundity, 75, 82
 smooth, 75
 support point, 75, 82
\(\mathcal{F} \)-
 hull, 211
 kernel, 211
Face, 227
Face-centered cubic lattice, 53
Family \(A \) is said to be quasi-equicontinuous, 449
Family
 of lines, 297
 of straight lines, 406
Families,
 Complete, 365
 main, 365
 maximal, 366
 translative, 366
Families of sets
 homothets, 131, 132, 134-136, 146-149, 151, 152
 disjoint, 130-132, 151-153
 intersectional, 123-125
 translates, 131-138, 144-147, 149, 150, 155
Fan, 41, 42
Filter, 214
Finite, 83
Finsler spaces, 73
First norm, 76, 91, 92
Flatness, 83
Flats, 365
 osculating, 405
Fourier series, 299
Fréchet differentiable, 78, 83, 89
Fresnet equations, 416
Full, 452

gr-neighborhoods, 310
Gallai problems, 128, 144, 152, 153
Gapless
 classes, 366
 hull, 366
Gateaux differentiable, 78, 82, 83, 89
Gauge, 41, 42
Generalizations
 of convexity, 155-163
 of Helly's theorem, 119-128
Generating cone, 456
Generator, single, 368
Geometry
 metric, 73
 Minkowskian, 73
 Riemannian, 73
Graphs, 118, 127, 152
Grids, 367
Group, 312

Halfcone centers, 377
Halfcones, 375
Halfspace, 111, 113, 140-142, 156, 161, 162
Harmonic function, positive, 406
Helicord, involute, 418
Helix, circular, 418
Helly, Eduard, 101, 102
Helly
 problems and numbers, 124, 127, 128
 type theorems, 478
Helly's theorems, 101-104, 106-109
Hereditary, 212
Hermitian, 2
 matrices, 1
Herpolhode, 422
Hexagonal close-packing, 54
Hexagonal points, 242
Homothets, 105, 106
Homothety, 362
Hull, 362
 ambiconvex, 378
 complete, 365
 gapless, 366
Hyperconvex, 356, 357
Hyperplane, 74, 226, 227
Idempotent, 309
Identical arc length functions, 299
Inclusion preserving, 309
Indecomposable polyhedra, 244
Inequalities, linear, 1
Infinite dimensional Finsler spaces, 73
Infinitely increasing, 83, 86
Inscribed circle, 221
Integration, 68
Interior functions, 309, 310
Internal associated convex bodies, 296
Internal f-primitive functions, 310
Intersection
 basis, 307, 308
 pattern, 126, 127
 theorems, 101-163
Intersectional, 362
Intv S, 473
Invariant points and sets, 238
Inverse
 star centers, 377
 stars, 374, 377
 overstar center, 378
 overstars, 374
 strength, 378
Involute helicoid, 418
Involute of circle, 419
Involutes, spherical, 424
Irreducible
 sets, 244
 subbody, 296
Isolated point, 308
Isomorphic, 84, 85
Isomorphism, 73, 85, 87, 88
Isotonic, 309

Join, 362
Jung’s theorem and its relatives, 112, 113, 131–137, 140, 145, 146, 154

k rotund, 77, 82–84
Kernel, 211
Krein-Milman theorem, 211, 215, 218
Krein’s theorem on the convex extension of a weakly compact set, 440
Kuratowski closure function, 310

Lattice, 160
packing, 60
Level sets, 382, 384
Limit
functions, 309, 310, 313
point, 310
Lindelöf property, 351, 353, 354
Line families, 294–298
outwardly simple, 291, 296, 297, 299, 302
Linear
combinations of boundary points, 389 ff.
homeomorphisms, 73
manifolds, 312, 314
programming, 317
space, 312, 313
Linear inequalities, 1
in Hermitian matrix variables, 1
in the n variables, 403
Linearly
closed, 377
homeomorphic, 86
Lines, 297
Lipschitzian, 221, 297
transformations, 48, 152–155
Local uniform smoothness, 73
Locally
Banach, 73
convex algebra, 454
convex vector lattice, 459
uniformly rotund, 77, 82–84, 86, 87
uniformly smooth, 78, 82
Löwner’s ellipsoid, 241
Lunar d-cone, 490

Main families, 365
Map, quasi-interior, 458
Matrix-convex, 187
Matrix-monotone, 187
Maximal
families, 366
sets, 314
Measure
of asymmetry, 233
of \{x\}, 24
spectral, 454
Measurement, quantum-mechanical, 197
Measures of symmetry, 233
Metric
cells, 355
convexity, 161, 162
geometry, 73
projection, 93
spaces, 139, 143, 144, 153–155
Midpoint locally uniformly rotund, 77, 82–84, 88
smooth, 78, 83
Midpoint local uniform smoothness, 73
Milman-Rutman’s theorem, 211, 218
Minimal
base, 314
base of neighborhoods, 305
cover, 274
families, 366
intersection basis, 312, 314
neighborhood, 308
\Phi-supporting subsets, 217
union basis, 312
Minkowski spaces, 73, 133–137
Minkowskian
gometry, 73
metric, constant breadth, 291, 293, 294
metrics, 291, 297
Modular, 75, 79, 92
norm, 76, 87, 92
Modulated linear lattices, 85
Modulated vector lattices, 75, 79, 83, 86–90, 92
Modulars, 81
Modulus of rotundity, 85
Monge sequence, 317–319, 325
Multiplicative semigroup, 364, 370

Nearideals, 385
Neighborhood, 310, 312, 314
base, 312
Neighborhoods, 305, 308
Neighborly polyhedra, 118, 151
Neighbors, 225
Non-atomic, 83
Non-Euclidean space, 69
Non-lattice packing, 61
Non-support point, 75
Normal cone, 452
Normality, 353, 354
Norm-closed, 377
Normed linear spaces, 133, 143, 152-155
Ordered locally convex algebra, 454
Ordered topological vector space, 452
Osculating curve, 413
flats, 405
plane, 413
Osculatory, 79, 83
O. s. line family, 297
Outer boundary, 389
Outwardly simple, 297
Overstar center, 378
Overstars, 375
inverse, 374, 378
Packing, 54
Packings, 147, 149, 150
Pair, ambiconvex, 378
Pairproduct, 378, 384
Paracompactness, 353
Parallel, 296
Parallelotopes, 127, 129-131, 137, 142-145, 150-152, 154
Pedal function, 292, 294, 297, 299, 302
Period, 367
Permutationally symmetric, 364
Plane, osculating, 413
Point locally uniformly rotund, 78, 82, 83, 86
Point of F-smoothness, 75
Point symmetrization, 293
Points of rotundity, 74
of smoothness, 74
Polar cap, 489
Polar body, 74
Polarity, 349
Polhode, 422
Polygons convex, 225, 230
regular, 230
Polyhedra, 106, 118, 119, 129, 150-152
closed, 383
Polyhedral graphs, 285
dimension of, 285
Polyhedron, regular, 383
Polytopes 225-227, 230
Positive cone, 37, 41-43, 49, 75, 452
definite, 1
endomorphisms, 456
functions, totally, 337
harmonic function, 406
spectral element, 465
spectral measure, 461
Positivity, total, 329 ff.
Primary f-limit point, 310
f-self-dense function, 310
self-dense, 314
Primitive functions, 309
Principal filters, 214
normal, 415
Product direct, 382, 384
of Banach spaces, 83
spaces, 83, 87
Projection constant, 356
operator, 76, 80
Projective convexity, 159
functions, 309
Proper, 452
ambiconvex set, 379
dimension, 372
endothety, 385
Quasi-interior element, 458
map, 458
Quasipencil, 297
Quotient spaces, 83, 84
Quasiconvex, 46-48
r-neighborhood, 310, 312, 314
Radon's theorem, 103, 107-109, 117, 118, 159
Rectangles, convex, 99
Reflexive, 91
Subject Index

Reflexivity, 91
Regression, curve of, 413
Regular
\(n \)-gon \(P_n \), 230
600-cell, 64
polygons, 230
polyhedron, 383
Relative extreme point, 398, 400
Relatively constant breadth curves, finite constructions, 300
Representative spherical triangle, 421
Resolvent, 454
Retraction constant, 356
Reuleaux triangle, 13
Rhombic dodecahedron, 54
Riemannian geometry, 73
Ring, 312
Rolling without slipping, 422
Rotation
 total, 408
 vector, 420
Rotund, 74, 77, 82-86, 91-93
Rotundability, 87
Rotundable, 87, 89
Rotundity, 73 ff.
Ruled surface, 413

Saturated, 453
Scalar product, 228
Schläfi function, 56
Schur-convex, 198
Second norm, 76, 83, 91, 92
Segment, 225
Self-dense function, 310
Semiflats, complementary, 378
Semigroup, 312
 additive, 385
 closed multiplicative, 375
 connected multiplicative, 373, 374
 multiplicative, 364, 370
Semiregularity, 91
Semiregular polyhedron, 383
Semiring, 368
Semispaces, 156, 305, 306, 314, 350, 351
Separation
 by hyperplanes, 106, 107, 109, 111, 130
 theorem, 27
Set of constant width, 15
Sets, 365
 ambiconvex, 384
 ambiconvex polyhedral, 385
 autothetic, 373, 375
 Chebyshev, 401
 complete endovector, 364
 convex, 368
 endothetic, 373
 level, 382, 384
 symmetric, 373
Simple, 15
 orderings, 306
Simplex, 112, 113, 123, 136-138, 140, 141, 143, 151
Single generator, 368
Single integral generator, 369
Six-partite point, 241
Smooth, 74, 75, 78, 82-87, 91-93
Smoothability, 87
Smooth conjugate, 92
Smoothness, 73, 74, 85, 90, 93
Space, Minkowski, 73
Spectral
 algebra, 454
 element, 454
 element, positive, 465
Spectral measure, 454
 associated complex, 464
 product, 461, 463
 support, 454
Spectrum, 454
Sphere, 105, 152
Spherical convexity, 157-159
Spherical involutes, 424
Spherical to within \(\epsilon \), 203
Stability, 1
Star centers, 377
Stars, 374, 377, 380
 inverse, 377, 381
Starshaped sets, 111
Steinitsz's theorem, 115, 116
Stone's theorem, 211, 214
Strength, 379, 381, 389
Strict convexity, 79, 80
Strict \(\otimes \)-cone, 453
Strictly convex, 80, 83, 86, 91, 222
Strictly positive linear form, 459
Strip, 292
Strong
 cones, 371
 stars, 374, 377
 halfcones, 375
 overstars, 375
Strongly ambiguous, 286
Subpencil, 300, 302
Subspaces, 83, 84
Substitutive basis, 37, 41-45
Superminimality condition, 243
Support
cone, 28, 394 ff.
functional, 23 ff., 393, 473, 475
point, 27-35, 75, 82, 393
spectral measure, 454
theorem, 27
Supporting
hyperplane, 225
strips, 292-294
Suppression, 364
Surface-area centroid, 240
Surface, toroidal, 424
Surfaces, constant breadth, 291
Symmetric
body, 222
convex bodies, 129, 134-137, 140, 141, 145-147, 149, 150
permutationally, 364
sets, 373
Symmetroid, 293-295
Symmetrization, central, 292, 293
Symmetry,
centers of, 375
central, 373
measures of, 233
Topological classification, 37
Topology,
extended, 305, 310, 313
weak, 352, 353
Toroidal surface, 424
Torsion, 416
Total rotation, 408
Totally convex, 355
Totally positive functions, 337
Translative
endovector sets, 367
families, 366
Translativity, 366
Transportation problem, 317, 318
Transversals, 110, 111, 114, 121, 129-132
Trapezoid-rhombic dodecahedron, 54
Tyhonov cube, 81
Ultimate root, 315
Ultra filter, 214
Umbral notation, 56
Unambiguous, 286
Uniform
continuity, 38, 48
flatness, 83
rotundity, 74, 87
Uniformly
convex, 80, 83, 91, 92
even, 80, 83, 91, 92
Fréchet differentiable, 75, 78, 83, 89
Gateaux differentiable, 78, 83, 89
increasing, 91
rotund, 74, 77, 82-85, 87, 91
smooth, 78, 82-85, 91
Unique extension property, 81, 93
Unional, 362
families, 371
Unit
cell, 37, 39-41, 45, 49, 50
tangent vector, 416
Univalent, 221
Universal cover, 273
Universally continuous, 90
\(\psi\)-inverse star, 381
\(\psi\)-star, 380
Variation diminishing property, 336, 337
Vector
lattice locally convex, 459
rotation, 420
Virtual envelope, 297, 300
Visible, 111
Voronoi polyhedron, 54
Wallman's theorem, 211, 214
Warehouse problem, 317, 319, 322
Weak
compactness, 352, 353, 437
topology, 352, 353
Weak*
locally uniformly rotund, 77, 82
uniformly rotund, 79
Weakly
ambiguous, 286
\(k\) rotund, 77, 82
locally uniformly rotund, 77, 82, 83, 86
uniformly rotund, 79
Width, 140, 141, 154, 221, 222