Representation Theory
of Finite Groups
and Related Topics
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>On the Degrees and Rationality of Certain Characters of</td>
<td>1</td>
</tr>
<tr>
<td>Finite Chevalley Groups</td>
<td></td>
</tr>
<tr>
<td>BY C. T. BENSON and C. W. CURTIS</td>
<td></td>
</tr>
<tr>
<td>Types of Blocks of Representations of Finite Groups</td>
<td>7</td>
</tr>
<tr>
<td>BY RICHARD BRAUER</td>
<td></td>
</tr>
<tr>
<td>Modular Representations of Some Finite Groups</td>
<td>13</td>
</tr>
<tr>
<td>BY N. BURGOYNE</td>
<td></td>
</tr>
<tr>
<td>Some Connections Between Clifford Theory and the Theory of</td>
<td>19</td>
</tr>
<tr>
<td>Vertices and Sources</td>
<td></td>
</tr>
<tr>
<td>BY EDWARD CLINE</td>
<td></td>
</tr>
<tr>
<td>Finite Groups Admitting Almost Fixed-Point-Free Automorphisms</td>
<td>25</td>
</tr>
<tr>
<td>BY MICHAEL J. COLLINS</td>
<td></td>
</tr>
<tr>
<td>Some Remarks on the Krull-Schmidt Theorem</td>
<td>29</td>
</tr>
<tr>
<td>BY S. B. CONLON</td>
<td></td>
</tr>
<tr>
<td>A Clifford Theory for Blocks</td>
<td>33</td>
</tr>
<tr>
<td>BY E. C. DADE</td>
<td></td>
</tr>
<tr>
<td>Jordan’s Theorem for Solvable Groups</td>
<td>37</td>
</tr>
<tr>
<td>BY LARRY DORNHOFF</td>
<td></td>
</tr>
<tr>
<td>Operations in Representation Rings</td>
<td>39</td>
</tr>
<tr>
<td>BY ANDREAS DRESS</td>
<td></td>
</tr>
<tr>
<td>Some Decomposable Sylow 2-Subgroups and a Nonsimplicity Condition</td>
<td>47</td>
</tr>
<tr>
<td>BY PAUL FONG</td>
<td></td>
</tr>
<tr>
<td>Characters and Orthogonality in Frobenius Algebras</td>
<td>49</td>
</tr>
<tr>
<td>BY T. V. FOSSUM</td>
<td></td>
</tr>
<tr>
<td>The Number of Conjugacy Classes in a Finite Group</td>
<td>51</td>
</tr>
<tr>
<td>BY P. X. GALLAGHER</td>
<td></td>
</tr>
<tr>
<td>Sylow 2-Subgroups with non-Elementary Centers</td>
<td>53</td>
</tr>
<tr>
<td>BY DAVID M. GOLDSCHMIDT</td>
<td></td>
</tr>
<tr>
<td>Axiomatic Representation Theory</td>
<td>57</td>
</tr>
<tr>
<td>BY J. A. GREEN</td>
<td></td>
</tr>
<tr>
<td>Real Representations of Split Metacyclic Groups</td>
<td>65</td>
</tr>
<tr>
<td>BY LARRY C. GROVE</td>
<td></td>
</tr>
<tr>
<td>On Some Doubly Transitive Groups</td>
<td>67</td>
</tr>
<tr>
<td>BY KOICHIRO HARADA</td>
<td></td>
</tr>
<tr>
<td>Characterization of Rank 3 Permutation Groups by the Subdegrees</td>
<td>71</td>
</tr>
<tr>
<td>BY D. G. HIGMAN</td>
<td></td>
</tr>
</tbody>
</table>
Preface

The symposium on Representation Theory of Finite Groups and Related Topics was held in Madison, Wisconsin, on April 14–16, 1970, in conjunction with a sectional meeting of the American Mathematical Society. The symposium was held in honor of Professor Richard Brauer, whose fundamental work in representation theory lies at the heart of most of the further developments in this topic.

These proceedings contain articles by the participants, based on their symposium lectures. The articles range from brief surveys of results to detailed outlines of proofs, and are intended to indicate the scope of current research in representation theory.

The organizing committee consisted of Professors Richard Brauer, Charles W. Curtis, Walter Feit, James A. Green, and Irving Reiner (chairman). The committee wishes to express its thanks to the National Science Foundation for its financial support of the symposium. We are also grateful to our colleagues at the University of Wisconsin for making us welcome in Madison. Finally, we thank the American Mathematical Society staff for helping with the arrangements of the symposium.

IRVING REINER
SUBJECT INDEX

- \(AG(d, q_2), \) 68
- \(\alpha_x = \max \{|G|/|B| | B \in \mathcal{V}_x \}, \) 19
- Abelian normal subgroup, 37
- Adams operations, 156
- Adjoints to restriction, 42
- Admissible lattice, 169
 - Irreducibility criterion, 170
- Admissible transformations, 113
- Affine group, 146
- Algebra, 111
 - Bounded type, 111
 - Finite type, 111
 - Indecomposable representations, 111
 - Matrix questions, 113
 - Polynomial part, 120
 - Strongly unbounded type, 111
 - Unbounded type, 111
- Algebraic maps, 39, 40, 42, 43
 - Transfer, 42, 44
- Alternating form, 73
- Alternating group, 95
- Automorphism, 25
- \((B, N)\) pair, 91
- Basic set, 8
- Bass-order, 130, 137–142
 - Completely primary, 133
- Bass-ring, 131, 137
- Block
 - Type of block, 10
 - Bounded type, 111
 - Brauer characters, 124
 - Brauer homomorphism, 140
 - Brauer's first fundamental theorem, 141
 - Brauer's second fundamental theorem, 142
 - Brauer's second main theorem on blocks, 124
- \(\mathcal{G} \)-decomposition, 29
 - Isomorphic refinements, 30
- Cancellation, 85
- Cancellation for modules, 31
- Category of \(G \)-functors, 42
- Characteristic powers, 1
- Characterization of characters, 124

- Character ring functor, 58
- Characters, 49, 51
 - Brauer characters, 124
 - Character table, 97
 - Characterization of characters, 124
 - Extension of character, 51
 - Invariant, 51
 - Irreducible, 3, 80–82, 146
 - Orthogonality relations, 49
 - Permutation, 73
 - Principal indecomposable, 123
 - \(q \)-modular (Brauer), 97
- Character table, 97
- Chevalley groups, 1
 - Finite, 13
 - Hecke algebra, 2
 - Irreducible representation, 13, 169
- Cohomology ring functor, 59
- Completely primary Bass-order, 133
- Compounds, 92
- \(1 \)-1 condition, 141
- Conjugacy classes, 51, 78
- Contravariant form, 170
- Conway group, 108
- Cusp form, 150

- \(\Delta \)-theorem, 117
- Decomposition matrix, 124
- Decomposition numbers, 138
- Defect 0 and 1, 142
- Defect base, 60
- Defect-basis, 44
- Defect group, 61, 139
- Doubly transitive group, 67
- Exchange property, 30
- Exponentials, 40
- Extension of character, 51

- Factorizable groups, 77
- F. C. subgroup, 117
- Fields of characteristic \(p \), 99
- Finite Chevalley groups, 13
Finite groups
AG(d, q2), 68
Adjoint to restriction, 42
Algebraic maps, 39, 40, 42, 43
Alternating group, 95
Automorphism, 25
(B, N) pair, 91
Basic set, 8
Brauer homomorphism, 140
Chevalley groups, 1
1-1 condition, 141
Conjugacy classes, 51, 78
Conway group, 108
Doubly transitive group, 67
Exponentials, 40
Fixed point subgroup, 25
G-functor, 42, 43, 44, 57, 124
GL(n, C), 37
Generalized quaternion groups, 74
Hecke algebra, 91
Hyperelementary groups, 97
 indefiniteness, 20
Indecomposable representations, 89
Index parameters of G, 91
Integral representation ring, 173
Leech lattice, 108
Linear group, 37
Metacyclic groups, 65, 79
Non-simplicity, 47
Onto condition, 141
PSU4(3), 107
Permutation character, 73
Projective oG-modules, 88
Real representations, 66
Reflection representation, 92
Relative Grothendieck rings, 44, 99
Representation modules, 165, 166
Representations of finite groups, 99
Suzuki group, 107
Sylow 2-subgroups of simple groups, 53
Units in Ω(G), 41
X-graded Clifford system, 20
Finite type, 111
Fixed point subgroup, 25
Frobenius algebra, 49
Characters, 49
Frobenius-Schur formula, 98
Fundamental module, 89
G-algebra, 59
G-functor, 42, 43, 44, 57, 124
Category of G-functors, 42
Character ring functor, 58
Cohomology ring functor, 59
Defect base, 60
Defect group, 61, 139
G-algebra, 59
Grothendieck ring functors, 59
Subgroup category, 58
Transfer theorem, 61
GL(n, C), 37
Genera of R-lattices, 85
Generalized polynomial identity, 119
Generalized quaternion groups, 74
Generic degree, 2
Generic ring, 1, 92
Genus, 85
Restricted genus, 87
Gorenstein-ring, 131–133, 137, 138
Green’s polynomials, 149
Grothendieck ring functors, 59
Group
Lie, 13
Primitive, 37
Simple, 13, 161
Group ring, 117
Hecke algebra, 2, 91
Hyperelementary groups, 97
Indecomposable lattice, 137, 140
Indecomposable representations, 89, 111
 Infinite type, 111
Index parameters of G, 91
Induction theorems, 44, 45
Infinite type, 111
 indefiniteness, 20
Integral representation, 85
Integral representation ring, 173
Invariant character, 51
π-blocks, 124
Parabolic type, 3
Irreducibility criterion, 170
Irreducible character, 3, 80–82, 146
Generic degree, 2
Green’s polynomials, 149
Irreducible representation, 13, 169
Isomorphic refinements, 30
SUBJECT INDEX

Krull-Schmidt (-Azumaya) theorem, 29

\(\lambda \)-ring, 155

Lattice
 Cancellation, 85
 Genera of \(R \)-lattices, 85
 Genus, 85
 Indecomposable, 137, 140
 Local direct factor of \(M \), 87

Leech lattice, 108

Lie algebra
 Cusp form, 150
 Lie groups, 13
 Linear group, 37
 Local direct factor \(M \), 87

\(M_\mathcal{F}(\mathcal{L}_1 \text{-free}) \), 21, 22

\(M_{\Delta}(G) \) (\(M \)-homogeneous), 21, 22

Matrix questions, 113
 Admissible transformations, 113

Metacyclic groups, 65, 79
 Split, 65

Modular theory of permutation representations, 137

Modules
 Admissible lattice, 169
 Brauer's first fundamental theorem, 141
 \(\mathcal{L} \)-decomposition, 29
 Cancellation for modules, 31
 Contravariant form, 170
 Decomposition numbers, 138
 Defect 0 and 1, 142
 Exchange property, 30
 Fundamental, 89
 Krull-Schmidt (-Azumaya) theorem, 29
 \(M_\mathcal{F}(\mathcal{L}_1 \text{-free}) \), 21, 22
 \(M_{\Delta}(G) \) (\(M \)-homogeneous), 21, 22
 Schur index, 97
 Tensor product theorem, 171
 Vertex, 165, 166

Nilpotent radical, 118

Nonsimplicity, 47

\(o \)-order, 85

Onto condition, 141

Order
 Bass-order, 130, 137, 142
 Integral representation, 85

Orthogonal idempotent decomposition
 166, 167

Orthogonality relations, 49

\(\pi \)-blocks, 124
 Brauer's second main theorem on blocks, 124
 \(PSU_4(3) \), 107
 Parabolic type, 3
 Partially ordered set, 114
 Permutation character, 73
 Polynomial identity, 118
 Polynomial part, 120
 Prime rings, 117
 Primitive, 37
 Principal indecomposable characters, 123
 Projective ideal, 166
 Orthogonal idempotent decomposition, 166, 167
 Projective \(oG \)-modules, 88

\(q \)-modular (Brauer) character, 97

Real representations, 66

Reflection representation, 92

Compounds, 92

Relative Grothendieck rings, 44, 99
 Defect-basis, 44
 Induction theorems, 44, 45

Representation algebra, 165

Representation modules, 65, 66
 Projective ideal, 166

Representation algebra, 165

Representation of finite groups, 99
 Modular theory of permutation representations, 137

Restricted genus, 87

Ring
 Adams operations, 156
 Bass-ring, 131, 137
 \(\Delta \)-theorem, 117
 Generalized polynomial identity, 119
 Gorenstein-ring, 131–133, 137, 138
 Group ring, 117
 Integral representation ring, 173
 \(\lambda \)-ring, 155
 \(o \)-order, 85
 Polynomial identity, 118
 Prime, 117
 Semiprime, 118
 Semisimple, 120
 Splitting principle, 155

Schur index, 97
 Frobenius-Schur formula, 98
<table>
<thead>
<tr>
<th>Subject</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiprime rings</td>
<td>118</td>
</tr>
<tr>
<td>Nilpotent radical</td>
<td>118</td>
</tr>
<tr>
<td>Semisimple rings</td>
<td>120</td>
</tr>
<tr>
<td>Sets of primes</td>
<td>123</td>
</tr>
<tr>
<td>Simple groups</td>
<td>13, 162</td>
</tr>
<tr>
<td>Split metacyclic groups</td>
<td>65</td>
</tr>
<tr>
<td>Splitting principle</td>
<td>155</td>
</tr>
<tr>
<td>Strongly embedded subgroup</td>
<td>69</td>
</tr>
<tr>
<td>Strongly unbounded type</td>
<td>111</td>
</tr>
<tr>
<td>Subgroup category</td>
<td>58</td>
</tr>
<tr>
<td>Subgroups</td>
<td></td>
</tr>
<tr>
<td>Abelian normal subgroup</td>
<td>37</td>
</tr>
<tr>
<td>F. C. subgroup</td>
<td>117</td>
</tr>
<tr>
<td>Strongly embedded</td>
<td>69</td>
</tr>
<tr>
<td>Weakly closed</td>
<td>26</td>
</tr>
<tr>
<td>Suzuki group</td>
<td>107</td>
</tr>
<tr>
<td>Sylow 2-subgroups of simple groups</td>
<td>53</td>
</tr>
<tr>
<td>System of (B, N)-pairs of type (W, R)</td>
<td>1</td>
</tr>
<tr>
<td>Characteristic powers</td>
<td></td>
</tr>
<tr>
<td>Generic ring</td>
<td>1, 72</td>
</tr>
<tr>
<td>Tensor product theorem</td>
<td>171</td>
</tr>
<tr>
<td>Transfer</td>
<td>42, 44</td>
</tr>
<tr>
<td>Transfer theorem</td>
<td>61</td>
</tr>
<tr>
<td>Type of block</td>
<td>10</td>
</tr>
<tr>
<td>Unbounded type</td>
<td>111</td>
</tr>
<tr>
<td>Strongly</td>
<td>111</td>
</tr>
<tr>
<td>Units in $\mathfrak{u}(G)$</td>
<td>41</td>
</tr>
<tr>
<td>Vector space</td>
<td></td>
</tr>
<tr>
<td>Alternating form</td>
<td>73</td>
</tr>
<tr>
<td>Vertex</td>
<td>165, 166</td>
</tr>
<tr>
<td>$\alpha_x = \max{</td>
<td>G</td>
</tr>
<tr>
<td>Weakly closed subgroups</td>
<td>26</td>
</tr>
<tr>
<td>X-graded Clifford system</td>
<td>20</td>
</tr>
</tbody>
</table>