Nonlinear Functional Analysis and Its Applications

Volume 45 - Part 1

Proceedings of Symposia in Pure Mathematics

American Mathematical Society
NONLINEAR FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
This page intentionally left blank
Nonlinear Functional Analysis and Its Applications

Felix E. Browder, Editor

AMERICAN MATHEMATICAL SOCIETY
PROVIDENCE, RHODE ISLAND
Contents

PART 1

Foreword xi
A note on the regularity of solutions obtained by global topological methods
J. C. ALEXANDER 1
Asymmetric rotating wave solutions of reaction-diffusion equations
J. C. ALEXANDER 7
Parabolic evolution equations with nonlinear boundary conditions
HERBERT AMANN 17
Nonlinear oscillations with minimal period
ANTONIO AMBROSETTI 29
On steady Navier–Stokes flow past a body in the plane
CHARLES J. AMICK 37
On a contraction theorem and applications
IOANNIS K. ARGYROS 51
Dual variational principles for eigenvalue problems
GILES AUCHMUTY 55
Generalized elliptic solutions of the Dirichlet problem for n-dimensional
Monge–Ampère equations
ILYA J. BAKELMAN 73
Existence and containment of solutions to parabolic systems
PETER W. BATES 103
Periodic Hamiltonian trajectories on starshaped manifolds
HENRI BERESTYCKI, JEAN-MICHEL LASRY, GIANNI MANCINI and
BERNHARD RUF 109
Integrability of nonlinear differential equations via functional analysis
M. S. BERGER, P. T. CHURCH and J. G. TIMOURIAN 117
Extinction of the solutions of some quasilinear elliptic problems of arbitrary
order
F. BERNIS 125
On a system of degenerate diffusion equations
M. BERTSCH, M. E. GURTIN, D. HILHORST and L. A. PELETIER 133
Pointwise continuity for a weak solution of a parabolic obstacle problem
MARCO BIORLI 141
A note on iteration for pseudoparabolic equations of fissured media type
MICHAEL BÖHM 147
Homogenization of two-phase flow equations
 Alain Bourgeat 157

Some variational problems with lack of compactness
 Haim Brezis 165

Degree theory for nonlinear mappings
 Felix E. Browder 203

Construction of periodic solutions of periodic contractive evolution systems
 from bounded solutions
 Ronald E. Bruck 227

An abstract critical point theorem for strongly indefinite functionals
 A. Capozzi and D. Fortunato 237

Uniqueness of positive solutions for a sublinear Dirichlet problem
 Alfonso Castro 243

Applications of homology theory to some problems in differential equations
 Kung-Ching Chang 253

On the continuation method and the method of monotone iterations
 Philippe Clément 263

Existence theorems for superlinear elliptic Dirichlet problems in exterior domains
 Charles V. Coffman and Moshe M. Marcus 271

A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori
 C. Conley and E. Zeïnhed 283

Harmonic maps from the disk into the Euclidean N-sphere
 Jean-Michel Coron 301

Nonlinear semigroups and evolution governed by accretive operators
 Michael G. Crandall 305

A theorem of Mather and the local structure of nonlinear Fredholm maps
 James Damon 339

Remarks on S^1 symmetries and a special degree for S^1-invariant gradient mappings
 E. N. Dancer 353

Abstract differential equations, maximal regularity, and linearization
 G. Da Prato 359

Positive solutions for some classes of semilinear elliptic problems
 Djalir G. de Figueiredo 371

Elliptic and parabolic quasilinear equations giving rise to a free boundary:
 the boundary of the support of the solutions
 Jesus Ildefonso Diaz 381

An index theory for periodic solutions of convex Hamiltonian systems
 I. Ekeland 395
CONTENTS

An extension of the Leray–Schauder degree for fully nonlinear elliptic problems
 P. M. Fitzpatrick and Jacobo Pejsachowicz 425
Nonlinear special manifolds for the Navier–Stokes equations
 C. Foiaş and J. C. Saut 439
Regularity criteria for weak solutions of the Navier–Stokes system
 Yoshihazu Giga 449
A strongly nonlinear elliptic problem in Orlicz–Sobolev spaces
 Jean-Pierre Gossez 455
Nontrivial solutions of semilinear elliptic equations of fourth order
 Yong-geng Gu 463
Approximation in Sobolev spaces and nonlinear potential theory
 Lars Inge Hedberg 473
Some free boundary problems for predator-prey systems with nonlinear diffusion
 Jésus Hernández 481
On positive solutions of semilinear periodic-parabolic problems
 Peter Hess 489
The topological degree at a critical point of mountain-pass type
 Helmut Hofer 501
On a conjecture of Lohwater about asymptotic values of meromorphic functions
 J. S. Hwang 511
Parametrix of \(\Box_b \)
 Chisato Iwasaki 521
Applications of Nash–Moser theory to nonlinear Cauchy problems
 Nobuhisa Iwasaki 525
Nonlinear multiparametric equations: structure and topological dimension of global branches of solutions
 J. Ize, I. Massabó, J. Pejsachowicz and A. Vignoli 529

PART 2

Remarks on the Euler and Navier–Stokes equations in \(\mathbb{R}^2 \)
 Tosio Kato 1
Nonlinear equations of evolution in Banach spaces
 Tosio Kato 9
Geometrical properties of level sets of solutions to elliptic problems
 Bernhard Kawohl 25
Remarks about St. Venant solutions in finite elasticity
 David Kinderlehrer 37
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonexpansive mappings in product spaces, set-valued mappings and k-</td>
<td>W. A. Kirk</td>
<td>51</td>
</tr>
<tr>
<td>uniform rotundity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A new operator theoretic algorithm for solving first order scalar</td>
<td>YOSHIKAZU KOBAYASHI</td>
<td>65</td>
</tr>
<tr>
<td>quasilinear equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A general interpolation theorem of Marcinkiewicz type</td>
<td>HIKOSABURO KOMATSU</td>
<td>77</td>
</tr>
<tr>
<td>An easy proof of the interior gradient bound for solutions to the</td>
<td>N. KOREVAAR</td>
<td>81</td>
</tr>
<tr>
<td>prescribed mean curvature equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On application of the monotone iteration scheme to wave and</td>
<td>PHILIP KORMAN</td>
<td>91</td>
</tr>
<tr>
<td>biharmonic equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral obstacle problem for strongly nonlinear second order</td>
<td>RÜDGER LANDES and VESA MUSTONEN</td>
<td>95</td>
</tr>
<tr>
<td>elliptic operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product formula, imaginary resolvents and modified Feynman integral</td>
<td>MICHEL L. LAPIDUS</td>
<td>109</td>
</tr>
<tr>
<td>Quasilinear elliptic equations with nonlinear boundary conditions</td>
<td>GARY M. LIEBERMAN</td>
<td>113</td>
</tr>
<tr>
<td>Some L^p inequalities and their applications to fixed point</td>
<td>Teck-Cheong Lim</td>
<td>119</td>
</tr>
<tr>
<td>theorems of uniformly Lipschitzian mappings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some remarks on the optimal control of singular distributed systems</td>
<td>J. L. LIONS</td>
<td>127</td>
</tr>
<tr>
<td>Global continuation and complicated trajectories for periodic</td>
<td>JOHN MALLEET-PARET and ROGER D.</td>
<td>155</td>
</tr>
<tr>
<td>solutions of a differential-delay equation</td>
<td>NUSSBAUM</td>
<td></td>
</tr>
<tr>
<td>On quasiconvexity in the calculus of variations</td>
<td>PAOLO MARCELLINI</td>
<td>169</td>
</tr>
<tr>
<td>Asymptotic growth for evolutionary surfaces of prescribed mean</td>
<td>PAOLO MARCELLINI and KEITH</td>
<td>175</td>
</tr>
<tr>
<td>curvature</td>
<td>MILLER</td>
<td></td>
</tr>
<tr>
<td>L^2-decay of solutions of the Navier–Stokes equations in the</td>
<td>KYÚYA MASUDA</td>
<td>179</td>
</tr>
<tr>
<td>exterior domain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the index and the covering dimension of the solution set of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>semilinear equations</td>
<td>PAOLO MARCELLINI</td>
<td>183</td>
</tr>
<tr>
<td>On singularities of solutions to nonlinear elliptic systems of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>partial differential equations</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Pointwise potential estimates for elliptic obstacle problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On singularities of solutions to nonlinear elliptic systems of</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>partial differential equations</td>
<td>JINDRICH NEČAS</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations
Wei-Ming Ni 229

Global solutions of the hyperbolic Yang–Mills equations and their sharp asymptotics
Stephen M. Paneitz 243

Surjectivity of generalized \(\phi\)-accretive operators
Sehie Park and Jong An Park 255

Approximation-solvability of periodic boundary value problems via the \(A\)-proper mapping theory
W. V. Petryshyn 261

On a generalization of the Fuller index
A. J. B. Potter 283

Minimax methods for indefinite functionals
Paul H. Rabinowitz 287

Nonlinear semigroups, holomorphic mappings and integral equations
Simeon Reich 307

Rearrangement of functions and reverse Jensen inequalities
Carlo Sbordone 325

Bifurcation and even-like vector fields
Steve J. Schiffman and Jay H. Wolkowisky 331

Classical and quantized invariant wave equations—progress and problems
Irving Segal 341

Resonance and the stationary Navier–Stokes equations
Victor L. Shapiro 359

On removable point singularities of coupled Yang–Mills fields
L. M. Sibner 371

Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems
S. Simons 377

On approximating fixed points
S. P. Singh and B. Watson 393

Symmetry breaking and nondegenerate solutions of semilinear elliptic equations
Joel A. Smoller and Arthur G. Wasserman 397

A generalized Palais-Smale condition and applications
Michael Struwe 401

Existence and nonuniqueness of solutions of a noncoercive elliptic variational inequality
Andrzej Szulkin 413
CONTENTS

Fixed point, minimax, and Hahn-Banach theorems

WATARU TAKAHASHI 419

Remarks on the Euler equations

R. TEMAM 429

Infinite-dimensional dynamical systems in fluid mechanics

R. TEMAM 431

Existence of symmetric homoclinic orbits for systems of Euler–Lagrange equations

J. F. TOLAND 447

Graphs with prescribed curvature

NEIL S. TRUDINGER 461

Navier–Stokes equations for compressible fluids: global estimates and periodic solutions

ALBERTO VALLI 467

Weak and strong singularities of nonlinear elliptic equations

LAURENT VÉRON 477

Regularity of weak solutions of the Navier–Stokes equations

WOLF VON WAHL 497

A monotone convergence theorem in abstract Banach spaces

IOAN I. VRABIE 505

On a class of strongly nonlinear Dirichlet boundary-value problems: beyond Pohožaev’s results

PIERRE A. VUILLERMOT 521

Topological degree and global bifurcation

JEFFREY R. L. WEBB and STEWART C. WELSH 527

Generalized idea of Synge and its applications to topology and calculus of variations in positively curved manifolds

S. WALTER WEI 533

On extending the Conley–Zehnder fixed point theorem to other manifolds

ALAN WEINSTEIN 541

L^p-energy and blow-up for a semilinear heat equation

FRED B. WEISSLER 545

A geometric theory of bifurcation

JAY H. WOLKOWISKY 553

Some problems on degenerate quasilinear parabolic equations

ZHUOQUN WU 565

Quasi-homogeneous microlocal analysis for nonlinear partial differential equations

MASAO YAMAZAKI 573
Foreword

The two volumes *Nonlinear Functional Analysis and Its Applications*, published in the series Proceedings of Symposia in Pure Mathematics (vol. 45, parts 1 and 2), are the result of the thirty-first Summer Research Institute of the American Mathematical Society held at the University of California at Berkeley from July 11 to July 29, 1983. This institute was partially supported by a grant from the National Science Foundation, and organized by an Organizing Committee consisting of Haim Brezis, Felix Browder (Chairman), Tosio Kato, J.-L. Lions, Louis Nirenberg, and Paul Rabinowitz.

The purpose of the institute was to present and develop research on an international basis in nonlinear functional analysis and its applications, especially in the study of boundary value problems for nonlinear partial differential equations and corresponding problems in geometry and mathematical physics. Major topics which were covered in a series of expository lectures as well as research talks included: Minimax methods in the calculus of variations, existence theory for variational problems without compactness, theories of degree of mapping, inverse function theorems of Nash–Moser type, nonlinear semigroup theory, nonlinear equations of evolution, nonlinear problems of control theory, periodic solutions of Hamiltonian systems, generalizations of the Morse theory, nonlinear partial differential equations in gauge field theory, the theory of Feigenbaum cascades, the study of the Navier–Stokes equations, nonlinear elliptic equations in differential geometry, and a variety of topics concerning nonlinear elliptic boundary value and eigenvalue problems, bifurcation theory, nonlinear hyperbolic equations, nonlinear conservation laws, nonlinear Hamiltonian–Jacobi equations, and an even wider variety of physical applications.

There were 13 series of expository lectures totaling 39 hours of lectures which summarized main directions and methods in current research. In addition, there were 115 one-hour research lectures.

A total of 203 mathematicians registered for the Institute, twenty of whom were students. The international character of the Institute is reflected in the national origins of the participants. Twenty-two countries not in North America were represented by the following numbers of participants: Africa (1), Australia (3), Belgium (1), Brazil (1), China (4), Czechoslovakia (1), England (4), France (22),
FOREWORD

Israel (2), Italy (14), Japan (8), Korea (1), Netherlands (2), New Zealand (1), Poland (1), Rumania (1), Scotland (1), Spain (4), Sweden (2), Switzerland (3), and West Germany (12).

One final comment may be in order. As compared to an earlier volume, *Nonlinear Functional Analysis*, which appeared in the Proc. Sympos. Pure Math. series 15 years ago, the present volume as well as the Institute itself represent a much more forceful emphasis upon applications as opposed to general theory. This reflects, in my view, a major shifting of focal emphasis in the field as well as in the tastes of different organizing committees. Though new conceptual advances are being made and new general methods are being developed, they tend on the whole to be much more closely linked with particular domains of application. In part, this represents the process of assimilation of the general theories developed in previous decades, as well as a mood of distrust of general theories which move too far from the context of applications. This probably reflects a more general process going on in the mathematical world at large, but it can be seen in a transparent way in the present context. No one can predict with greater security than their own self-confidence whether this tendency is irreversible or part of a broad pendular swing, and no one can determine to anyone else’s satisfaction whether it is due to the internal processes of mathematical development or to the pressures arising from the external institutional context in which mathematics is being done today. Suffice it to record the facts in their broad outline so that we can look at them in the classical spirit of non-attachment.

FELIX E. BROWDER
NONLINEAR FUNCTIONAL ANALYSIS
AND ITS APPLICATIONS