# Representation Theory and Automorphic Forms

### About this Title

**T. N. Bailey**, *University of Edinburgh, Scotland* and **A. W. Knapp**, *SUNY at Stony Brook*, Editors

Publication: Proceedings of Symposia in Pure Mathematics

Publication Year:
1997; Volume 61

ISBNs: 978-0-8218-0609-8 (print); 978-0-8218-9364-7 (online)

DOI: https://doi.org/10.1090/pspum/061

### Table of Contents

**Front/Back Matter**

**Articles**

- A. W. Knapp – Structure theory of semisimple Lie groups [MR 1476489]
- Peter Littelmann – Characters of representations and paths in $\mathfrak {H}^*_{\mathrm {R}}$ [MR 1476490]
- Robert W. Donley, Jr. – Irreducible representations of $\mathrm {SL}(2, \mathbf {R})$ [MR 1476491]
- M. Welleda Baldoni – General representation theory of real reductive Lie groups [MR 1476492]
- Patrick Delorme – Infinitesimal character and distribution character of representations of reductive Lie groups [MR 1476493]
- Wilfried Schmid and Vernon Bolton – Discrete series [MR 1476494]
- Robert W. Donley, Jr. – The Borel-Weil theorem for $\mathrm {U}(n)$ [MR 1476495]
- E. P. van den Ban – Induced representations and the Langlands classification [MR 1476496]
- C. Moeglin – Representations of $\mathrm {GL}(n)$ over the real field [MR 1476497]
- Sigurdur Helgason – Orbital integrals, symmetric Fourier analysis, and eigenspace representations [MR 1476498]
- E. P. van den Ban, M. Flensted-Jensen and H. Schlichtkrull – Harmonic analysis on semisimple symmetric spaces: a survey of some general results [MR 1476499]
- David A. Vogan, Jr. – Cohomology and group representations [MR 1476500]
- A. W. Knapp – Introduction to the Langlands program [MR 1476501]
- C. Moeglin – Representations of $\mathrm {GL}(n,F)$ in the non-Archimedean case [MR 1476502]
- Hervé Jacquet – Principal $L$-functions for $\mathrm {GL}(n)$ [MR 1476503]
- Jonathan D. Rogawski – Functoriality and the Artin conjecture [MR 1476504]
- A. W. Knapp – Theoretical aspects of the trace formula for $\mathrm {GL}(2)$ [MR 1476505]
- Hervé Jacquet – Note on the analytic continuation of Eisenstein series: An appendix to “Theoretical aspects of the trace formula for $\mathrm {GL}(2)$” [in Representation theory and automorphic forms (Edinburgh, 1996), 355–405, Proc. Sympos. Pure Math., 61, Amer. Math. Soc., Providence, RI, 1997; MR1476505 (98k:11062)] by A. W. Knapp [MR 1476506]
- A. W. Knapp and J. D. Rogawski – Applications of the trace formula [MR 1476507]
- James Arthur – Stability and endoscopy: informal motivation [MR 1476508]
- Hervé Jacquet – Automorphic spectrum of symmetric spaces [MR 1476509]
- Robert P. Langlands – Where stands functoriality today? [MR 1476510]