Proceedings of Symposia in PURE MATHEMATICS

Volume 61

Representation Theory and Automorphic Forms

Instructional Conference International Centre for Mathematical Sciences March 1996

Edinburgh, Scotland
T. N. Bailey
A. W. Knapp

Editors

Selected Titles in This Series

61 T. N. Bailey and A. W. Knapp, Editors, Representation theory and automorphic forms (International Centre for Mathematical Sciences, Edinburgh, Scotland, March 1996)
60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994)
59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994)
58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992)
57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993)
56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania، State University, University Park. July 1991)
55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991)
54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990)
53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah. May 1989)
52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989)
51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/uperator algebras and applications (University of New Hampshire, July 1988)
50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988)
49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987)
48 R. O. Wells, Jr., Editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987)
47 Paul Fong, Editor, The Arcata conference on representations of finite groups (Humboldt State University, Arcata, California, July 1986)
46 Spencer J. Bloch, Editor, Algebraic geometry - Bowdoin 1985 (Bowdoin College, Brunswick, Maine, July 1985)
45 Felix E. Browder, Editor, Nonlinear functional analysis and its applications (University of California, Berkeley, July 1983)
44 William K. Allard and Frederick J. Almgren, Jr., Editors, Geometric measure theory and the calculus of variations (Humboldt State University, Arcata, California, July/August 1984)
43 François Trèves, Editor, Pseudodifferential operators and applications (University of Notre Dame, Notre Dame, Indiana, April 1984)
42 Anil Nerode and Richard A. Shore, Editors, Recursion theory (Cornell University, Ithaca, New York, June/July 1982)
41 Yum-Tong Siu, Editor, Complex analysis of several variables (Madison, Wisconsin, April 1982)
40 Peter Orlik, Editor, Singularities (Humboldt State University, Arcata, California, July/August 1981)
39 Felix E. Browder, Editor, The mathematical heritage of Henri Poincaré (Indiana University, Bloomington, April 1980)
38 Richard V. Kadison, Editor, Operator algebras and applications (Queens University, Kingston, Ontario, July/August 1980)

Proceedings of Symposia in Pure Mathematics

Volume 61

Representation Theory and Automorphic Forms

Instructional Conference
International Centre for Mathematical Sciences
March 1996
Edinburgh, Scotland
T. N. Bailey
A. W. Knapp

Editors

American Mathematical Society
Providence, Rhode Island
International Centre for Mathematical Sciences
Edinburgh, Scotland

PROCEEDINGS OF AN INSTRUCTIONAL CONFERENCE ON REPRESENTATION THEORY AND AUTOMORPHIC FORMS EDINBURGH, SCOTLAND
 MARCH 17-29, 1996

organized by the International Centre for Mathematical Sciences with support from the European Commission and the EPSRC.

1991 Mathematics Subject Classification. Primary 11Rxx, 17Bxx, 22Exx, 43Axx; Secondary 11Sxx.

Library of Congress Cataloging-in-Publication Data

Representation theory and automorphic forms : instructional conference, International Centre for Mathematical Sciences, March 1996, Edinburgh, Scotland / T. N. Bailey, A. W. Knapp, editors. p. cm. - (Proceedings of symposia in pure mathematics, ISSN 0082-0717 ; v. 61)

Includes bibliographical references and index.
ISBN 0-8218-0609-2

1. Representation of groups-Congresses. 2. Semisimple Lie groups-Congresses. 3. Automorphic forms-Congresses. I. Bailey, T. N. II. Knapp, Anthony W. III. Series. QA176.R455 1997
515'.7223-dc21
97-26278
CIP

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
(c) 1997 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

Contents

Foreword vii-viii
Structure Theory of Semisimple Lie Groups 1-27By A. W. Knapp
Characters of Representations and Paths in $\mathfrak{H}_{\mathbb{R}}^{*}$ 29-49By Peter Littelmann
Irreducible Representations of $\operatorname{SL}(2, \mathrm{R})$ 51-59By Robert W. Donley, Jr.
General Representation Theory of Real Reductive Lie Groups $61-72$
By M. Welleda Baldoni
Infinitesimal Character and Distribution Character of Representations of Reductive Lie Groups 73-81
By Patrick Delorme
Discrete Series 83-113By Wilfried Schmid and Vernon Bolton
The Borel-Weil Theorem for $U(n)$ 115-121
By Robert W. Donley, Jr.
Induced Representations and the Langlands Classification 123-155
By E. P. van den Ban
Representations of GL(n) over the Real Field 157-166By C. Mcglin
Orbital Integrals, Symmetric Fourier Analysis, and Eigenspace Representations 167-189
By Sigurdur Helgason
Harmonic Analysis on Semisimple Symmetric Spaces: A Survey of Some General Results $191-217$By E. P. van den Ban, M. Flensted-Jensen, andH. Schlichtkrull
Cohomology and Group Representations 219-243By David A. Vogan, Jr.
Introduction to the Langlands Program 245-302
By A. W. Knapp
Representations of $\operatorname{GL}(\mathrm{n}, \mathrm{F})$ in the Nonarchimedean Case 303-319
By C. Mceglin
Principal L-functions for $G L(n)$ $321-329$
By Hervé Jacquet
Functoriality and the Artin Conjecture 331-353
By Jonathan D. Rogawski
Theoretical Aspects of the Trace Formula for $G L(2)$ 355-405 By A. W. Knapp
Note on the Analytic Continuation of Eisenstein Series:
An Appendix to the Previous Paper 407-412
By Hervé Jacquet
Applications of the Trace Formula 413-431
By A. W. Knapp and J. D. Rogawski
Stability and Endoscopy: Informal Motivation 433-442
By James Arthur
Automorphic Spectrum of Symmetric Spaces 443-455
By Hervé Jacquet
Where Stands Functoriality Today? 457-471By Robert P. Langlands
Index 473-479

Foreword

In 1997 the annual instructional conference of the International Centre for Mathematical Sciences in Edinburgh was devoted to the representation theory of semisimple groups, to automorphic forms, and to the relations between these subjects. It was organized by T. N. Bailey, L. Clozel, M. Duflo, and A. W. Knapp. The two-week meeting began with a rapid summary of basic theory and concluded with two lectures by Robert Langlands, returning from the award of the Wolf Prize. In between, fifteen other world experts gave courses of two to five lectures. There were close to one hundred participants, largely from Western Europe and North America, but also from Eastern Europe, Japan, and the Developing World. Funding for the conference was provided by the European Commission and the Engineering and Physical Sciences Research Council of the United Kingdom.

The papers in this volume consist of slightly expanded versions of the lectures, with some minor rearrangements. An exception is the paper by James Arthur, which is a version of a lecture given at a later conference. All papers were received before May 1, 1997, and were refereed. The papers are intended to provide overviews of the topics they address, and the authors have supplied extensive bibliographies to guide the reader who wants more detail. The editors hope that the papers will serve partly as guides to the literature and that readers at any level will be able to get an outline of new ideas that they will be able to fill in by following the references. As is true in the mathematical literature generally, different authors use slightly different definitions and notation. A global index at the end of the volume may help the reader reconcile the differences.

The aim of the conference was to provide an intensive treatment of representation theory for two purposes: One was to help analysts to make systematic use of Lie groups in work on harmonic analysis, differential equations, and mathematical physics, and the other was to treat for number theorists the representation-theoretic input to Wiles's proof of Fermat's Last Theorem.

It is tempting to think of the lectures and papers as consisting of a common core and two more advanced parts-one going in the direction of analysis on semisimple groups G and semisimple symmetric spaces G / H and the other going in the direction of properties of cusp and automorphic forms, their associated number theory, and properties of G / Γ for arithmetic subgroups Γ. But the editors have resisted the temptation to organize the proceedings in this fashion, because this would ignore the important historical interplay between the two subjects.

This interplay goes in both directions, as evidenced in many of the papers. The Langlands conjecture on discrete series of G, which is discussed in Schmid's paper, came about when Langlands took a known theorem about G / Γ, put $\Gamma=1$, and made a heuristic calculation about what should happen. The standard intertwining
operators for G, which are discussed in van den Ban's article, originally arose in the setting of G / Γ, but their beautiful properties are much clearer in the setting of G and lead to a better understanding of analytic continuation of Eisenstein series and L functions. Harish-Chandra's harmonic analysis on G, which is discussed in Helgason's paper, used Eisenstein integrals and cusp forms modeled on Eisenstein series and cusp forms for G / Γ. In turn Harish-Chandra's analysis on G is in part the model for analysis on the semisimple symmetric spaces G / H, discussed in the paper by van den Ban, Flensted-Jensen, and Schlichtkrull. Oddly, the analysis on G / H adapts two devices, truncation and the residual spectrum, that were first used for G / Γ but are not necessary in the analysis for G.

A great deal of the number-theoretic part of the representation theory in this volume is devoted to functoriality, a conjectural notion introduced by Langlands and applicable only in the setting of G / Γ. Rogawski's article shows how instances of functoriality lead to the Langlands proof of previously unsettled cases of Artin's conjecture; in turn, these cases of Artin's conjecture are what Wiles used from representation theory in his proof of Fermat's Last Theorem.

An important tool in addressing functoriality is the trace formula, which is discussed in several papers. One final instance of the interplay between G / Γ and G / H is that the notion of a semisimple symmetric space, which involves the fixed group of an involution, can be adapted from Lie groups to algebraic groups defined over number fields. In Jacquet's article this notion leads to a relative trace formula and to a conjecture characterizing the key ingredient, base change, in the work of Langlands on Artin's Conjecture. In his own article Langlands speculates that this formula of Jacquet is worth further examination by the coming generation.

The editors are grateful to David Vogan for his assistance with mathematical editing, to Lucy Young and Margaret Cook for making the arrangements for the conference, and to Sergei Gelfand, Christine Thivierge, and Thomas Costa at the American Mathematical Society for their work in publishing these proceedings.

Index

abelian extension, maximal, 249
absolute trace formula, 444
abstract Cartan matrix, 6
abstract Fourier transform, 195
abstract harmonic analysis, 195
abstract root system, 4
acceptable, 93
additive, 333
adele, 254
adjoint lifting, 342
adjoint representation, 298
admissible (\mathfrak{g}, K)-module, 68, 138
admissible homomorphism, 258, 277, 278, 294
admissible module, 276
admissible representation, $68,75,134,311$
algebraic group
linear, 267
ramified at a place, 414
split at a place, 382,414
unramified at a place, 382
algebraically integral, 9,18
almost all, 254
along the walls, 146
analytic vector, 69
analytically integral, 18
anisotropic, 433
approximately unital, 275, 276
archimedean, 246
Arthur's conjecture, 460
Artin Conjecture, 267, 283, 334
Artin L function, 264, 332
Artin map, 260, 261
Artin product formula, 256
Artin reciprocity, 260, 261
Artin symbol, 260
associated θ-stable parabolic, 231
associated vector bundle, 123
Atiyah's L^{2} Index Theorem, 103
automorphic form, 274, 328, 364, 391, 461
automorphic function, 325
automorphic induction, 343, 421
automorphic L function, 458
automorphic module, 276
automorphic representation, 276, 325, 328, 461
cuspidal, 276, 328
base change, 299, 343, 422, 450
base change lift, 345, 425
belong, 445
Blattner's Conjecture, 105
Borel subalgebra, 26, 83
Borel subgroup, 84
Borel-Harish-Chandra theorem, 384
Borel-Weil Theorem, 85, 115
Borel-Weil-Bott Theorem, 85121
bounded at $\infty, 94$
Brauer's Induction Theorem, 267
Bruhat decomposition, 25, 136, 305
Bruhat order, 36
bundle
associated vector, 123
canonical, 85
homogeneous vector, 123
C^{∞} vector, 63
canonical bundle, 85
Cartan decomposition, 21, 22, 305
Cartan involution, 20
Cartan matrix, 5 abstract, 6
Cartan subalgebra, 2, 16, 24, 78
Cartan subgroup, 24
Cartan subspace, 194
Cartan's criterion, 1
Casimir element, 11
Casselman-Osborne Lemma, 100
Cayley transform, 24
central character, 335
character, $13,158,168$
distribution, 77
global, 77, 91
infinitesimal, 73
Chevalley's Lemma, 7
class field theory
global, 261
local, 250
coadjoint orbit, elliptic, 231
cofinite ideal, 139
cohomological induction, 219
cohomology
relative Lie algebra, 223
separated $L^{2}, 97$
sheaf, 96
compact Cartan subspace, 194
compact dual, 225
compact picture, 56, 132
compact real form, 86
compact root, 94,200
compact type, 193
complementary series, 53
completion, 254
complex Weyl group, 95
complex semisimple group, 26
concatenation, 30
locally integral, 37
conductor, 286
congruence relation, Eichler-Shimura, 429
conjugation, 14
constant term, 325, 335, 359, 385, 408
of Eisenstein series, 366
contragredient, 308
correspond, 415
crystal graph, 48
cusp form, 271, 275
cuspidal automorphic representation, 276, 328
cuspidal function, $273,336,396$
cuspidal part, $357,360,362,373,386$
cuspidal representation, 310, 311, 336
cuspidal support, 314
decay at $\infty, 94$
decomposition
Bruhat, 25, 136, 305
Cartan, 21, 22, 305
group, 259
Iwasawa, 23, 56, 305
$K A H, 207$
KAK, 25
Langlands, 26
Demazure-type character formula, 45
density, 126
density theorem, Tchebotarev, 334
differentiable vector, 63
dihedral, 347
Dirichlet character, 265, 284
Dirichlet L function, 323
discrete series, 54, 91, 185, 199, 314, 315
holomorphic, 107
distinguished, 445, 448
distribution character, 77
Dixmier-Malliavin theorem, 65, 378
Dolbeault complex, 89
dominant, 6
dual group, 31
dual path, 31
dual root, 36
Dynkin diagram, 6
Eichler-Selberg trace formula, 357, 428
Eichler-Shimura congruence relation, 429
eigendistribution, 78 invariant, 93
eigenspace representation, 182
Eisenstein integral, 179, 207 normalized, 208
Eisenstein series, 363, 408, 443
constant term, 366
elliptic coadjoint orbit, 231
elliptic element, 400, 415, 422
elliptic endoscopic group, 438
elliptic representation, 415
endoscopic group, 438
endoscopy, 291, 413, 447
epsilon factor, 323, 327
Langlands, 279
equivalence, 8 infinitesimal, 68
equivalent (\mathfrak{g}, K)-modules, 68
equivalent representations, 62
Euler-Poincaré principle, 99
even function, 361
existence theorem
global class field theory, 261
local class field theory, 251
exponent, 144, 314
flag, 305
flag variety, 84
form, invariant, 1
formal degree, 91
Fourier inversion, 177, 195, 196
Fourier transform, 167, 168, 176, 177, 195, 204, 321, 322
Fourier-Laplace transform, 365, 391
fractional ideal, 255
Fréchet representation, 67
Fréchet space, 67
Frobenius class, 333
Frobenius element, 248, 333
Frobenius reciprocity, 125, 146, 150
functoriality, 297, 339, 355, 413, 450
fundamental Cartan subspace, 194
fundamental lemma, 427, 439, 453, 458
\mathfrak{g} module, 62
(\mathfrak{g}, H)-module, 221
(\mathfrak{g}, K) module, 67, 68
admissible, 68, 138
underlying, 68
unitary, 68
Galois representation, 332
Gårding's Lemma, 64
generalized
Littlewood-Richardson rule, 42
principal series, 76
Ramanujan conjecture, 338, 463
spherical function, 179
weight space, 8
generic representation, 288
geometric picture, 125
geometric side, 356, 434
geometric term, 403
global
character, 77, 91
class field theory, 261
functoriality, 297, 355, 413, 450
Jacquet-Langlands correspondence, 416, 435
L function, 323, 327
Zeta integral, 326
Zeta integral of Tate, 322
globalization, 146
globalization functor, 109
globalization of module, 108
Godement-Jacquet L function, 283
Grossencharacter, 265
group case, 193
H-spherical, 195
half density, 126
Harish-Chandra
class, 27
completeness theorem, 160
isomorphism, 75
module, 106, 138, 222
Harish-Chandra's Theorem, 95
Hecke algebra, 275
Hecke operator, 272
Hilbert modular form, 273
Hilbert-Schmidt operator, 91
Hodge theory, 90, 97, 99, 121, 465
holomorphic discrete series, 107
homogeneous vector bundle, 123
hyperbolic regular element, 400
icosahedral, 347
idele, 256
idele class group, 260
Index Theorem, 103
induced picture, 56, 124, 132
induced representation, 124, 158, 307
induction, 334
automorphic, 343, 421
cohomological, 219
normalized, 128
normalized parabolic, 130
parabolic, 129
inertia group, 247, 248
infinitesimal character, 73, 134
infinitesimally equivalent, 68
instability, 447
integers, 246
integral, 9,18
integral path, 42
intermediate series, 210
intertwining operator, $57,62,159,392$
normalization, 162
standard, 153, 366
invariant eigendistribution, 78, 93
invariant form, 1
invariant subspace, 62,68
inversion formula, 177, 195, 196
involution, Cartan, 20
irreducible
(\mathfrak{g}, K) module, 68
representation, 8,62
root system, 4
semisimple symmetric space, 193
isomorphism theorem, 6
isotypic component, 65, 68
Iwasawa decomposition, 23, 56, 305
Jacquet module, 308
Jacquet-Langlands Converse Theorem, 285, 422
Jacquet-Langlands correspondence
global, 416, 435
local, 415
Jacquet-Shalika theorem, 342
Jantzen-Zuckerman translation principle, 102
K finite vector, 66
$K A H$ decomposition, 207
$K A K$ decomposition, 25
Killing form, 1
Kloosterman integral, 451
Kostant partition function, 13
Kostant's theorem, 227
L equivalence, 437
L factor
Langlands, 279
local, 321
L function
Artin, 332
automorphic, 458
cuspidal representation, 338
global, 323, 327
Godement-Jacquet, 283
Langlands, 281
motivic, 457
standard, 458, 461
L group, 291, 293
L homomorphism, 296
L indistinguishable, 292
L packet, 292
L^{2} Index Theorem, 103
L^{2} cohomology, 97
Langlands
class, 295, 337
classification, 58, 151, 159, 164
Conjecture for discrete series, 98
Conjecture, Local 278
data, 151
decomposition, 26
elementary L factor, 279
epsilon factor, 279
L function, 281
quotient, 151
Quotient Theorem, 317
Reciprocity Conjecture, 283
subquotient, 280
theorem, 348
Langlands-Artin Conjecture, 339
Langlands-Tunnell theorem, 351
Laplace-Beltrami operator, 90
lattice, 304
leading exponent, 144
length function, 36
Levi subalgebra, 26
Levi subgroup, 230
lexicographic ordering, 5, 115
lie above, 258
Lie algebra
cohomology, relative, 223
reductive, 14
semisimple, 1
simple, 1
Lie group
reductive, 27
semisimple, 22
limit of discrete series, 54
linear algebraic group, 267
reductive, 267
unipotent, 267
Littlewood-Richardson rule, 42
local
class field theory, 250
field, 245
functoriality, 297
Jacquet-Langlands correspondence, 415
L factor, 321
Langlands Conjecture, 278, 292, 316
reciprocity map, 250
Zeta integral, 324
Zeta integral of Tate, 321
locally finite action, 221
locally integral concatenation, 37
lowering operator, 31
Maass form, 272,447
Maass-Selberg relations, 209, 210
match, 416
matching conditions, 93
matching orbital integrals, 417, 449, 453
matrix coefficient, 137, 324
Matsushima's Theorem, 223
maximal abelian extension, 249
maximal split Cartan subspace, 194
maximal torus, 15
maximal unramified extension, 248
maximally compact, 24
maximally noncompact, 24
minimal parabolic, 25
minimal principal series, 137
modular form, 271, 359
module, 246
most continuous part, 205
motivic L function, 457
μ-spherical Fourier transform, 208
multiplicity, 195, 223
multiplicity one theorem, 284, 336
strong, 284
nilpotent radical, 26
non-Riemannian type, 193
nonarchimedean, 246
noncompact picture, 55, 132
noncompact Riemannian form, 201
noncompact root, 94
noncompact type, 193
nondegenerate character, 288
nonunitary principal series, 55,279
normalization of intertwining operator, 162
normalized Eisenstein integral, 208
normalized induction, 128
normalized parabolic induction, 130
number field, 253
octahedral, 347, 351
odd function, 361
opposite parabolic subgroup, 309
orbital integral, 171, 434, 452
orbital integrals, matching, 417
ordering, 5
ordering, lexicographic, 115
p-adic field, 246
P-R-V conjecture, 46
pair, 221
Paley-Wiener theorem, 178, 195, 196, 213
parabolic induction, 129
parabolic induction, normalized, 130
parabolic subalgebra, 26
parabolic subalgebra, θ-stable, 230
parabolic subgroup, opposite, 309
partial holomorphic extension, 201
path integral, 42
path, piecewise linear, 30
Peter-Weyl Theorem, 66, 87, 169
picture
compact, 56, 132
geometric, 125
induced, 56, 124, 132
noncompact, 55, 132
piecewise linear path, 30
place, 254
plactic algebra, 48
Plancherel formula, 168, 176, 178, 195, 196, 210
Plancherel measure, 195
Poincaré-Birkhoff-Witt theorem, 11
Poisson kernel, 202

Poisson summation formula, 322, 374, 377
Poisson transform, 179, 201
positive parameter, 159, 164
positive root, 5
pre-Paley-Wiener space, 213
prime element, 246
principal series, $53,158,185$
for $G / H, 202$
generalized, 76
minimal, 137
nonunitary, 55, 279
spherical, 137, 361
unramified, 280, 337
projectivity, 312
pseudo wave packet, 212
quasicharacter, 265
quasicuspidal representation, 311
quaternion algebra, 381, 414, 428 trace formula, 383
R-group, 160
radial differential equations, 140
radical, nilpotent, 26
Radon measure, 128
raising operator, 31
Ramanujan conjecture, 338, 460, 463
ramification degree, 247
ramified algebraic group at a place, 414
ramified character, 306
ramified extension, 247
ramified finite-dimensional representation, 286
ramified prime ideal, 259
rank, 5, 24, 194
rapid decrease, 272, 275, 399
real form, 14
compact, 86
real Weyl group, 95
reciprocity map, local, 250
reduced root, 5
reduced root system, 4
reducible root system, 4
reductive Lie algebra, 14
reductive Lie group, 27
reductive linear algebraic group, 267
reflection, root, 4
regular element, 24,78
strongly, 436
relative Lie algebra cohomology, 223
relative trace formula, 413, 446
relevant, 294, 414
representation, $8,61,306,307$
admissible, 68, 75, 134, 311
automorphic, 276, 328, 461
automorphically induced, 421
contragredient, 308
cuspidal, 310, 311, 336
cuspidal automorphic, 276, 328
discrete series, 91
eigenspace, 182
elliptic, 415
finite-dimensional, ramified, 286
Fréchet, 67
Galois, 332
generic, 288
induced, 124, 158
irreducible, 62
quasicuspidal, 311
smooth, 275, 306
special, 280
spherical, 324
square-integrable, 91
supercuspidal, 310
tempered, 149, 315, 317
unitary, 62
unramified, 280, 336
unramified finite-dimensional, 333, 337
residue, 211, 371, 393
residue degree, 247
restricted direct product, 254
restricted root, 22
restricted tensor product, 277
restriction, 334
restriction of a character, 79
restriction of ground field, 269
Riemannian type, 193
ring of integers, 246
root, 2
compact, 94, 200
datum, 293
dual, 36
noncompact, 94
positive, 5
reduced, 5
reflection, 4
restricted, 22
simple, 5
space, 2
string, 4
system, 4
system of a pair, 37
Satake isomorphism, 294
Selberg-Arthur trace formula, 355, 403
semisimple conjugacy class, 333
semisimple group, complex, 26
semisimple Lie algebra, 1
semisimple Lie group, 22
semisimple symmetric pair, 192
semisimple symmetric space, 185,192
compact type, 193
group case, 193
irreducible 193
non-Riemannian type, 193
noncompact type, 193
Riemannian type, 193
semisimplification, 310
separated L^{2} cohomology, 97
shape, 30
sheaf cohomology, 96
Shimura variety, 467
Shimura-Taniyama conjecture, 468
Siegel modular form, 273
Siegel set, 397
σ conjugate, 425
simple Lie algebra, 1
simple root, 5
simple system, 5
singular element, 400
slow growth, 271, 275, 364, 399
smooth, $274,307,382$
smooth module, 276
smooth representation, 275, 306
Sobolev space, 92
special representation, 280
spectral decomposition, 443, 445
spectral side, 356, 434
spectral term, 403
Speh theorem, 158
spherical distribution, 197
spherical function, 138,207
generalized, 179
spherical orthonormal basis, 197
spherical principal series, 137,361
spherical representation, 324
spherical vector, 137,197
split, 382
split algebraic group at a place, 414
split rank, 194
square-integrable representation, 91
stability, 433, 447
stable trace formula, 413, 439
stably conjugate, 436
standard density, 126
standard intertwining operator, 153, 366
standard L function, 458, 461
stretching of path, 31
strictly positive parameter, 159
strong approximation property, 268
strong multiplicity one theorem, 284, 339
strongly harmonic form, 121
strongly regular element, 436
subalgebra
Borel, 26, 83
Cartan, 2, 16, 24, 78
Levi, 26
minimal parabolic, 25
parabolic, 26
θ-stable parabolic, 230
subgroup
Borel, 84
Cartan, 24
Levi, 230
minimal parabolic, 25
opposite parabolic, 309
subquotient theorem, 313
subrepresentation theorem, 145
supercuspidal representation, 310
support, 12
symmetric pair, 192, 225
symmetric space, semisimple, 185, 192
tableau, Young, 30
Tate integral, 321, 322, 448
τ-radial component, 140
τ-spherical function, 140
Tchebotarev density theorem, 334
tempered distribution, 94
tempered principal series, 159
tempered representation, 149, 315, 317
tetrahedral, 347, 348
theorem of the highest weight, 9,19
theta series, 421,464
θ-stable parabolic subalgebra, 230
trace, 77
trace class operator, 77, 91
trace formula
absolute, 444
anisotropic case, 433
compact quotient, 377, 433
Eichler-Selberg, 357, 428
$G L(2), 403$
quaternion algebra, 383
relative, 413, 446
Selberg-Arthur, 355, 403
stable, 413, 439
twisted, 413, 425
transfer, 458, 453
translation principle, 102
truncation, 211, 395, 409, 444, 445
twist, 285
twisted conjugacy, 425
twisted trace formula, 413, 425
ultrametric inequality, 246
underlying (\mathfrak{g}, K)-module, 68
unipotent linear algebraic group, 267
unit lattice, 84
unitarizable, 128
unitary dual, 81
unitary (\mathfrak{g}, K)-module, 68
unitary group, 115
unitary representation, 62
universal enveloping algebra, 10
unramified, 382
character, 306
extension, 247
extension, maximal, 248
finite-dimensional representation, 333, 337
principal series, 280, 337
representation, 280, 336
vector bundle
associated, 123
homogeneous, 123
Verma module, 12

Vogan theorem, 163
wave packet, 209
pseudo, 212
weak approximation theorem, 258
weight, 8
weight lattice, 84
weight space, 8
Weil Converse Theorem, 284
Weil group, 248
Weil-Deligne group, 277, 316
Weyl chamber, 6

Weyl Character Formula, 13, 19, 34
Weyl denominator, 13
Weyl Dimension Formula, 120
Weyl group, 6, 17
complex, 95
real, 95
Weyl Integration Formula, 19
Weyl's Theorem, 19
Young diagram, 30
Young tableau, 30

Selected Titles in This Series

(Continued from the front of this publication)
37 Bruce Cooperstein and Geoffrey Mason, Editors, The Santa Cruz conference on finite groups (University of California, Santa Cruz, June/July 1979)
36 Robert Osserman and Alan Weinstein, Editors, Geometry of the Laplace operator (University of Hawaii, Honolulu, March 1979)
35 Guido Weiss and Stephen Wainger, Editors, Harmonic analysis in Euclidean spaces (Williams College, Williamstown, Massachusetts, July 1978)
34 D. K. Ray-Chaudhuri, Editor, Relations between combinatorics and other parts of mathematics (Ohio State University, Columbus, March 1978)
33 A. Borel and W. Casselman, Editors, Automorphic forms, representations and L-functions (Oregon State University, Corvallis, July/August 1977)
32 R. James Milgram, Editor, Algebraic and geometric topology (Stanford University, Stanford, California, August 1976)
31 Joseph L. Doob, Editor, Probability (University of Illinois at Urbana-Champaign, Urbana, March 1976)
30 R. O. Wells, Jr., Editor, Several complex variables (Williams College, Williamstown, Massachusetts, July/August 1975)
29 Robin Hartshorne, Editor, Algebraic geometry - Arcata 1974 (Humboldt State University, Arcata, California, July/August 1974)
28 Felix E. Browder, Editor, Mathematical developments arising from Hilbert problems (Northern Illinois University, Dekalb, May 1974)
27 S. S. Chern and R. Osserman, Editors, Differential geometry (Stanford University, Stanford, California, July/August 1973)
26 Calvin C. Moore, Editor, Harmonic analysis on homogeneous spaces (Williams College, Williamstown, Massachusetts, July/August 1972)
25 Leon Henkin, John Addison, C. C. Chang, William Craig, Dana Scott, and Robert Vaught, Editors, Proceedings of the Tarski symposium (University of California, Berkeley, June 1971)
24 Harold G. Diamond, Editor, Analytic number theory (St. Louis University, St. Louis, Missouri, March 1972)
23 D. C. Spencer, Editor, Partial differential equations (University of California, Berkeley, August 1971)
22 Arunas Liulevicius, Editor, Algebraic topology (University of Wisconsin, Madison, June/July 1970)
21 Irving Reiner, Editor, Representation theory of finite groups and related topics (University of Wisconsin, Madison, April 1970)
20 Donald J. Lewis, Editor, 1969 Number theory institute (State University of New York at Stony Brook, Stony Brook, July 1969)
19 Theodore S. Motzkin, Editor, Combinatorics (University of California, Los Angeles, March 1968)

ISBN 0-8218-0609-2

