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Preface

The 2009 Georgia International Topology Conference was held at the University
of Georgia in Athens, Georgia, from May 18-29, 2009. This event, attracting 222
participants from around the world, continued a longstanding tradition of major
international topology conferences held in Athens every eight years since 1961.

The two main goals of the conference were to give wide exposure to new and
important results, and to encourage interaction among graduate students and re-
searchers in different stages of their careers. The conference featured 39 plenary
talks aimed at a general audience of topologists by distinguished speakers from
around the world, touching on breakthroughs in such topics as hyperbolic geometry,
geometric group theory, symplectic and contact topology, Heegaard Floer theory,
and knot theory, among others. There was also a session of informal presentations
by graduate students during the weekend, as well as six evening introductory lec-
tures by leading experts, aimed at graduate students, on a variety of topics in low-
dimensional, contact, and symplectic topology. Slides for most of the talks remain
available on the internet, at http://math.uga.edu/˜topology/2009/schedule.htm.

A problem session was also held near the end of the conference, and a report on
it is included in these proceedings. The other articles in the proceedings represent
an array of survey and original research articles related to the topics discussed in
the conference. I am grateful to both the authors of these articles and to the referees
for the efforts that they have contributed toward the publication of the volume.

The conference was organized by Michael Ching, William Kazez, Gordana
Matić, Clint McCrory and myself. The speakers were selected with the assistance of
our Scientific Advisory Committee, consisting of Simon Donaldson, Yakov Eliash-
berg, David Gabai, Rob Kirby, Bruce Kleiner, Dusa McDuff, Dennis Sullivan, Cliff
Taubes and Karen Vogtmann. The conference also benefited greatly from logistical
support provided by Julie McEver, Connie Poore, Gail Suggs, Laura Ackerley, and
Christy McDonald. Finally, the organizers are very grateful to the National Sci-
ence Foundation (grant DMS-0852505) and to the University of Georgia for support
which made the conference possible.

M.U.
June 2011
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Proceedings of Symposia in Pure Mathematics

Open problems in geometric topology

Abstract. This is a report on the problem session that was held near the end
of the conference on May 28, 2009, based on notes taken by Michael Usher and
Dylan Thurston. The problem session was moderated by John Etnyre, Peter
Kronheimer, Peter Ozsváth, and Saul Schleimer.

Contents

1. Knot theory
2. The mapping class group and other problems about groups in geometric

topology
3. Three-manifolds
4. Four-manifolds
5. Manifold topology in general dimensions
6. Symplectic topology
7. Contact topology
References

1. Knot theory

Problem 1.1 (K. Baker). When do homotopic knots K1 and K2 in a given
3-manifold Y have identical-coefficient surgeries which are homeomorphic? When
does it additionally hold that the dual knots K∗

1 and K∗
2 are homotopic?

Problem 1.2 (K. Baker). Given a rational number p/q, does there exist an in-
finite family {Ki}∞i=1 with the property that the p/q-surgeries S3

p/q(Yi) are mutually

homeomorphic, independently of i?

Osoinach [Os] produced examples with p/q = 0/1, and Teragaito [Te] modified
Osoinach’s construction to give examples with p/q = 4/1 and S3

4(Ki) a Seifert
fibered space; however the problem for other coefficients remains open. [Ki, 3.6(D)]
asks whether S3

p/q(Ki) can be arranged to be a homology sphere.

Problem 1.3 (J. Bloom). Does Khovanov homology detect Conway mutation
[Con] of knots?
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2 OPEN PROBLEMS IN GEOMETRIC TOPOLOGY

Figure 1. Does HFK detect this knot?

The Jones polynomial (of which Khovanov homology is a categorification) is
invariant under mutation, as are the colored Jones and HOMFLYPT polynomials.
Wehrli [We1] gave an example in which the Khovanov homology of a link changes
under mutation. However, Bloom [Bl] has shown that, for knots, odd Khovanov
homology is mutation-invariant, which in particular shows that (as was also proven
by Wehrli [We2]) the Khovanov homology with F2-coefficients is unchanged under
mutation.

Problem 1.4 (D. Ruberman, following J. Cha). Do there exist parts of classical
knot theory which cannot be seen by Heegard Floer theory? Possible candidates
include the Alexander module and higher-order signatures.

Of course, the Alexander polynomial manifests itself as the graded Euler charac-
teristic of HFK; the classical signature is closely related to the τ invariant [OzSz1].

Problem 1.5 (P. Ozsváth). It’s known [OzSz3] that knot Floer homology de-
tects the unknot. Does it also detect the knot in #2nS1 × S2 given as the n-fold
connect sum of the “Borromean” knot given by the surgery diagram in Figure 1?
This knot is distinguished as the only fibered knot of genus n in any manifold with
the fundamental group of #2nS1 × S2, generalizing the unknot which corresponds
to the case n = 0.

1.1. Knot concordance.

Problem 1.6 (C. Leidy–S. Harvey). In the Cochran–Orr–Teichner filtration
[COT] of the smooth knot concordance group, what is the structure of the groups
Fn.5/Fn+1 (n ∈ N)?

These groups have not yet even been shown to be nontrivial. By contrast, as
was discussed in S. Harvey’s talk at the conference, for each n the group Fn/Fn.5

has been shown to contain many different subgroups isomorphic to Z
∞ [CHL1]

and to Z
∞
2 [CHL2]. One would also like to know the status of certain particular

types of knots in the filtration; for instance:

Problem 1.7 (C. Leidy–S. Harvey). Can 2-torsion be found in the groups
Fn/Fn.5 by infecting (see [CHL2, Section 2]) ribbon knots by negative amphichiral
knots.

All of the torsion that has so far been found in Fn/Fn.5 (for n ≥ 1) is 2-torsion
arising from constructions involving infection by negative amphichiral knots. In
light of this, one might ask:

Problem 1.8 (J. Cha). Is it possible to detect the fact that a knot is “infected”
by the fact that it represents 2-torsion in Fn/Fn.5?
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OPEN PROBLEMS IN GEOMETRIC TOPOLOGY 3

Problem 1.9 (C. Leidy–S. Harvey). Is there any two-torsion in Fn/Fn.5 that
doesn’t arise from infection by negative amphichiral knots?

Problem 1.10 (C. Leidy–S. Harvey). For n ≥ 1, is there any k-torsion in
Fn/Fn.5 with k �= 2? In particular, bearing in mind that a result of Levine [Le]
implies that F0/F0.5

∼= Z
∞ ⊕ Z

∞
2 ⊕ Z

∞
4 , is there 4-torsion for n ≥ 1?

The rational knot concordance group is by definition that group generated by
knots in rational homology spheres under the connect sum operation, with two such
considered equivalent if they are related in the obvious way by a rational homology
cobordism, see [Cha].

Problem 1.11 (J. Cha). Understand in detail the map from the standard knot
concordance group to the rational concordance group induced by inclusion.

Not much is known about this, though [Cha, Theorem 1.4] finds infinite sub-
groups of both the kernel and the cokernel.

1.2. Higher-dimensional knot theory.

Problem 1.12 (D. Ruberman). Let K ⊂ S4 be a 2-knot, and suppose that
π1(S

4 \K) has finitely generated commutator subgroup. Is K fibered? As a special
case, if π1(S

4 \K) ∼= Z, is K the trivial 2-knot?

A result of Stallings [St] shows that this holds for knots in S3.

Problem 1.13 (D. Ruberman). Is every link in S4 (or more generally in S2n)
slice?

Equivalently (in light of results from [Ke] showing that every even-dimensional
knot is slice), is the link concordant to a “boundary link” (one whose components
each bound disjoint “Seifert surfaces”)? In all odd dimensions, Cochran–Orr [CoO]
(and, later and by a different method, Gilmer–Livingston [GiL]) found infinitely
many concordance classes of links not containing any boundary links.

2. The mapping class group and other problems about groups in
geometric topology

Problem 2.1 (S. Schleimer). Can Heegaard Floer homology be used to obtain
information about the conjugacy problem in the mapping class group of a Riemann
surface?

Here “the conjugacy problem” refers to the problem of, given two elements in
the group, determining if they are conjugate. Hemion [He] gave a combinatorial
algorithm to solve the problem, though without any reasonable complexity bound.
As discussed in her lecture at the conference, Hamenstadt [Ham] has shown that
mapping class groups admit biautomatic structures, which implies an exponential
bound on the length of a conjugating element. For pseudo-Anosov elements Masur-
Minsky [MaM2] show that the problem can be solved in linear time.

Problem 2.2 (S. Schleimer). How much geometry does Heegaard Floer ho-
mology see? For instance, for a pseudo-Anosov mapping class φ, consider the
mapping tori M(φn) of iterates of φ. Is there a relationship between the growth

of rk(ĤF (M(φn))) and the growth of geometric quantities associated to M(φn)?
Geometrically, M(φn) converges as n → ∞ to a doubly-degenerate manifold, but
what happens to HF •(M(φn))?
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4 OPEN PROBLEMS IN GEOMETRIC TOPOLOGY

Problem 2.3 (T. Mrowka). Where again M(φ) denotes the mapping torus of
a mapping class φ, does HF •(M(φ)) measure a geometric notion of the complexity
of φ?

Problem 2.4 (T. Hall). Prove or disprove the Andrews–Curtis conjecture
[AnCu]. Could any new invariants help distinguish whether a given presentation
yields the trivial group?

This conjecture asserts that if 〈x1, . . . , xn|r1, . . . , rn〉 is a presentation of the
trivial group, then this presentation can be reduced to the trivial presentation
〈x1, . . . , xn|x1, . . . , xn〉 by a sequence of the following four types of moves: inverting
ri; interchanging ri with rj ; conjugating ri by some word; and replacing ri by rirj .
Of course, presentations correspond to 2-handlebodies, and the last move listed
naturally corresponds to a handleslide. The consensus guess is that the conjecture is
probably false. Certain proposed counterexamples would give interesting candidates
for exotic S4’s [GoS, Remark 5.1.11].

3. Three-manifolds

Problem 3.1 (P. Kronheimer). Let Y be any closed 3-manifold which is not
diffeomorphic to S3. Does there always exist a nontrivial representation

ρ : π1(Y ) → SU(2)?

Note that Kronheimer-Mrowka’s celebrated proof of Property P for knots [KrM1]
rested on showing that the answer is affirmative when Y is obtained by +1-surgery
on a knot other than the unknot (strictly speaking, that paper replaced SU(2) by
SO(3)), and indeed any Y obtained by Dehn surgery on a nontrivial knot with
rational coefficient r ∈ [−2, 2] has fundamental group admitting a representation
to SU(2) with non-cyclic image [KrM2].

Problem 3.2 (P. Ozsváth). If Y is an integer homology 3-sphere and ĤF (Y ) =
Z, must Y be a connected sum of Poincaré homology spheres?

Problem 3.3 (Y. Ni). Can we use Heegaard Floer homology to study specific
Heegaard splittings of a given 3-manifold? Or, more broadly, to obtain invariants
of a closed surface in a 3- or 4-manifold?

Analogously to a construction in Khovanov homology, one could probably ob-
tain invariants of surfaces in R

4; however, the relevant invariants in Khovanov
homology have been shown to depend only on the genus of the surface [Ca].

Problem 3.4 (S. Schleimer). Given a hyperbolic 3-manifold, classify its Hee-
gaard splittings.

This appears to be a rather hard problem, as so far a classification exists only
for the exteriors of two-bridge knots [Ko] (and hence also for their large surgeries
in light of a result of [MoR]). Even estimating the Heegaard genera of hyperbolic
manifolds tends to be somewhat difficult, but see the survey [So] for some results
in this direction.

Problem 3.5 (S. Schleimer). How does the Heegaard genus of a manifold with
torus boundary behave under Dehn filling?
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OPEN PROBLEMS IN GEOMETRIC TOPOLOGY 5

If the manifold is hyperbolic and the surgery coefficient is large then the
Heegaard genus does not change [MoR]. Additional results for more general 3-
manifolds appear in [RiS1],[RiS2].

Problem 3.6 (S. Schleimer). Give a practical method for computing the Hempel
distance associated to a given Heegaard surface.

If Y = Hi ∪Σ H2 is a Heegaard splitting, the Hempel distance d(Σ) is the
minimal distance in the curve complex from a compressing disk for Σ in H1 to
a compressing disc for Σ in H2. One can obtain bounds on the Hempel distance
based on the genera of certain other surfaces in Y (e.g., [Har], [ScT]), but specific
computations tend to be difficult.

Problem 3.7 (S. Schleimer). Consider the “sphere complex” Sn, whose sim-
plices given by disjoint systems of certain spheres in #n(S1 × S2) (see [Hat]). Is
Sn δ-hyperbolic?

Sn is the splitting complex of the free group Fn, and has been useful in studying
the automorphism group of Fn, see [Hat],[HaV]. Analogously, the curve complex
(with simplices given by disjoint systems of curves in #n(S1 ×S1)) is δ-hyperbolic
by a famous result of Masur-Minsky [MaM1].

Problem 3.8. Is there a categorification of the Reshitikhin–Turaev invariants
of 3-manifolds?

Such a categorification could be viewed as a version of Khovanov homology
[Kh] for 3-manifolds. Note that Cautis–Kamnitzer [CaKa] have categorified the
Reshitikhin-Turaev tangle invariants associated to the standard representation of
sl(m).

Problem 3.9 (P. Ozsváth–T. Mrowka). Find a categorification for (any or
all versions [Fl],[KMOS, Theorem 2.4],[OzSz2, Theorem 1.7] of) Floer’s exact
triangle, or prove that no such theory can exist.

This appears challenging in part because the appropriate cobordism maps gen-
erally commute only up to homotopy.

Problem 3.10 (P. Ozsváth). Develop methods for computing various flavors
of Floer homology.

While the Sarkar–Wang algorithm [SaW] computes the version ĤF of Hee-
gaard Floer homology, other variants (including HF+, which is needed in the con-
struction of four–manifold invariants) did not admit known algorithmic descrip-
tions at the time of the problem session. A few months later, the preprint [MOT]
appeared, giving algorithms for the computation of the Z/2-versions of all the Hee-
gaard Floer groups and the four–manifold invariants; however these algorithms are
still rather inefficient. Naturally, one would also like to have additional effective
methods for computing monopole or instanton Floer homologies.

Problem 3.11 (R. Lipshitz). To what extent are Floer-theoretic invariants con-
tinuous with respect to appropriate notions of convergence of spaces ( e.g., Gromov–
Hausdorff limits of hyperbolic 3-manifolds, larger-and-larger-coefficient surgeries on
a given knot in a 3-manifold, higher-and-higher order cabling...)?
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6 OPEN PROBLEMS IN GEOMETRIC TOPOLOGY

4. Four-manifolds

Problem 4.1 (P. Kronheimer). In the Barlow surface, can the Poincaré dual of
the canonical class be represented by a smoothly embedded, genus two surface? More
generally, in any of the other symplectic 4-manifolds that have been constructed
more recently which are homeomorphic but not diffeomorphic to CP 2#kCP 2 ( e.g.,
[AkPa],[PPS]), is the Poincaré dual of the canonical class represented by a smoothly
embedded surface of genus 10− k?

For instance, a connected symplectic representative of the Poincaré dual of
the canonical class would necessarily have the desired genus. Taubes’ SW = Gr
equivalence [Ta1] provides a smoothly embedded (though not always connected)
symplectic representative of the Poincaré dual of the canonical class of a symplectic
four-manifold with b+ > 1; however the manifolds in question have b+ = 1 so the
story is more complicated for them. For those small exotic manifolds which admit
a complex structure (such as the Barlow surface and that in [PPS]), the fact that
b+ = 1 implies that one has pg = 0, so there is no holomorphic representative of
the Poincaré dual of the canonical class. Meanwhile, [LL, Corollary 2] shows that
these manifolds admit symplectic representatives of twice the Poincaré dual of the
canonical class in all cases.

Problem 4.2 (P. Kronheimer). Let X be, say, the K3 surface, and let X ′ be
some fake (homotopy equivalent but not diffeomorphic) copy of X, with φ : X → X ′

a homotopy equivalence. Compare Diff0(X) to Diff0(X
′).

For instance, in the diagram

Diff0(X)

����
���

���
���

Map(X,X),

Diff0(X
′)

φ∗

�������������

do Diff0(X) and Diff0(X
′) have the same image on πn for all n?

In a somewhat different vein, the behavior of finite subgroups of the diffeomor-
phism group of a homotopy K3 surface is quite sensitive to the smooth structure
[ChKw].

Problem 4.3 (J. Etnyre). Given a smooth 4-manifold X and a class A ∈
H2(X;Z), let g(A,X) denote the minimal genus of any smoothly embedded surface
representing A. Under what circumstances can one find a smooth manifold X ′

homeomorphic to X and with g(A,X ′) < g(A,X)? In particular, can this ever be
done with X equal to the K3 surface?

Using the adjunction inequality (see, e.g., [GoS, Theorem 2.4.8]) and standard
surgery operations, it’s not difficult to find examples where an exotic K3 surface
has larger minimal genus function than does the K3 surface, but the adjunction
inequality suggests that it would be difficult to decrease the minimal genus function
without some new tools.
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OPEN PROBLEMS IN GEOMETRIC TOPOLOGY 7

Problem 4.4 (T. Mrowka). Let XK denote the result of knot surgery [FiS2]
on the K3 surface using a knot K which has Alexander polynomial ΔK = 1. Is the
minimal genus function g(·, XK) the same as that for the K3 surface?

The assumption that ΔK = 1 ensures that the Seiberg–Witten invariant of XK

is the same as that of the K3 surface, so the adjunction inequality cannot shed any
light on this question. Relatedly, consider:

Problem 4.5 (D. Auckly). Suppose that X and X ′ are homeomorphic and
that the minimal genus functions g(·, X) and g(·, X ′) coincide. Are X and X ′

diffeomorphic?

Problem 4.6 (D. Auckly). Does there exist an exotic smooth structure on the
4-torus T 4?

Part of what causes this to be a challenging problem given current techniques
is that many of the surgery operations that are often used to produce exotic 4-
manifolds (e.g., [FiS2]) would, when applied to T 4, result in a change in the fun-
damental group. Note that for all n ≥ 5 exotic Tn’s do exist ([HsS],[HsW],[Wa]).

Problem 4.7 (P. Kronheimer). Given a natural number p ≥ 2, let Bp denote
the rational ball arising in Fintushel-Stern’s rational blowdown construction [FiS1].
For which p does Bp embed into the quintic surface?

Problem 4.8 (J. Etnyre, following R. Fintushel-R. Stern). If X1 and X2 are
two homeomorphic smooth closed four-manifolds, can one be obtained from the other
by a sequence of surgeries on nullhomologous tori?

For instance, the knot surgery operation [FiS2] can be described as a sequence
of such surgeries. Also, for every 2 ≤ k ≤ 8 an there is an infinite collection of
exotic CP 2#kCP 2’s that can be obtained by surgery on a single nullhomologous
torus in a certain homotopy CP 2#kCP 2 (for 5 ≤ k ≤ 8 this was shown in [FiS3],
and a few months after the conference a different construction for 2 ≤ k ≤ 7 was
presented in [FiS4]).

Problem 4.9 (J. Etnyre). Suppose that X1 and X2 are a pair of homeomor-
phic smooth four-manifolds which are related by a sequence of surgeries on null-
homologous tori. Since X1 and X2 are homeomorphic, there is a (by definition
contractible) Akbulut cork W ⊂ X1 and an involution Φ: ∂W → ∂W so that
X2 = (X1 \W ) ∪Φ W [Mat],[CHMS]. Is it possible to explicitly identify W?

5. Manifold topology in general dimensions

Problem 5.1 (M. Hogancamp, following M. Hill). Give an explicit construction
of a 62-manifold with Kervaire invariant one. Then generalize this to construct a
126-manifold with Kervaire invariant one.

An old result of Browder [Br] showed that the Kervaire invariant vanishes for
all manifolds of dimension not of the form 2k − 2. There are explicit examples
of Kervaire-invariant-one manifolds in dimensions 2, 6, 14, and 30 [Jo], while in
dimension 62 the behavior of the Adams spectral sequence implies [BJM] that
a Kervaire-invariant-one manifold must exist, but no such manifold has yet been
constructed. As M. Hill discussed in his talk at the conference, recent landmark
work of Hill–Hopkins–Ravenel [HHR] proves that the Kervaire invariant vanishes
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8 OPEN PROBLEMS IN GEOMETRIC TOPOLOGY

in all dimensions larger than 126, leaving 126 as the only dimension for which the
problem is unresolved. Hill suggests that the constructions would likely be related
to the Lie groups E7 and E8.

Problem 5.2 (Y. Rudyak). Let f : Mn → Nn be a degree-one map from one
closed oriented manifold to another. Must it hold that

cd(π1(M)) ≥ cd(π1(N))?

Here cd denotes cohomological dimension. In the case where cd(π1(M)) = 1
(which is to say that π1(M) is free) the answer is affirmative by Theorem 5.2 of
[DrRu].

Problem 5.3 (Y. Rudyak). For a closed manifold M let crit(M) denote the
minimal number of critical points of a smooth function on M , and let cat(M) denote
the Lusternik-Schnirelmann category of M . If crit(M) ≥ crit(N), does it follow
that cat(M) ≥ cat(N)?

By definition, cat(M) is one less than the minimal possible size of a cover of
M by contractible open subsets. Note that crit(M) ≥ cat(M) + 1; however there
are many examples where the inequality is strict.

6. Symplectic topology

Problem 6.1 (Y. Rudyak). What groups arise as the fundamental groups of
closed symplectically aspherical manifolds? In particular, does there exist a group Γ
with the property that, for every n ∈ Z>0, there is a closed symplectically aspherical
manifold M2n of dimension 2n with π1(M

2n) = Γ?

Recall that a symplectic manifold (M,ω) is called symplectically aspherical pro-
vided that, for every A ∈ π2(M), one has

∫
A
ω = 0 (some conventions additionally

require that 〈c1(TM), A〉 = 0 for all A ∈ π2(M)).
In particular if M is closed, it can’t be simply connected, since if it were the

Hurewicz theorem would force ω to be exact and then Stokes’ theorem would pre-
vent ω from being nondegenerate. By passing to covers, one sees additionally that
π1(M) cannot be finite. A variety of results and examples relating to the problem
can be found in [IKRT] and [KRT]. Among finitely generated abelian groups G,
[KRT, Theorem 1.2] shows that G is the fundamental group of a symplectically
aspherical manifold iff G = Z

2 or rk(G) ≥ 4.

Problem 6.2 (P. Kronheimer). Does every simply-connected, non-spin sym-
plectic 4-manifold contain a Lagrangian RP 2?

Of course, the fact that the normal bundle of a Lagrangian submanifold is
isomorphic to its tangent bundle shows that a Lagrangian RP 2 necessarily has
Z2-intersection number 1, and in particular RP 2 cannot arise as a Lagrangian
submanifold of R4, or of any simply-connected spin manifold.

Problem 6.3 (K. Wehrheim, following L. Polterovich). Let T denote the fol-
lowing monotone Lagrangian torus, considered as a submanifold of S2 × S2 ⊂
R

3 × R
3:

T = {(	v, 	w) ∈ S2 × S2|	v · 	w = −1/2, v3 + w3 = 0}.
Is T displaceable ( i.e., is there a Hamiltonian diffeomorphism φ : S2×S2 → S2×S2

such that φ(T ) ∩ T = ∅)?
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OPEN PROBLEMS IN GEOMETRIC TOPOLOGY 9

In the months following the conference, this question was answered negatively
by Fukaya, Oh, Ohta, and Ono [FOOO, Remark 3.1]. Note that, where Δ is
the diagonal, S2 × S2 \ Δ can be identified with T ∗S2, and under this identifica-
tion T corresponds to a Lagrangian submanifold of T ∗S2 which had earlier been
shown [AlFr] to nondisplaceable. Recent work of Chekanov and Schlenk [CheS]
constructs nondisplaceable Lagrangian “twist tori” in (S2)n, and in the case that
n = 2 it seems likely that T is equivalent to such a twist torus, which would give
another proof of its nondisplaceability. Yet another proof of the nondisplaceability
of T is outlined in the recent preprint [ElP].

Problem 6.4 (K. Wehrheim, following L. Polterovich). Moving up a dimension
from the previous question, is the monotone Lagrangian submanifold

L = {(	u,	v, 	w) ∈ S2 × S2 × S2|	u+ 	v + 	w = 0, 	u · 	v = 	v · 	w = −1/2}
displaceable in S2 × S2 × S2.

In light of recent developments, note that if L is equivalent to a twist torus
[CheS], then it would be nondisplaceable.

Problem 6.5 (K. Wehrheim). (When) can Lagrangian submanifolds in sym-
plectic quotients be lifted? In other words, given a Hamiltonian action of a Lie
group G on a symplectic manifold (M,ω) with moment map μ : M → g∗, and
given a Lagrangian submanifold 
 of the symplectic reduction μ−1(0)/G, is there a
Lagrangian submanifold L ⊂ M which meets μ−1(0) transversely and so that pro-
jection μ−1(0) → μ−1(0)/G restricts as a diffeomorphism L ∩ μ−1(0) → 
? If 
 is
monotone, can L also be taken to be monotone?

There are simple examples where the answer is no; for instance the reduction
of the standard rotation action of S1 on S2 is a point, and setting 
 equal to this
point we note that no Lagrangian L ⊂ S2 meets the equator μ−1(0) transversely
in just one point. For the standard S1 action on CP 2 (with quotient CP 1) one has
μ−1(0) = S3 with projection given by the Hopf map, and the answer is again no.
However, it’s conceivable that the construction could work for the action of S1 on
a blowup of CP 2.

More broadly, one would like to have a better general understanding of La-
grangian submanifolds of symplectic manifolds with Hamiltonian group actions.

7. Contact topology

Problem 7.1 (J. Etnyre). Given a Legendrian knot K in a tight contact 3-
manifold Y , is the contact manifold resulting from Legendrian surgery on K neces-
sarily tight?

If Y is allowed to have boundary, a tight contact structure on the genus-four
handlebody shows that the answer is no [Ho, Theorem 4.1]. However, the closed
case remains unresolved. Note that a number of important contact topological
properties of closed 3-manifolds are preserved by Legendrian surgery, such as weak
[EtH2], strong [Wei], and Stein [El2] fillability, and nonvanishing of the Ozsváth-
Szabó contact invariant [LS1].

Problem 7.2 (J. Etnyre). If L1 and L2 are two Legendrian knots in S3 which
are not Legendrian isotopic, can the respective Legendrian surgeries on them be
contactomorphic?
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For any n, there is a tight contact manifold (Mn, ξn) containing distinct Leg-
endrian knots L1, . . . , Ln so that Legendrian surgery on the Li produce the same
contact manifold [Et, Corollary 2], but as yet there are no examples with Mn = S3.

Problem 7.3 (J. Etnyre). Which closed 3-manifolds admit tight contact struc-
tures? In particular, do all hyperbolic 3-manifolds admit tight contact structures?

Etnyre-Honda [EtH1] showed some years ago that the Poincaré homology
sphere Σ admits no tight contact structures compatible with its nonstandard orien-
tation (and hence that the connect sum Σ#Σ admits no tight contact structures at
all). More recently Lisca-Stipsicz [LS2] determined precisely which Seifert fibered
spaces admit tight contact structures. In the class of hyperbolic manifolds, not
much is known beyond some isolated examples (for instance the Weeks manifold
admits a tight contact structure).

Problem 7.4 (J. Etnyre). Which odd-dimensional manifolds admit contact
strucutures?

The fact that every 3-manifold admits a contact structure goes back to Martinet
[Mar]. In higher dimensions, at least if the contact structure is to be cooriented,
there is a topological obstruction arising from the fact that, if the manifold has
dimension 2n + 1, the structure group needs to reduce to U(n) (such a reduction
is called an almost contact structure). In dimensions 5 and 7, this translates to
the requirement that the second Stiefel-Whitney class should admit an integral
lift. Geiges (see [Ge, Chapter 8]) has shown that any almost contact structure
on an oriented simply connected 5-manifold arises from a contact structure, thus
reducing the existence question on simply-connected 5-manifolds to characteristic
classes. For more results in dimension 5 and 7 see [GeTh],[GeSt]. In dimensions
above 7 very little is known; the existence of a contact structure on T 2n+1 for every
n was only established in 2002 [Bo1].

Problem 7.5 (J. Etnyre). Understand the space of contact structures on a
given manifold.

Eliashberg [El3, Theorem 2.4.2] showed that the space of tight contact struc-
tures on S3 which are fixed at a given point is contractible. On the other hand,
Geiges-Gonzalo [GeGo] found, for each member of the standard sequence ξn of
tight contact structures on T 3, an element of infinite order in the fundamental
group of the space of contact structures based at ξn. Infinite subgroups of some
other homotopy groups of spaces of contact structures were subsequently found by
Bourgeois [Bo2]. Ding-Geiges [DiGe] have recently shown that the fundamental
group of the space of contact structures on S1 × S2 (based at the standard tight
one) is Z.

With respect to overtwisted contact structures, Eliashberg [El1] showed that,
given an overtwisted disk Δ in a contact 3-manifold (M, ξ), the space of overtwisted
contact structures on M coinciding with ξ near Δ is homotopy equivalent to the
space of 2-plane fields coinciding with ξ near Δ. Thus, up to homotopy, understand-
ing the space of overtwisted contact structures on a given manifold is essentially a
classical (albeit nontrivial) matter.

Problem 7.6 (L. Ng). Formulate “embedded sutured contact homology” for
Legendrian knots.
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Recall here that the complement of a Legendrian knot has a standard descrip-
tion as a sutured manifold, and so has an associated sutured (Heegaard) Floer
homology which is isomorphic to its knot Floer homology [Ju]. Meanwhile, embed-
ded contact homology has recently been proven to be isomorphic to monopole Floer
homology [Ta2]. Thus the putative embedded sutured contact homology should be
isomorphic to knot Floer homology (or at any rate the monopole version thereof
[KrM3]) and may lead to some interesting links between the contact homology
world and the Heegaard Floer world.

Legendrian knots do have a Legendrian contact homology [Che] constructed in
the spirit of symplectic field theory; however, this invariant vanishes for stabilized
Legendrian knots, in contrast to the Legendrian knot invariants constructed from
Heegaard Floer theory as in [OzSzT].

Since the conference, a version of sutured embedded contact homology has been
defined [CGHH], though certain foundational questions, such as independence of
the choice of auxiliary data, remain unresolved.
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