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Preface

Lie theory represents a major area of mathematical research. Besides its in-
creasing importance within mathematics (to geometry, combinatorics, finite and
infinite groups, etc.), it has important applications outside of mathematics (to
physics, computer science, etc.).

During the twentieth century, the theory of Lie algebras, both finite and infinite
dimensional, has been a major area of mathematical research with numerous ap-
plications. In particular, during the late 1970s and early 1980s, the representation
theory of Kac-Moody Lie algebras (analogs of finite dimensional semisimple Lie al-
gebras) generated intense interest. In part, the subject was driven by its interesting
connections with such topics as combinatorics, group theory, number theory, partial
differential equations, topology and with areas of physics such as conformal field
theory, statistical mechanics, and integrable systems. The representation theory of
an important class of infinite dimensional Lie algebras known as affine Lie algebras
led to the discovery of Vertex Operator Algebras (VOAs) in the 1980s. VOAs are
precise algebraic counterparts to “chiral algebras” in two-dimensional conformal
field theory as formalized by Belavin, Polyakov, and Zamolodchikov. These alge-
bras and their representations play important roles in a number of areas, including
the representation theory of the Fischer-Griess Monster finite simple group and the
connection with the phenomena of “monstrous moonshine,” the representation the-
ory of the Virasoro algebra and affine Lie algebras, and two-dimensional conformal
field theory.

In 1985, the interaction of affine Lie algebras with integrable systems led Drin-
feld and Jimbo to introduce a new class of algebraic objects known as quantized
universal enveloping algebras (also called quantum groups) associated with sym-
metrizable Kac-Moody Lie algebras. These are q-deformations of the universal en-
veloping algebras of the corresponding Kac-Moody Lie algebras, and, like universal
enveloping algebras, they carry an important Hopf algebra structure. The abstract
theory of integrable representations of quantum groups, developed by Lusztig, il-
lustrates the similarity between quantum groups and Kac-Moody Lie algebras. The
quantum groups associated with finite dimensional simple Lie algebras also have
strong connections with the representations of affine Lie algebras. The theory of
canonical bases for quantum groups has provided deep insights into the represen-
tation theory of quantum groups. More recently, the theory of geometric crystals
introduced by Berenstein and Kazhdan has opened new doors in representation
theory. In particular, canonical bases at q = 0 (crystal bases) provide a beautiful
combinatorial tool for studying the representations of quantum groups. The quan-
tized universal enveloping algebra associated with an affine Lie algebra is called
a quantum affine algebra. Quantum affine algebras quickly became an interesting
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and important topic of research, the representation theory of which parallels that
of the corresponding affine Lie algebras. But the theory is much deeper and richer
than its classical counterpart, providing a clearer picture of connections with the
other areas mentioned above.

After the classification of the finite simple groups (now complete), a full un-
derstanding of the representation theory of finite simple groups over fields k of
arbitrary characteristic provides a major problem for the 21st century. The spo-
radic Fischer-Griess monster (mentioned above) gives one important example of a
finite simple group closely related to Lie theory. Apart from the alternating groups
and the 26 sporadic simple groups, the finite simple groups come in infinite families
closely related to the finite groups of rational points G(q) of simple algebraic groups
G over algebraically closed fields k of positive characteristic p > 0. (The finite Ree
and Suzuki groups are variations on this theme.) The representation theory of these
finite groups of Lie type thus form a key area of investigation. One can consider a
field F , algebraically closed for simplicity, having characteristic �, and investigate
the category of FG(q)-representations. There are three cases to consider.

First, in case � = 0, take F = C, the complex numbers. This theory is the
so-called ordinary representation theory of G(q). As a result of work of Deligne,
Lusztig, and many other mathematicians over the past 35 years, the ordinary theory
is quite well understood in comparison to the cases in which � > 0.

Second, if � = p (the equal characteristic case), take F = k. By work of Stein-
berg, the irreducible kG(q)-modules all lift to irreducible rational representations
of the algebraic group G. This fact has provided strong motivation for the study of
the modular representation theory of the semisimple algebraic groups G over the
past 30 years. For example, a famous conjecture due to Lusztig posits the charac-
ters of the irreducible representations when the characteristic p is large (bigger than
the Coxeter number). For each type, this conjecture has been proved for p “large
enough” by Andersen-Jantzen-Soergel. The proof follows a path from characteristic
p to quantum groups at a root of unity to affine Lie algebras and perverse sheaves.
Thus, it ultimately involves the infinite dimensional Lie theory discussed above.
Although this approach fails to provide effective bounds on the size of the prime p,
a new avenue via a related combinatorial category has been recently investigated
by Fiebig. As a result of Fiebig’s work, very large effective bounds for Lusztig’s
conjecture are now known. In addition, the determination of the characters for
small p (i.e., less than the Coxeter number) remains largely uninvestigated.

Third, when 0 < � �= p (the cross-characteristic case), much less is known
in general. When G is a general linear group GLn(k), the determination of the
decomposition numbers for the finite groups GLn(q) can be determined in terms
of decomposition numbers for q-Schur algebras and then for quantum groups over
fields of positive characteristic. This is the so-called Dipper-James theory. There are
close connections with the representation theory of Hecke algebras and symmetric
groups. In other types, much less is known; for example, the classification of the
irreducible representations is incomplete. A major problem for these other types
would be to replace the quantum groups used forGLn(q) by some suitable structure.

The modular representation theory has provided a crucial interface with the
theory of finite dimensional algebras (especially, the theory of quasi-hereditary al-
gebras introduced by Cline, Parshall and Scott). It seems likely that this direction



PREFACE xi

will continue to prove fruitful. Another significant feature of the modular repre-
sentation theory of the finite groups of Lie type and the associated algebraic and
quantum groups is the existence of a rich accompanying homological theory. Homo-
logical problems emerge immediately because of the failure of complete reducibility.
In the equal characteristic case, the homological theory has been extensively de-
veloped, for the finite groups of Lie type, quantum enveloping algebras at roots of
unity, restricted Lie algebras and infinitesimal group schemes, as well as other set-
tings. Geometric ideas enter via the theory of support varieties, which associate to
each finite-dimensional module for a restricted Lie algebra (or finite group scheme)
an algebraic variety. In the cross-characteristic case, much less in known about the
cohomology. In the equal characteristic case, there is a considerable body of work
involving the homological algebra of the infinitesimal groups, and relations between
the cohomology of G, its infinitesimal subgroups, and its finite subgroups.

Finally, we mention that the modular representation theory of general finite
groups itself has a strong Lie-theoretic flavor. In part, this is due to the famous
Alperin conjecture, suggesting that the irreducible modular representations of gen-
eral finite group should be classified in a “weight theoretic” way, much like irre-
ducible modules for a complex semisimple Lie algebra are classified by their highest
weights. Another notable conjecture, the Broué conjecture, has been recently ver-
ified for symmetric groups by Chuang and Rouquier using a the new method of
“categorification”.

In 2009, the three editors established a network of Lie theorists in the south-
eastern region of the U.S. and proposed an annual regional workshop series of 3 to
4 days in Lie theory. The aim of these workshops was to bring together senior and
junior researchers as well as graduate students to build and foster cohesive research
groups in the region. With support from the National Science Foundation and the
affiliated universities in the region, three successful workshops were held at North
Carolina State University, the University of Georgia and the University of Virginia
in 2009, 2010 and 2011 respectively. Each of these workshops was attended by over
70 participants. The workshops included expository talks by senior researchers and
afternoon AIM style discussion sessions with a goal to educate graduate students
and junior researchers in the early part of their study for research in different as-
pects of Lie theory. In the third workshop at the University of Virginia, Professor
Leonard Scott was honored on the eve of his retirement for his lifetime contributions
to many of the aforementioned topics.

The plenary speakers in the three workshops were invited to contribute to this
proceedings. Most of the articles presented in this book are self-contained, and
several survey articles, by Jon Carlson, Jie Du, Bob Griess, and David Hemmer are
accessible to a wide audience of readers.

The editors take this opportunity to acknowledge the conference participants,
the contributors, and the editorial offices of the American Mathematical Society
for making this volume possible.

Kailash C. Misra
Daniel K. Nakano
Brian J. Parshall
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