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Modular functors, cohomological field theories,
and topological recursion

Jørgen Ellegaard Andersen, Gaëtan Borot, and Nicolas Orantin

Abstract. Given a topological modular functor V in the sense of Walker, we
construct vector bundles [Zλ⃗]g,n over Mg,n, whose Chern characters define
semi-simple cohomological field theories. This construction depends on a de-
termination of the logarithm of the eigenvalues of the Dehn twist and central
element actions. We show that the intersection indices of the Chern character
with the ψ-classes in Mg,n is computed by the topological recursion of Ey-
nard and Orantin, for a local spectral curve that we describe. In particular, we
show how the Verlinde formula for the ranks [Dλ⃗]g,n = rank [Vλ⃗]g,n is recov-
ered from the topological recursion. We analyze the consequences of our result
on two examples: modular functors associated to a finite group G (for which
[Dλ⃗]g,n enumerates certain G-principle bundles over a genus g surface with n

boundary conditions specified by λ⃗), and the modular functor obtained from
Wess-Zumino-Witten conformal field theory associated to a simple, simply-
connected Lie group G (for which [Zλ⃗]g,n is the Verlinde bundle).

1. Introduction

Background. The pioneering works of Atiyah, Segal and Witten [9, 84, 96]
turned 2d conformal field theories (CFT) [15] into an effective machinery to design
interesting 3-manifold invariants, known under the name of “quantum invariants”.
More thoroughly, it allowed the construction of 3d topological quantum field the-
ories (TQFT), where the 2d CFT is thought of as living on the boundary of 3-
manifolds. The axioms of a 3d TQFT were worked out in details by Reshetikhin
and Turaev, and they further constructed the first and most important example
from the quantum group Uq(sl2) at q = a root of unity [80,81,89].

There exist several variants of axiomatizations that embody the concept of a
CFT. This article deals with one of these axiomatizations for the topological part
of a CFT, called a “modular functor”. It was proposed by Segal in the context
of rational conformal field theory [84] covering the holomorphic part of CFT, and
developed in Walker’s notes [94] in the purely topological context. Namely, we
consider functors from the category of marked surfaces – with projective tangent
vectors and labels in a finite set Λ at punctures, and a Lagrangian subspace of the
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2 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

first homology –, to the category of finite dimensional complex vector spaces. In
particular, such a functor determines representations of a central extension of the
mapping class groups. The main property required to be a modular functor is that
the vector spaces attached to a surface enjoy a factorization property when the
surface is pinched. The full definitions are given in Section 2. From the data of a
modular functor in this sense, [52,63] show how to obtain a (2 + 1)-dimensional
TQFT.

The main source of modular functors are modular tensor categories (MTC)
[8, 12, 89]. At present, it seems that all known examples of modular functors
come from a modular tensor category, but it is not known whether all modular
functors are of this kind. Among examples of MTC, we find some categories of
representations of quantum groups [89], and categories of representations of vertex
operator algebras (VOA) [43,56].

The Wess-Zumino-Witten models form a well-studied class of examples of this
type. The MTC here arises from representations of a VOA constructed from affine
Kač-Moody algebras ĝ [62]. It gives rise to Hilbert spaces of a TQFT, which come
as vector bundles (the so-called Verlinde bundles) over a family of complex curves
with coordinates, equipped with a projectively flat connection [88], which coincides
with Hitchin’s connection from the point of view of geometric quantization [66].
The choice of coordinates can actually be bypassed [67,87, 88] and the Verlinde
bundles exist as bundles VWZW

g,n over the moduli space of curves, which extend nicely
to the Deligne-Mumford compactification. The explicit construction of a modular
functor from this perspective – also called the CFT approach – was described in
[3, 4]. There is another approach, based on a category of representations of a
quantum group Uq(gC) at certain roots of unity. It leads to the Witten-Reshetikhin-
Turaev TQFT, constructed in [18,80,81] for gC = sl2, and in [90] for any simple
Lie algebra of type ABCD. This theory for sl2 was also constructed using skein
theory by Blanchet, Habegger, Masbaum and Vogel in [17, 18] and by Blanchet
in [16] for slN . As anticipated by Witten, the CFT approach and the quantum
group approach should give equivalent TQFTs. For instance, the equivalence of
the modular functors was established by the first author of this paper and Ueno in
[5,7] for g = suN .

The rank of the Verlinde bundle is already a non-trivial invariant, which is
computed by the famous Verlinde formula [14,40,74,93]. Marian et al. [70] lately
showed that the Chern character of VWZW

g,n defines a semi-simple cohomological
field theory (CohFT). It can be characterized in terms of its R-matrix thanks to
the classification results of Givental and Teleman [48,86]: from the R-matrix, one
can build the exponential of a second-order differential operator, which acts on a
product of several copies of the Witten-Kontsevich generating series of ψ-classes
(the matrix Airy function/KdV tau function of [64]), and returns the generating
series of the intersection of the Chern character at hand with an arbitrary product
of ψ-classes. We call these invariants the “CohFT correlation functions”. When we
introduce a variable t in the Chern character keeping track of the cohomological
degree, and send t → 0, these correlation functions return the rank of the bundle,
which can be thought of as the “2d TQFT correlation functions”.

Contribution of the article. In the present article, we generalize the results
of [70] to any modular functor – hence not relying on the peculiarities of the Wess-
Zumino-Witten models. For a given modular functor, we construct a trivial bundle
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[Z̃0
λ⃗
]g,n over Teichmüller space, which, after twisting by suitable line bundles, de-

scends to a bundle [Zλ⃗]g,n over Mg,n (Theorem 2.5). We can use Chern-Weil
theory to compute the Chern character of [Zλ⃗]g,n (Proposition 2.6) in terms of ψ-
classes and the first Chern class of the Hodge bundle – their coefficients are related
respectively to the central charge c and the log of Dehn twist eigenvalues rλ (aka
conformal weights). Besides, we show that our bundle extends to the boundary

of Mg,n (Theorem 2.9). All together, this constitutes our first main result. Since

Mg,n is an orbifold, the Chern character of our bundle must have rational coeffi-
cients, hence a new (geometric) proof of Vafa’s theorem [92] stating that c and rλ
must be rational. Our proof actually shows this for any modular functor, including
non-unitary cases.

Since our bundle enjoys factorization implied by the axioms of a modular func-
tor, we can conclude that Cht([Zλ⃗]g,n) defines a semi-simple cohomological field
theory on a Frobenius algebra A whose underlying vector space is the space that
the modular functor assigns to a torus (Theorem 3.2). Because the twists can de-
pend on log-determinations for the central charge and the conformal weights, and
because we have the variable t ∈ C (introduced to keep track of each cohomological
degree separately), we actually produce a 1-parameter family of CohFTs. The exis-
tence of an S-matrix that diagonalizes the product in A ensures the semi-simplicity
of these theories, and we compute the R-matrix of these CohFT in terms of the
S-matrix (Proposition 3.4).

Then, from the general result of [33], we know that the correlation functions of
these CohFTs is computed by the topological recursion of [38] for a local spectral
curve. We describe explicitly this local spectral curve and the relevant initial data
(ω0,1, ω0,2). It depends solely on the SL(2,Z) representation provided by the genus
1 part of the modular functor (Proposition 4.5). If the variable t is set to 0,
we recover Verlinde’s formula for the rank of our bundle as a special case of the
topological recursion (Proposition 4.4); in general, we obtain that the ω′g,ns of the
topological recursion for this spectral curve are expressed in terms of integrals of
the Chern character and ψ-classes (Equation 4.25). This formula is our second
main result.

We illustrate our findings on two classes of Wess-Zumino-Witten models.
In Section 5, we address the modular functors associated to a finite group G
[28, 30, 42]. They are also called “orbifold holomorphic models”. In the “un-
twisted case”, their Frobenius algebra contains simultaneously the fusion rules of
the representation ring of G and (albeit undirectly) the decomposition of the prod-
uct of conjugacy classes. The dimensions of the TQFT vector spaces count certain
G-principle bundles over the surface in question. We therefore find – in a rather
trivial way – a topological recursion for these numbers, where the induction con-
cerns the Euler characteristics of the base. In the “untwisted case” we obtain a
degree 0 CohFT, which only remembers the dimension of the vector spaces, but in
the twisted case, the CohFT is in general non-trivial (see Lemma 5.1). In Section 6,
we examine the Wess-Zumino-Witten models based on a compact Lie group G at
level �, for which [Zλ⃗]g,n is the Verlinde bundle studied in [70]. Remarkably, for
SU(N)�, we find that ω0,2 for the local spectral curve is expressible in terms of a
suitable truncation of the generating series of double Hurwitz numbers (number of
branched coverings over the Riemann sphere). This poses the question of the com-
binatorial interpretation of the correlation function of these CohFTs in the context
of enumeration of coverings over a surface of arbitrary topology.
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4 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

To summarize, from a physical point of view, we have associated to a modular
functor a CohFT that should encode Gromov-Witten theory of a target space X.
Having a modular functor means that the worldsheet (a surface of genus g with n
boundaries) roughly speaking carries a CFT. As we comment in Section 7, the local
spectral curve used in Section 3 for the topological recursion, should describe the
vicinity of an isolated singularities in a Landau-Ginzburg model X̃. As of now, the
description of the global geometry of X and X̃ is unclear to us.

vertex operator
algebra

modular tensor
category

modular
functor

cohomological
field theory

topological
recursion

Figure 1. A → B means that B (or a set of quantities fulfilling
the axioms of B) can be obtained from the data of A ; these are
not equivalences, i.e. in general A cannot be fully recovered from
B, and neither all B come from an A. A wealth of definitions
sometimes fall under the same names. To avoid ambiguities: VOA
are as in [57] ; the notion of modular functor we adopt is described
in Section 2.3, following the approach of Walker [94] ; the notion of
CohFT is described in Section 3.1, simplifying the axiomatization
given by Kontsevich and Manin [65] ; the topological recursion is
described in Section 4.1, following Eynard and the third author
[39].

2. Construction of vector bundles from a modular functor

We introduce the category of marked surfaces, their automorphism groups,
and review the axioms of a modular functor. The target category is that of finite
dimensional vector spaces over the field of complex numbers. The motivation to
introduce marked surfaces is explained e.g. in [94]: in quantum field theory, if one
works with a naive category of surfaces, the states have a phase ambiguity, so that
the target category would rather be that of projective vector spaces. The marking
allows us to resolve phase ambiguities and work with vector spaces.

We then explain, in Section 2.6, how to obtain from any given modular functor,
a family of vector bundles over the moduli space of curves. We compute its Chern
character in terms of the basic data of the modular functor (Theorem 2.6). A
delicate but essential point for Section 3 is to prove that the bundles extend to
the Deligne-Mumford compactification of the moduli space. This is achieved in
Section 2.7, with a detour via a bordification of the Teichmüller space.

2.1. The category of marked surfaces. Let us start by fixing notations.
By a closed surface we mean a smooth real 2-dimensional, compact manifold. For
an oriented closed surface Σ of genus g we have the non-degenerate skew-symmetric
intersection pairing

(⋅, ⋅) ∶ H1(Σ,Z) ×H1(Σ,Z) → Z.

Suppose Σ is connected. In this case a Lagrangian L ⊆ H1(Σ,Z) is by definition a
sublattice which is maximally isotropic with respect to the intersection pairing. A
Z-basis (α⃗, β⃗) = (α1, . . . , αg, β1, . . . βg) for H1(Σ,Z) is called a symplectic basis if

(αi, βj) = δij , (αi, αj) = (βi, βj) = 0,
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for all i, j ∈ �1, g�. If Σ is not connected, then H1(Σ,Z) = ⊕iH1(Σi,Z), where
Σi are the connected components of Σ. In this context, by definition in this pa-
per, a Lagrangian is a sublattice of the form L = ⊕iLi, where Li ⊂ H1(Σi,Z)
is Lagrangian. Likewise a symplectic basis for H1(Σ,Z) is a Z-basis of the form

((α⃗i, β⃗i)), where (α⃗i, β⃗i) is a symplectic basis for H1(Σi,Z).
For any real vector space V , we define PV = (V − {0})/R +.

Definition 2.1. A pointed surface (Σ, P ) is an oriented closed surface Σ with
a finite set of points P ⊂ Σ.

Definition 2.2. A morphism of pointed surfaces f ∶ (Σ1, P1) → (Σ2, P2) is an
isotopy class of orientation preserving diffeomorphisms which map P1 to P2. The
group of automorphisms of a pointed surface (Σ, P ) is the mapping class group, and
it will be denoted ΓΣ,P . It consists of the isotopy classes of orientation preserving
diffeomorphisms of Σ which are the identity on P . The framed mapping class group
of a pointed surface is denoted Γ̃Σ,P and it consists of isotopy classes of orientation
preserving diffeomorphisms which are the identity on P as well as on the tangent
spaces at each p ∈ P .

We stress that for the (framed) mapping class group, the isotopies allowed in
the equivalence relation must also be the identity on P (and on the tangent spaces
at P ). We clearly have the following Lemma.

Lemma 2.1. There is a short exact sequence

1�→ ZP �→ Γ̃Σ,P �→ ΓΣ,P → 1,

where the generator of the factor of Z corresponding to p ∈ P is given by the Dehn
twist δp in the boundary of an embedded disk in Σ − (P − {p}) and centred in p.

Definition 2.3. A marked surface Σ = (Σ, P, V,L) is the data of an oriented
closed surface Σ with a finite subset P ⊂ Σ of points, projective tangent vectors
V ∈ ∏p∈P PTpΣ and a Lagrangian subspace L ⊆H1(Σ,Z).

Definition 2.4. Amorphism f ∶Σ1 →Σ2 of marked surfacesΣi = (Σi, Pi, Vi, Li)
is an isotopy class of orientation preserving diffeomorphisms f ∶ Σ1 → Σ2 that map
(P1, V1) to (P2, V2) together with an integer s. Hence we write f = (f, s).

Let σ beWall’s signature cocycle for triples of Lagrangian subspaces ofH1(Σ,R)
[95].

Definition 2.5. Let f1 = (f1, s1) ∶ Σ1 → Σ2 and f2 = (f2, s2) ∶ Σ2 → Σ3 be
morphisms of marked surfaces Σi = (Σi, Pi, Vi, Li). Then, the composition of f1
and f2 is

f2f1 = (f2f1, s2 + s1 − σ((f2f1)∗LR

1 , f2∗L
R

2 , L
R

3 )).
where LR

i = Li ⊗R.

With the objects being marked surfaces and the morphisms and their composi-
tion being defined as above, we have constructed the category of marked surfaces.

The mapping class group ΓΣ of a marked surface Σ = (Σ, P, V,L) is the group
of automorphisms of Σ. The group ΓΣ is a central extension of the framed mapping
class group Γ̃Σ,P of the pointed surface (Σ, P )

1�→ Z�→ ΓΣ �→ Γ̃Σ,P �→ 1
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6 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

defined by the 2-cocycle γ ∶ ΓΣ → Z, γ(f2, f1) = σ((f2f1)∗LR, f2∗L
R, LR). It is

known that this cocycle is equivalent to the cocycle obtained by considering 2-
framings on mapping cylinders, see [10] and [2]. Briefly, the relation is as follows:
a 2-framing is determined by the first Pontryagin number p1; Hirzebruch’s formula
says that p1 is three times the signature of the 4-manifold and, by construction
[95], σ expresses the non-additivity of the signature.

Notice also that for any morphism (f, s) ∶Σ1 →Σ2, we can factor

(f, s) = ((Id, s′) ∶Σ2 →Σ2) ○ (f, s − s′)
= (f, s − s′) ○ ((Id, s′) ∶Σ1 →Σ1) .

In particular (Id, s) ∶Σ→Σ is (Id, 1)s.
2.2. Operations on marked surfaces.

Definition 2.6. The operation of disjoint union of marked surfaces is

(Σ1, P1, V1, L1) ⊔ (Σ2, P2, V2, L2) = (Σ1 ⊔Σ2, P1 ⊔P2, V1 ⊔ V2, L1 ⊕L2).
Morphisms on disjoint unions are accordingly (f1, s1) ⊔ (f2, s2) = (f1 ⊔ f2, s1 + s2).

We see that the disjoint union is an operation on the category of marked sur-
faces.

Definition 2.7. Let Σ be a marked surface. We denote by −Σ the marked
surface obtained from Σ by the operation of reversal of the orientation. For a
morphism f = (f, s) ∶ Σ1 → Σ2 we let the orientation reversed morphism be given
by −f = (f,−s) ∶ −Σ1 → −Σ2.

We also see that orientation reversal is an operation on the category of marked
surfaces.

Let us now consider glueing of marked surfaces. Let (Σ,{p−, p+}⊔P,{v−, v+}⊔
V,L) be a marked surface, where we have selected an ordered pair (p−, p+) of
marked points with projective tangent vectors v− at p− and v+ at p+, at which we
will perform the glueing. Let C ∶ P(Tp−Σ) → P(Tp+Σ) be an orientation reversing
projective isomorphism such that C(v−) = v+. Such a C is called a glueing map for

Σ. Let Σ̃ be the oriented surface with boundary obtained from Σ by blowing up p−
and p+, i.e.

Σ̃ = (Σ − {p−, p+}) ⊔ P(Tp−Σ) ⊔ P(Tp+Σ),
with the natural smooth structure induced from Σ. Let now ΣC be the oriented
closed surface obtained from Σ̃ by using C to glue the two boundary compo-
nents of Σ̃ corresponding to p±. We call ΣC the glueing of Σ at the ordered pair
((p−, v−), (p+, v+)) with respect to C.

Let now Σ′ be the topological space obtained from Σ by identifying p− and
p+. We then have natural continuous maps q ∶ ΣC → Σ′ and n ∶ Σ → Σ′. On
the first homology group n induces an injection and q a surjection, so we can
define a Lagrangian LC ⊆ H1(ΣC ,Z) by LC = q−1∗ (n∗(L)). We note that the

image of P(Tp−Σ) (with the orientation induced from Σ̃) induces naturally a line
in H1(ΣC ,R) and as such it is contained in LR

C .

Remark 2.8. If we have two glueing maps Ci ∶ P(Tp−Σ) → P(Tp+Σ), i =
1, 2, we note that there is a diffeomorphism f ∶ Σ → Σ inducing the identity on
(p−, v−) ⊔ (p+, v+) ⊔ (P,V ) which is isotopic to the identity among such maps, and
such that (dfp+)−1 ○ C2 ○ dfp− = C1. In particular f induces a diffeomorphism
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MODULAR FUNCTORS, COHFTS AND TOPOLOGICAL RECURSION 7

f ∶ ΣC1
→ ΣC2

compatible with f ∶ Σ → Σ, which maps LC1
to LC2

. Any two such
diffeomorphisms of Σ induce isotopic diffeomorphisms from Σ1 to Σ2.

Definition 2.9. Let Σ = (Σ,{p−, p+}⊔P,{v−, v+}⊔V,L) be a marked surface.
Let

C ∶ P(Tp−Σ) → P(Tp+Σ)
be a glueing map and ΣC the glueing of Σ at the ordered pair ((p−, v−), (p+, v+))
with respect to C. Let LC ⊆ H1(ΣC ,Z) be the Lagrangian subspace constructed
above from L. Then the marked surface ΣC = (ΣC , P, V,LC) is defined to be the
glueing of Σ at the ordered pair ((p−, v−), (p+, v+)) with respect to C.

We observe that glueing also extends to morphisms of marked surfaces which
preserve the ordered pair ((p−, v−), (p+, v+)), by using glueing maps which are com-
patible with the morphism in question.

2.3. The axioms for a modular functor. We now give the axioms for a
modular functor. This notion is due to G. Segal and appeared first in [84]. We
present them here in a topological form, which is closer to Walker [94]. We note
that similar, but different, axioms for a modular functor are given in [89], relying
on modular tensor categories. At present, it is not known whether the definition in
[89] is equivalent to ours.

Definition 2.10. A label set Λ is a finite set equipped with an involution
λ↦ λ† and a distinguished element 1 such that 1† = 1.

Definition 2.11. Let Λ be a label set. The category of Λ-labeled marked
surfaces consists of marked surfaces with an element of Λ assigned to each of the
marked point. An assignment of elements of Λ to the marked points of Σ is called
a labeling of Σ and we denote the labeled marked surface by (Σ, λ⃗), where λ⃗ is
the labeling. Morphisms of labeled marked surfaces are required to preserve the
labelings.

We define a labeled pointed surface similarly.

Remark 2.12. The operation of disjoint union clearly extends to labeled marked
surfaces. When we extend the operation of orientation reversal to labeled marked
surfaces, we also apply the involution † to all the labels.

Definition 2.13. A modular functor based on the label set Λ is a functor V
from the category of labeled marked surfaces to the category of finite dimensional
complex vector spaces satisfying the axioms MF1 to MF5 below.

MF1. Disjoint union axiom. The operation of disjoint union of labeled marked
surfaces is taken to the operation of tensor product, i.e. for any pair of labeled
marked surfaces there is an isomorphism

V((Σ1, λ⃗1) ⊔ (Σ2, λ⃗2)) ≅ V(Σ1, λ⃗1) ⊗ V(Σ2, λ⃗2).
The identification is associative.

MF2. Glueing axiom. Let Σ and ΣC be marked surfaces such that ΣC is
obtained from Σ by glueing at an ordered pair of points and projective tangent
vectors with respect to a glueing map C. Then there is an isomorphism

V(ΣC , λ⃗) ≅ ⊕
μ∈Λ

V(Σ, μ, μ†, λ⃗),
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8 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

which is associative, compatible with glueing of morphisms, disjoint unions and it
is independent of the choice of the glueing map in the obvious way (see Remark
2.8).

MF3. Empty surface axiom. Let ∅ denote the empty labeled marked surface.
Then

dimV(∅) = 1.
MF4. Once punctured sphere axiom. Let Σ = (S2,{p},{v}, 0) be a marked

sphere with one marked point. Then

dimV(Σ, λ) = { 1, λ = 1
0, λ ≠ 1.

MF5. Twice punctured sphere axiom. Let Σ = (S2,{p1, p2},{v1, v2},{0}) be a
marked sphere with two marked points. Then

dimV(Σ, λ, μ) = { 1, λ = μ†

0, λ ≠ μ†.

In addition to the above axioms one may require extra properties, namely:
MF-D. Orientation reversal axiom. The operation of orientation reversal of

labeled marked surfaces is compatible with the operation of taking the dual vector
space, i.e for any labeled marked surface (Σ, λ⃗) there is a pairing

(2.1) ⟨⋅, ⋅⟩ ∶ V(Σ, λ⃗) ⊗ V(−Σ, λ⃗†) �→ C ,

compatible with disjoint unions, glueings and orientation reversals (in the sense

that the induced isomorphisms V(Σ, λ⃗) ≅ V(−Σ, λ⃗†)∗ and V(−Σ, λ⃗†) ≅ V(Σ, λ⃗)∗
are adjoints).

MF-U. Unitarity axiom. Every vector space V(Σ, λ⃗) is furnished with a her-
mitian inner product

(⋅, ⋅) ∶ V(Σ, λ⃗) ⊗ V(Σ, λ⃗) �→ C

so that morphisms induce unitary transformations. The hermitian structure must
be compatible with disjoint union and glueing. If we have the orientation rever-
sal property, then compatibility with the unitary structure means that we have
commutative diagrams

V(Σ, λ⃗) ����→
≅

V(−Σ, λ⃗†)∗

����
≅ ≅

����
V(Σ, λ⃗)∗ ≅����→ V(−Σ, λ⃗†),

where the vertical identifications come from the hermitian structure and the hori-
zontal identifications from the pairing (2.1).

2.4. The Teichmüller space of marked surfaces. Let us first review some
basic Teichmüller theory. Let Σ be an oriented closed smooth surface and let P be
a finite set of points on Σ. The usual Teichmüller space for a pointed surface (Σ, P )
consists of equivalence classes of diffeomorphisms ϕ ∶ (Σ, P ) → (C,Q), where C is
a Riemann surface and Q ⊂ C is finite set of points, namely

(2.2) TΣ,P = {ϕ ∶ (Σ, P ) → (C,Q)} / ∼
where we declare that two diffeomorphisms ϕi ∶ (Σ, P ) → (Ci,Qi) for i = 1, 2 are
equivalent if there exists a biholomorphic map Φ ∶ (C1,Q1) → (C2,Q2) such that
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MODULAR FUNCTORS, COHFTS AND TOPOLOGICAL RECURSION 9

Φ ○ ϕ1 is isotopic to ϕ2 by diffeomorphisms preserving P . If P = ∅, this space
is simply denoted TΣ. We will also consider the “decorated Teichmüller space”
consisting of equivalence classes of diffeomorphisms ϕ ∶ (Σ, P ) → (C,Q), where C
is a Riemann surface, Q ⊂ C is finite set of points, and W ∈ TQC non-zero tangent
vectors

T̃Σ,P = {ϕ ∶ (Σ, P ) → (C,Q,W )} / ≈

where ≈ is now the equivalence relation where we ask that the isotopies preserve
(P, (dPϕ)−1(W )). We have natural projection maps π̃Σ,P ∶ T̃Σ,P → TΣ,P , πP ∶
TΣ,P → TPΣ and πΣ ∶ TΣ,P → TΣ.

Theorem 2.2 (Bers). There is a natural structure of a finite dimensional com-

plex analytic manifold on the Teichmüller spaces TΣ,P and T̃Σ,P . The mapping class

group ΓΣ,P acts biholomorphically on TΣ,P , as does Γ̃Σ,P on T̃Σ,P .

Proposition 2.3. T̃Σ,P is a principal CP -bundle over TΣ,P on which Γ̃Σ,P

acts, covering the action of ΓΣ,P on TΣ,P . Moreover T ′Σ,P = T̃Σ,P /⟨δp ∣ p ∈ P ⟩ is a

principal (C∗)P -bundle over TΣ,P , such that the induced projection π̃′Σ,P ∶ T̃Σ,P →
T ′Σ,P is the fiberwise universal cover with respect to the projection π′Σ,P ∶ T ′Σ,P →
TΣ,P , compatible with the exponential map e2πi⋅ ∶ CP → (C∗)P on the structure
groups.

Proof. For every ϕ ∶ (Σ, P ) → (C,Q,W ) representing a point in TΣ,P , we
have the map

πP ∣π̃−1
Σ,P
([ϕ]) ∶ π̃−1Σ,P ([ϕ]) → TPΣ,

induced by assigning (dPϕ′)−1(W ) to a diffeomorphism ϕ′ ∶ (Σ, P ) → (C,Q,W )
which represents a point π̃−1Σ,P ([ϕ]). By the very definition of T̃Σ,P this map is

independent of the representative ϕ′ of a point in π̃−1Σ,P ([ϕ]). Now pick a ϕ′ ∶
(Σ, P ) → (C,Q,W ) representing a point in π̃−1Σ,P ([ϕ]) and let V ∈ TPΣ be given by

V = (dPϕ′)−1(W ).

Then consider the set (πP ∣π̃−1([ϕ]))−1(V ). We claim that the group ⟨δp ∣ p ∈ P ⟩
acts transitively on this set. To see this, let ϕ′′ ∶ (Σ, P ) → (C,Q,W ) represent
another point in (πP ∣π̃−1

Σ,P
([ϕ]))−1(V ). Since the two diffeomorphisms ϕ′ and ϕ′′

must represent the same element in TΣ,P , there exists Φ such that

(ϕ′′)−1 ○Φ ○ϕ′ ∶ (Σ, P ) → (Σ, P )

is isotopic to the identity. But then there exists a diffeomorphism ψ ∶ (Σ, P ) →
(Σ, P ) which represents an element in ⟨δp ∣ p ∈ P ⟩ such that

(ϕ′′)−1 ○Φ ○ (ϕ′ ○ ψ) ∶ (Σ, P ) → (Σ, P )

is isotopic to the identity within diffeomorphisms of (Σ, P, V ). This means that

ϕ′ ○ ψ represents the same point in T̃Σ,P as ϕ′′ does.

It now follows that T̃Σ,P is a principal CP -bundle over TΣ,P and that T ′Σ,P =
T̃Σ,P /⟨δp ∣ p ∈ P ⟩ is a principal (C∗)P -bundle over TΣ,P . �
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10 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

2.5. Construction of line bundles over Teichmüller spaces.
2.5.1. Fiber products. For each p ∈ P , we consider the representation p ∶

(C∗)P → Aut(C), which is obtained by projection on the factor corresponding to p.

We denote L̃p the line bundle over TΣ,P associated to T ′Σ,P and the representation
p.

Take α ∈ C. We now show how to construct the α’th power of L̃p over TΣ,P .
To this end consider the map ̃p ∶ CP → C, which is simply the projection onto the
factor corresponding to p ∈ P . Now we define

L̃α
p = T̃Σ,P ×α�̃p C,

where the action of CP on T̃Σ,P ×C is given by

w(ϕ, z) = (ϕw,e(α̃p(w))z), e(t) = exp(2iπt).
We observe that Γ̃Σ,P acts on L̃α

p covering the action of ΓΣ,P on TΣ,P , and that δp
acts by multiplication by e2πiα while δp′ acts trivially for p′ ∈ P − {p}.

2.5.2. Determinant of the Hodge bundle. The Hodge bundle is the vector bun-
dle over TΣ, whose fiber at the class of ϕ ∶ Σ→ C is H0(C,KC). There is a natural
action of ΓΣ on the Hodge bundle. We denote the determinant line bundle associ-

ated to this bundle by LD. It is isomorphic to the line bundle V†
ab(Σ), which the

first author and Ueno constructs over TΣ using a certain abelian CFT, namely the
CFT associated to the bc-ghost system [3]. We observe that for a marked surface
Σ = (Σ, P, V,L), the Lagrangian L induces a section sL of L2

D over TΣ, given by

sL = (u1 ∧⋯∧ ug)⊗2

where (u1, . . . , ug) is normalized on an integral basis of L. The isomorphism be-

tween LD and V†
ab(Σ) takes this section of L2

D to the preferred section of (V†
ab(Σ))2

over TΣ as described in [3]. By [4, Theorem 11.3], this section allows us to construct

a line bundle L−c/2D over TΣ for any c ∈ C, on which ΓΣ acts, such that (Id, 1) acts
by e−iπc/2. We denote by L̃−c/2D the pullback to TΣ,P of L−c/2D .

Remark 2.14. We recall that the Hodge bundle over TΣ has a natural hermitian
structure, which is ΓΣ invariant. Hence it induces a hermitian structure on the
holomorphic bundle LD which is also ΓΣ invariant. Hence we get a unique unitary
Chern connection in LD compatible with the holomorphic structure on this line
bundle, which by uniqueness is also ΓΣ invariant. By the proof of [4, Theorem
11.3] we see that for any c ∈ R, we get an induced ΓΣ-invariant unitary connection

in L̃−c/2D , whose curvature is −c/2 times the curvature of the Chern connection in

L̃D.

The moduli space of (Σ, P ) is by definition

(2.3) MΣ,P = TΣ,P /ΓΣ,P

When χ(Σ, P ) < 0, the stabilizers are finite, so there is a natural structure of an

orbifold onMΣ,P . We see that there is a natural action of ΓΣ,P on L̃p, also acting
with finite stabilizers and we define the orbifold line bundle over MΣ,P

Lp = L̃p/ΓΣ,P

Remark 2.15. By picking an orbifold Hermitian structure on the holomorphic
bundle Lp and pulling it back to L̃p, we see that the corresponding Chern connection
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in L̃p is ΓΣ invariant. Hence, for any non-zero rp ∈ R, we get an induced unitary

connection in L̃rp
p , which is ΓΣ invariant, and whose curvature is rp times that of

the Chern connection of L̃p

The moduli space MΣ,P also carries the Hodge bundle, simply by pulling the
Hodge bundle over MΣ back to MΣ,P . We also denote the determinant bundle
of this pull back of the Hodge bundle over MΣ,P by LD and it remains of course
an orbifold line bundle over MΣ,P . We denote ψD = c1(LD) and ψp = c1(Lp) and
think of them as rational cohomology classes over MΣ,P .

2.6. Modular functor and vector bundles over Teichmüller space. We
now fix a modular functor, without assuming the unitarity and orientation reversal
axioms.

2.6.1. Scalars.

● The modular functor gives a linear isomorphism

Vλ⃗(id, 1) ∶ Vλ⃗(Σ) → Vλ⃗(Σ)
and the axioms imply that it acts as multiplication by a scalar c̃ ∈ C∗

independent of λ⃗ and the topology of Σ. This is proved by factoring the
(IdΣ, 1) along the boundary of an embedded disk Σ0 in Σ−P and writing
it as (IdΣ, 1) = (IdΣ0

, 1) ∪ (IdΣ′ , 0), where Σ′ = Σ −Σ0.
● For the sphere with 2 points, we have

Aut(S2,{p1, p2},{v1, v2}, L) = Aut(S2,{p1, p2},{v1, v2}) ×Z
Aut(S2,{p1, p2},{v1, v2}) = ⟨δ⟩.

Here δ is the Dehn twist along the equator. The modular functor gives a
linear isomorphism

Vλ(δ) ∶ Vλ,λ†(S2, P, V, 0) → Vλ,λ†(S2, P, V, 0).
Since Vλ,λ†(S2, P, V, 0) is one dimensional, this linear map equals multi-
plication by a scalar r̃λ ∈ C∗.

Lemma 2.4. The Dehn twists around the punctures have the following proper-
ties.

(i) r̃1 = 1.
(ii) For any marked surface (Σ, λ⃗), the Dehn twist around a marked point p

with label λp acts on Vλ⃗(Σ) by multiplication with r̃λp
.

(iii) For any λ ∈ Λ, r̃λ = r̃λ† .

Proof. For (i) and (ii), we use the factorization axiom. (i) – The Dehn twist
is trivial on S2 and we can factor S2 along two curves, which are respectively the
equator pushed a small amount into the northern (resp. southern) hemisphere. It
then follows by considering this factorisation that r̃1 = 1. (ii) – We factor in the
boundary of an embedded disk in Σ − (P − {p}), centred in p and then we do the
Dehn twist around p inside the disk. The result only depends on the label λp at
p, and not on the topology of the remaining surface neither on the labels at other
punctures. (iii) – We can choose the points (p1, p2) and vectors (v1, v2) such that
the (orientation preserving) map z → −1/z takes (S2,{p1, p2},{v1, v2}) to itself, and
takes the equator to the itself. Hence, it commutes with the Dehn twist, and that
implies r̃λ = r̃λ† for all λ ∈ Λ. �
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12 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

2.6.2. Trivial vector bundles over TΣ,P . To a given Λ-marked surface (Σ, λ⃗),
we associate the trivial vector bundle

Z̃0
(Σ,λ⃗)

∶= TΣ,P × Vλ⃗(Σ).
If the modular functor is unitary, this bundle carries a ΓΣ-invariant unitary struc-
ture. In any case, we can equip it with the trivial flat connection, which is of
course ΓΣ-equivariant. Subsequently, the ΓΣ-equivariant Chern character is triv-
ial. According to the above discussion the Dehn twist δp around a point p acts by
multiplication by r̃λ. Moreover (Id, 1) in ΓΣ acts by multiplication by c̃.

2.6.3. Vector bundle over the moduli space. Pick up c, rλ ∈ C such that1 c̃ =
e(c/4) and r̃λ = e(rλ). We observe that δp, p ∈ P as well as (IdΣ, 1) act trivially on
the vector bundle

Z̃(Σ,λ⃗) = Z̃
0
(Σ,λ⃗)

⊗ L̃−c/2D ⊗
p∈P

L̃rλp
p .

Therefore we get that

Theorem 2.5. The action of ΓΣ factors to an action of ΓΣ,P and hence we
can define

Z(Σ,λ⃗) = Z̃(Σ,λ⃗)/ΓΣ,P

as an orbifold bundle over the moduli space MΣ,P .

For a variable t, the weighted Chern character is obtained from the Chern
character by weighting the term in cohomological degree 2j by the weight tj .

Proposition 2.6. For any modular functor V the weighted Chern character of
this vector bundle is

(2.4) Cht(Z(Σ,λ⃗)) = dimVλ⃗(Σ) exp{t( −
c

2
Λ1 + ∑

p∈P

rλp
ψp)}

where Λ1 is the first Chern class of the Hodge bundle.

Proof. We consider the tensor product connection of the trivial connection in
Z̃0
(Σ,λ⃗)

and then the ΓΣ-invariant unitary connections constructed in the bundles

L̃−c/2D and L̃rλp
p in Remarks 2.14-2.15. By Chern-Weil theory we therefore have that

Cht(Z(Σ,λ⃗)) = dimVλ⃗(Σ) exp{t( −
c

2
c1(LD) + ∑

p∈P

rλp
c1(Lp))}

= dimVλ⃗(Σ) exp{t( −
c

2
Λ1 + ∑

p∈P

rλp
ψp)}.

�
Since Chern classes of vector bundles over the orbifold MΣ,P are rational, c

and rλ must all be rationals. We thus get an alternative proof and generalisation
of Vafa’s theorem [92], as follows.

Corollary 2.7. For any modular functor, c̃ and r̃λ for any λ ∈ Λ are roots of
unity.

We recall that Vafa’s original proof was written for unitary modular functors,
based on an arithmetic argument following from relations in the mapping class
group. Corollary 2.7 can be improved to show the following corollary.

1With these convention, c is the Virasoro central charge, and rλ the conformal dimension.
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Corollary 2.8. For any γ ∈ Aut(Σ) which is the product of Dehn twists in
non-intersecting curves, the element Vλ⃗(γ) ∈ Aut(Vλ⃗(Σ)) has finite order.

This follows immediately by factoring along two simple closed curves on either
side of the simple closed curve of the Dehn twist. We recall that in general, not
all elements in the representations of the mapping class group provided by V have
finite order.

2.7. Extension to the boundary. We prove in this section the following
theorem.

Theorem 2.9. Z(Σ,λ⃗) extends to an orbifold bundle over the Deligne-Mumford

compactification MΣ,P .

In order to extend the above constructions to the Deligne-Mumford compact-
ification of the moduli space, we introduce the augmented Teichmüller space and
extend all our constructions in a mapping class group equivariant way to the aug-
mented Teichmüller space.

Let (Σ, P ) be a pointed surface. We introduce the set of contraction cycles
C(Σ,P ) on (Σ, P ). It consists of isotopy classes of 1-dimensional submanifolds C
of Σ − P , such that connected components of C are non-contractible, nor are any
two connected components of C isotopic in Σ − P , nor are any of the components
contractible into any of the points in P . We remark that C = ∅ is allowed.

The augmented Teichmüller space T a
Σ,P for a pointed surface (Σ, P ) consists

of equivalence classes of continuous maps ϕ ∶ (Σ, C,P ) → (X,N,Q), where C ∈
C(Σ,P ), X is a nodal Riemann surface with nodes N , and Q ⊂X is finite set of points
of X −N , such that ϕ(C) = N and the restricted map ϕ ∶ (Σ −C,P ) → (X −N,Q)
is a diffeomorphism.

T a
Σ,P = {ϕ ∶ (Σ, C,P ) → (X,N,Q)} / ∼a

where we declare that two continuous maps ϕi ∶ (Σ, C,P ) → (Xi,Ni,Qi) for
i = 1, 2 are ∼a-equivalent if there exists a biholomorphic map Φ ∶ (X1,N1,Q1) →
(X2,N2,Q2) such that Φ ○ϕ1 is isotopic to ϕ2 via continuous maps from (Σ, C,P )
to (X2,N2,Q2) which are diffeomorphisms from (Σ − C,P ) to (X2 − N2,Q2). If
P = ∅, this space is simply denoted T a

Σ .
The augmented Teichmüller space T a

Σ,P has the topology uniquely determined
by following property. Suppose π ∶ Z →D is a holomorphic map from a complex 2-
dimensional manifold Z to the unit disk D in the complex plane, such that π−1(x)
is a nodal Riemann surface for all x ∈ D. Suppose further that we are given a
continuous map Φ ∶ Σ ×D → Z, satisfying the two conditions:

● Φ(Σ × {x}) = π−1({x})
● if Nx are the nodes of π−1(x) then Cx = Φ−1(Nx) is a submanifold of Σ−P
such that [Cx] ∈ C(Σ,P ), and the restricted map Φ ∶ Σ −Cx → π−1(x) −Nx

is a diffeomorphism for all x ∈D.

Then, the map fromD to T a
Σ,P , which sends x to the restricted map Φ ∶ (Σ, Cx, P ) →

(π−1(x),Nx,Φ(P × {x})) is continuous.
We observe that the mapping class group ΓΣ,P acts on T a

Σ,P , and the quotient

is the Deligne-Mumford compactification Mg,n/Sn of the moduli space of genus g
curves with n = ∣P ∣ marked unordered points (see section 2.8).
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14 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

We will also consider the “decorated augmented Teichmüller space” consisting
of equivalence classes of continuous maps ϕ ∶ (Σ, C,P ) → (X,N,Q), where X is a
Riemann surface, Q ⊂ X is a finite set of points, and W ∈ TQX non-zero tangent
vectors.

T̃ a
Σ,P = {ϕ ∶ (Σ, C,P ) → (X,N,Q,W )} / ≈a

where ≈a is now the equivalence relation where we ask that the isotopies preserve
(P, (dPϕ)−1(W )). We have the following natural projection maps among the aug-
mented Teichmüller spaces.

π̃a
Σ,P ∶ T̃ a

Σ,P → T a
Σ,P , πa

P ∶ T a
Σ,P → TPΣ, and πa

Σ ∶ T a
Σ,P → T a

Σ .

The proof of Proposition 2.3 applies word for word to extend the Proposition
to the augmented setting. But then we get that all the constructions of Section 2.6
extend to constructions over augmented Teichmüller spaces and hence also to the
Deligne-Mumford compactification MΣ,P of the moduli spaces of genus g curves
with n marked unordered points.

Concerning the extension of the bundle L̃D and the section sL of L̃2
D to aug-

mented Teichmüller space, we appeal to the constructions of the first author and
Ueno presented in [3]. By the constructions of [3, Section 5] we see that the bundle

V†
ab(Σ) extends to a holomorphic bundle over augmented Teichmüller space. More-

over the preferred section of V†
ab(Σ) extends to a nowhere vanishing section of the

extension of V†
ab(Σ) to augmented Teichmüller space as is proved in [3, Section 6].

From this we conclude that the bundle L̃−c/2D extends to augmented Teichmüller
space and that the action of ΓΣ also extends.

2.8. Remark on ordering of punctures. In the usual definition of the
moduli space Mg,n, it is assumed that the marked points are ordered from 1 to n.

If (Σ, P ) is a pointed surface such that Σ has genus g and ∣P ∣ = n, in our
definition of the Teichmüller space TΣ,P in (2.2), the permutations of the n points
are divided out. We therefore have

MΣ,P ≃Mg,n/Sn

and likewise for the Deligne-Mumford compactifications. Later in the text, we work
only with the pull-back to Mg,n of the bundle Vλ⃗ that was so far obtained over

MΣ,P . The formula for the Chern character in Theorem 2.9 is the same for the
bundle over Mg,n.

3. Cohomological field theories

3.1. Generalities.
3.1.1. Frobenius algebras. A Frobenius algebra is a finite dimensional complex

vector space A, equipped with a symmetric, non-degenerate bilinear form b ∶ A ⊗
A → C, and an associative, commutative C-linear morphism × ∶ A ⊗ A → A such
that

∀a1, a2, a3 ∈ A, b(a1, a2 × a3) = b(a1 × a2, a3).
We require the existence of a unit for the product, denoted 1.

The algebra A is semi-simple if there exists a C-linear basis (ε̃1, . . . , ε̃n) such
that

(3.1) ∀(i, j) ∈ �1, n�, ε̃i × ε̃j = δij ε̃i.
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The unit is then 1 = ∑i ε̃i, and (3.1) implies that the bilinear form is diagonal in
this basis and reads

b(ε̃i, ε̃j) =
δij

Δi
.

We say that (ε̃i)i is a canonical basis. It is sometimes more convenient to work

with the orthonormal basis εi =Δ
1/2
i ε̃i which satisfies that

εi × εj = δijΔ
1/2
i εi, b(εi, εj) = δij .

Then b induces a bivector b† ∈ A⊗A, that will play an important role. In a canonical
or an orthonormal basis it reads

b† = ∑
i

εi ⊗ εi.

3.1.2. CohFTs. A cohomological field theory (CohFT) is the data of a finite
dimensional complex vector space A with a symmetric bilinear non-degenerate b ∶
A ⊗ A → C and a sequence Ωg,n ∈ H●(Mg,n) ⊗ A⊗n indexed by integers g ≥ 0
and n ≥ 0 such that 2g − 2 + n > 0, satisfying the axioms given below. Since b
gives a canonical identification of A with its dual A∗, we can equivalently consider
Ω∗g,n ∈H●(Mg,n) ⊗ (A∗)⊗n. The axioms are.

● The unit 1 ∈ A is such that the pairing is given by

∀a1, a2 ∈ A, b(a1, a2) = ∫
M0,3

Ω∗0,3(a1 ⊗ a2 ⊗ 1).

● Ω∗g,n is symmetric by simultaneous permutations of the n factors in (A∗)⊗n
and the n punctures in Mg,n.

● Pulling back by the glueing map π ∶ Mg,2+n → M1+g,n, we should have
that

π∗Ω∗1+g,n(⋅) = Ω∗g,2+n(b† ⊗ ⋅).

● Pulling back by the glueing map π ∶ Mg1,1+n1
×Mg2,1+n2

→Mg1+g2,n1+n2
,

we should have that

π∗Ω∗g1+g2,n1+n2
(⋅) = ∑

i,j

(Ω∗g1,1+n1
⊗Ωg2,1+n2)(pn1

(b† ⊗ ⋅))

where pn1
∶ (A∗)⊗2 ⊗ (A∗)⊗n1 ⊗ (A∗)⊗n2 → (A∗)⊗(1+n1) ⊗ (A∗)⊗(1+n2)

puts the second factor of A∗ into the (n1 + 2)-th position in the target.

● Pulling back by the forgetful map π ∶ Mg,1+n → Mg,n, we should have
that

π∗Ω∗g,n(⋅) = Ω∗g,1+n(1⊗ ⋅).

The axioms imply that A is a Frobenius algebra with the product

b(a1 × a2, a3) = ∫
M0,3

Ω∗0,3(a1 ⊗ a2 ⊗ a3).

Givental [47] describes two basic actions on the set of CohFTs over the same
Frobenius algebra. We follow the presentation of [70].
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16 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

3.1.3. Translations. Let T (u) ∈ u2A[[u]], and consider the forgetful maps πm ∶
Mg,m+n →Mg,n. One can define a new CohFT by the formula

(T̂Ω∗)g,n(a1 ⊗ . . .⊗ an)

= ∑
m≥0

1

m!
∑

k1,...,km≥2

(πm)∗{Ω∗g,n+m(Tk1
⊗⋯⊗ Tkm

⊗ a1 ⊗⋯⊗ an)ψk1

1 . . . ψkm
m }

where T (u) = ∑k≥2 Tku
k for Tm ∈ A. Here (πm)∗ is the pushforward in cohomology

classes, induced on smooth forms on the smooth compact orbifolds Mg,n.
3.1.4. R-matrix actions. Let R(u) ∈ End(A)[[u]] such that R(0) = id and

satisfying the symplectic condition

R(u)R†(−u) = id
where R†(u) ∈ End(A)[[u]] is the adjoint for the pairing b. One then defines2

B(u1, u2) ∶=
b† −R(u1) ⊗R(u2) ⋅ b†

u1 + u2
∈ (A ⊗A)[[u1, u2]].

The symplectic condition guarantees that B is a formal power series in u1 and u2.
One can define a new CohFT by the formula
(3.2)

(R̂Ω)g,n ∶= ∑
Γ∈Gg,n

1

∣AutΓ∣ (πΓ)∗( ∏
l=leaf

R(ψl) ∏
e=edge
{v′e,v

′′
e }

B(ψv′e , ψv′′e ) ∏
v=vertex

Ωg(v),n(v))

The sum is over the set Gg,n of stable graphs of topology (g, n), namely Γ meeting
the following requirements.

● vertices v are trivalent, carry an integer label g(v) ≥ 0 (the genus), and
their valency n(v) satisfy 2g(v) − 2 + n(v) > 0.

● there are n leaves (1-valent vertices), labeled from 1 to n.
● rank(H1(Γ,Z)) +∑v=vertex g(v) = g.

In (3.2), the endomorphisms are naturally composed along the graph, and we use
the pushforward by the following glueing map along the graph

πΓ ∶ ∏
v

Mg(v),n(v) →Mg,n.

3.1.5. Classification of semi-simple CohFT. Given a CohFT defined by corre-
lators Ωg,n, its restriction to the degree 0 part ωg,n ∈ H0(Mg,n) ⊗ A⊗n is some-
times called (abusively) a topological quantum field theory (2d TQFT). Teleman
[86], building upon the work of Givental [47,48], has classified semi-simple CohFT
whose underlying Frobenius algebra has dimension k.

Theorem 3.1. [86] Any semi-simple CohFT can be obtained from a degree 0
CohFT by the composition of the action of an R-matrix, and a translation such that

(3.3) T (u) = u(1 −R(u) ⋅ 1).

More precisely, if Ω denote the correlators of the CohFT, and Ωdeg 0 the correlators
of its underlying 2d TQFT, we have Ω = R̂T̂Ωdeg 0.

2Let us remark that this notation differs from the one used in the topological recursion
literature. In the topological recursion setup, B refers usually to the so-called Bergman kernel
while our B corresponds to its Laplace transform often denoted by B̌.
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MODULAR FUNCTORS, COHFTS AND TOPOLOGICAL RECURSION 17

This reconstruction is a powerful tool since the correlators Ωdeg 0
g,n of a degree 0

CohFT with canonical basis (ε̃i)i such that b(ε̃i, ε̃j) = δij/Δi and ε̃i × ε̃j = δij ε̃i are

(3.4) Ωdeg 0
g,n =

k

∑
i=1

Δg−1
i [Mg,n] ⊗ ε̃i ⊗⋯⊗ ε̃i,

where the Poincaré duality is implicitly used in this formula. The knowledge of the
R-matrix is enough for reconstructing the correlators of a semi-simple CohFT.

3.2. Reference vector spaces attached to a modular functor. We shall
now describe the CohFT defined by a modular functor, starting by the definition of
the reference vector spaces underlying it. We start with a general modular functor
V . We shall work with marked surfaces of reference, and choose basis in their
corresponding vector spaces.

3.2.1. Once-punctured sphere. Σ0,1 is the 2-sphere with P = {0} and V = {v0}
with v0 pointing to the positive real axis. V1(Σ0,1) is a line, and we pick up a

generator ζ̃[1]. This induces an isomorphism V1(Σ0,1) ≅ V1(Σ0,1)⋆, and allows us
to project the isomorphism from propagation of vacua

Vλ(Σ, P, V,L) ≅ Vλ,1(Σ, P ⊔ {p′}, V ⊔ {v′}, L) ⊗ V1(Σ0,1)
to an isomorphism

Vλ(Σ, P, V,L) ≅ Vλ,1(Σ, P ⊔ {p′}, V ⊔ {v′}, L).
Later on, this will be used systematically.

3.2.2. Twice-punctured sphere. Σ0,2 is the 2-sphere with P = {0,∞} and V =
{v0, v∞} with v∞ pointing to the negative real axis. Vλ,λ†(Σ0,2) is a line. The
property of propagation of vacua provides an isomorphism

(3.5) V1,1(Σ0,2) ≅ V1(Σ0,1) ⊗ V1,1(Σ0,2)
and the property of factorization provides isomorphisms

(3.6) Vλ,λ†(Σ0,2) ≅ Vλ,λ†(Σ0,2) ⊗ Vλ†,λ(Σ0,2) = Vλ,λ†(Σ0,2)⊗2.
They determine for each λ ∈ Λ a unique generator ζ[λ] of Vλ,λ†(Σ0,2) such that

ζ[1] = ζ[1] ⊗ ζ̃[1] using (3.5), and ζ[λ] = ζ[λ] ⊗ ζ[λ] using (3.6).
3.2.3. Thrice-punctured sphere. Σ0,3 is the 2-sphere with P = {0, 1,∞} and

V = {v0, v1, v∞} with v1 pointing in real direction to ∞. We denote the dimension
of Vλ,μ,ν(Σ0,3) by

Nλμν = dim Vλ,μ,ν(Σ0,3).
Since the homomorphism from the mapping class group of Σ0,3 to the permutation
group of the marked points is surjective, this symbol is invariant under permutation
of (λ,μ, ν). Propagation of vacua gives an isomorphism

(3.7) Vλ,λ†(Σ0,2) ≅ Vλ,λ†,1(Σ0,3) ⊗ V1(Σ0,1).
We fix a basis ζi[λμν] of the space Vλ,μ,ν(Σ0,3), indexed by i = 1, . . . ,Nλμν . With-
out loss of generality, we can require that, under (3.7), we have

ζ[λ] = ζ1[λλ†1] ⊗ ζ̃[1].
3.2.4. Torus. Σ1 is the torus C/(Z⊕ iZ). We denote α – resp. β – the oriented

simple closed curve based at o and following the positive real axis – resp. the
positive imaginary axis.
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18 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

3.3. The Frobenius algebra of a modular functor.
3.3.1. As a vector space. If γ is a oriented simple closed curve on Σ1, we obtain

a marked surface Σ
(γ)
1 by considering the Lagrangian spanned by the homology

class of γ. In this paragraph, we shall define a structure of Frobenius algebra on
the vector space of a torus. Let

(3.8) A ∶= V1(Σ(α)1 ).
By applying a diffeomorphism that takes (α,β) to (β,−α), we also have a natural
isomorphism

(3.9) A ≅ V1(Σ(β)1 ).
By propagation of vacua, then factorization along α and application of a suitable
diffeomorphism, we obtain from (3.8) an isomorphism

A ≅ ⊕
λ∈Λ

Vλ,λ†(Σ0,2).

Our previous choices of generators in the right-hand side carries to a basis eλ of
A. Similarly, the factorization along β from (3.9) gives another basis ελ of A. The
change of basis is called the “S-matrix”. It is the linear map S ∶ A → A defined by

S(eλ) ∶= ελ = ∑
μ∈Λ

Sλμeμ.

3.3.2. Pairing. We define a pairing on A by the following formula.

(3.10) b(eλ, eμ) ∶= δλμ†

3.3.3. Involutions. We define the charge conjugation, which is the involutive
linear map C ∶ A → A such that C(eλ) = eλ† . If O ∶ A → A is a linear map,
we denote O⊺ its adjoint with respect to the scalar product in which eλ is an
orthonormal basis, and O† its adjoint for the bilinear product b. We have

C = C⊺ = C† = C−1.
We may sometimes confuse the operator O with its matrix (Oλ,μ)λ,μ∈Λ in the basis

(eλ)λ∈Λ. In terms of matrices, O⊺ is the transpose, while M † = CO⊺C.
3.3.4. Curve operators and S-matrix. For any marked surface (Σ, P ) and a ori-

ented simple closed curve γ on Σ ∖ P and label λ ∈ Λ, following [5], we introduce
curve operators, that we denote C[γ;λ]. We consider in particular the curve oper-
ators (C[β;λ])λ∈Λ acting on A, as multiplication by eλ. In the basis related to α
they have the following expression

C[β;λ](eμ) = ∑
ν∈Λ

Nλμν† eν .

In the basis related to β, they are simultaneously diagonalized

(3.11) C[β;λ](εμ) = cμ[λ] εμ.
From these two facts, the eigenvalue can easily be computed. Indeed, we compute
from the definitions that we have

C[β;λ][e1] = ∑
μ∈Λ

Nλ1ν† eν = eλ = ∑
μ∈Λ

(S−1)λμ εμ,

while, if we first go to the ε-basis, we get

C[β;λ][e1] = ∑
μ∈Λ

(S−1)1μ cμ[λ] εμ.
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The comparison gives that (S−1)1μ is non-zero and the eigenvalue reads

(3.12) cμ[λ] =
(S−1)λμ
(S−1)1μ

.

One then deduces the following standard formula.

(3.13) Nλμ†ν = ∑
τ∈Λ

(S−1)λτSτμ(S−1)ντ
(S−1)1τ

.

This formula does not depend on the normalization of the basis diagonalizing
the curve operator action, i.e. it is invariant under rescalings Sτμ → aτSτμ with

(aτ)τ∈Λ ∈ [C∗]Λ.
3.3.5. Relation between S and C. Setting μ = 1 in (3.13) yields Nλ1ν = δλν† ,

which gives the following relation.

(3.14) Cλμ ∶= δλμ† = ∑
τ∈Λ

Sτ1

(S−1)1τ
(S−1)λτ(S−1)μτ .

In terms of the rescaled3 S-matrix, it can be rewritten

(3.15) Sλμ ∶=
√
(S−1)1λ
Sλ1

Sλμ, C = S−1(S−1)⊺,

or equivalently

(3.16) S⊺S = C.

Whenever possible, we prefer to avoid the occurrence of † indices, so we will use
(3.16) to convert it in entries of the inverse S-matrix.

3.3.6. Symmetric formula. This relation between S and C allows us to write
down the action of the curve operator in a more symmetric form avoiding the †
indices.

Nλμν = ∑
τ∈Λ

(S−1)λτ(S−1)μτ(S−1)ντ
[(S−1)1τ ]2

Sτ1.

Once again, one can express this symmetric formula in the orthonormal basis to
get a more natural form

(3.17) Nλμν = ∑
τ∈Λ

(S−1)λτ(S−1)μτ(S−1)ντ
(S−1)1τ

.

The rescaling from S to S also does not affect the formula for the eigenvalues of
the curve operators

(3.18) cμ[λ] =
(S−1)λμ
(S−1)1μ

.

3It follows from the definition that b is non-degenerate, so Sλ1/(S−1)1λ = b(ελ, ελ) computed
in (3.20) below cannot be 0, i.e. Sλ1 ≠ 0. Then, Sλμ depends on the arbitrary choice of a sign for

the squareroot, which does not affect any of the Verlinde formula, since an even number of S−1

factors appear.
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3.3.7. Extra relations. If MF-D is satisfied or if the modular functor comes
from a modular tensor category [89, page 97-98], then Sλμ = S−1μλ† . In particular,

we have (S−1)1λ = Sλ1, therefore S = S and the basis ελ is already orthonormal.
If MF-U is satisfied, the matrix S is unitary. In particular, S−11λ = S∗λ1. These
properties are justified in Appendix A. In this text, we study modular functors
where neither MF-D MF-U is assumed and in the following computations, we do
not use duality nor unitarity properties of the S-matrix.

3.3.8. As a Frobenius algebra. We define a product on A by the following for-
mula

(3.19) eλ × eμ ∶= C[β;λ](eμ).
A direct check from the previous formulas shows that A is now a Frobenius algebra,
with unit e1 = 1. We also find respectively from (3.13) and (3.14) that one has

ελ × εμ = δλμ
ελ

(S−1)1λ
and b(ελ, εμ) =

Sλ1

(S−1)1λ
δλμ.

The canonical basis (ε̃λ)λ is obtained by a rescaling of the ελ as follows

ε̃λ = (S−1)1λ ελ.
This basis satisfies

(3.20) ε̃λ × ε̃μ = δλμ ε̃λ and b(ε̃λ, ε̃μ) = (S−1)1λSλ1 δλ,μ.

A third interesting normalization gives the orthonormal basis defined by

(3.21) ελ =
ε̃λ√

(S−1)1λSλ1

=
√
(S−1)1λ
Sλ1

ελ ∶= ∑
μ∈Λ

Sλμeμ

which satisfies

ελ × εμ = δλμ
ελ√

(S−1)1λSλ1

and b(ελ, εμ) = δλμ.

The unit expressed in the various basis is

1 = e1 = ∑
λ∈Λ

ε̃λ = ∑
λ∈Λ

√
(S−1)1λSλ1 ελ = ∑

λ∈Λ

(S−1)1λελ.

The norm of the canonical basis will appear in subsequent computations and is read
from (3.20) as

Δλ ∶=
1

b(ε̃λ, ε̃λ)
= 1

(S−1)1λSλ1
= 1

[(S−1)
1λ
]2
.

3.4. CohFTs associated to a modular functor. We shall build, for each
log-determination of the central charge and Dehn twist eigenvalues,

(3.22) r̃λ = exp(2iπrλ), c̃ = exp(iπc/2), rλ, c ∈ Q such that rλ = rλ† ,

a 1-parameter family of CohFTs based on the Frobenius algebra A described in the
previous paragraph. The parameter here is denoted t ∈ C. We rely on the result
of Theorem 2.7: We have defined for each n-tuple λ⃗ of labels, a complex vector
bundle [Zλ⃗]g,n →Mg,n. Then, we simply take its Chern character.

Ωg,n = ∑
λ⃗∈Λn

Cht([Zλ⃗]g,n) eλ1
⊗⋯⊗ eλn

.

Theorem 3.2. For any t ∈ C and choice of log-determinations (3.22), Ωg,n is
a semi-simple CohFT.
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Proof. Our bundle has been defined over the boundary of the moduli space,
and the axioms of a CohFT for the Chern character immediately follow from the
factorization properties of the underlying bundles. �

To describe explicitly this CohFT, we need to find the operator which transports
it to a degree 0 CohFT. The strategy is the same as in [70] which was written in the
example where Vg,n is the Verlinde bundle. The task of identifying the R-matrix is
facilitated by the following result, whose proof relies on Teleman’s classification of
semi-simple CohFTs [86].

Lemma 3.3. [70] In a semi-simple CohFT, the restriction of Ωg,n to the smooth
locus Mg,n completely determines the R-matrix.

For any modular functor we already have computed in Proposition 2.6 the
Chern character of [Zλ⃗]g,n on the smooth locus Mg,n.

Ω∗g,n(eλ1
⊗⋯⊗eλn

) = [Dλ⃗]g,n exp{t(− c
2
Λ1+

n

∑
i=1

rλi
ψi)}, [Dλ⃗]g,n ∶= dimVλ⃗(Σg,n).

Here, Λ1 is the first Chern class of the Hodge bundle, not to be confused with
the label set Λ and Σg,n is any marked surface of genus g with n points. By the

Verlinde formula, [Dλ⃗]g,n only depends on g, n and λ⃗.

Proposition 3.4. Assume r1 = 0. We have the following diagonal R-matrix
in the e-basis, which can also be written non-diagonally in the ε-basis

(3.23) R(u) = ∑
λ∈Λ

eut(rλ+c/24) ideλ .

The corresponding translation is T (u) = u(1 − exp(utc/24))e1.

Since u here is not a quantized parameter, the log-determination of rλ and c
do matter in (3.23).

Remark 3.1. We observe that, up to the scalar eutc/24, the R-matrix can be
identified with the action of the flow at time ut/4iπ generated by an infinitesimal
Dehn twist around a puncture, on the space Vtot(Σg,n) = ⊕λ⃗∈Λn Vλ⃗(Σg,n). This
awaits an interpretation in hyperbolic geometry.

Proof. We first remark that

(3.24) Ω∗g,n(eλ1
⊗⋯⊗ eλn

)∣t=0 ∶= [Dλ⃗]g,n [Mg,n]
are the correlators of the degree 0 part of the CohFT of the modular functor. Denote
ι ∶ Mg,n →Mg,n the natural inclusion. With the formula ι∗(Λ1) = ι∗(κ1/12) [75],
we obtain that

ι∗Ω∗g,n(eλ1
⊗⋯⊗ eλn

) = ι∗Cht([Zλ⃗]g,n)(3.25)

= exp(−t c κ1/24) exp(
n

∑
i=1

t rλi
ψi).

Comparing with Teleman’s classification theorem, one gets

Ωg,n = R̂ T̂ Ωg,n∣t=0.
We see by definition of the κ-classes that the first factor in (3.25) can only arise by
the action of the translation operator, and the second factor arises from the action
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of the R-matrix given in (3.23). The expression of the translation follows from the
fact that we have a CohFT and the general result (3.3). Since r1 = 0 and e1 is the
unit, we find T (u) = u(1 − exp(utc/24))e1. �

3.5. Remark on log-determinations. When the modular functor comes
from a category of representations of a vertex operator algebra A, A is the character
ring of A. Characters are functions on the upper-half plane {τ ∈ C, Im τ > 0}, and
after multiplication by a suitable rational power of q = e2iπτ , the characters fit in a
vector-valued modular form. The S-matrix is implemented by the transformation
τ ↦ −1/τ , and the Dehn twist is implemented by τ ↦ τ + 1. The modularity of
characters then provides canonical log-determinations rλ and c, since multiplying
by another power of q will destroy modularity.

4. Topological recursion

The main result of [33] is that the intersection of the classes Ωg,n of a semi-

simple CohFT against ψ-classes inMg,n are computed by the topological recursion
of [38]. We quickly review this theory, in the context of local spectral curves. We
will comment on the setting of global spectral curves in Section 7.

4.1. Local spectral curve and residue formula. A local spectral curve
consists in the following set of data.

● U = ⊔iUi which is a disjoint union of formal neighbourhoods of complex
dimension 1 of points oi ∈ Ui ;

● a branched covering x ∶ U → V whose ramification divisor is O = ⊔i{oi}.
Here V itself is also a disjoint union of formal neighbourhoods of points
in P1.

We assume that x has only simple ramifications. Then, we can choose a coordinate
on Ui, denoted ζi such that x(ζi) = ζ2i /2+x(oi). We make this choice once for all in
each Ui. Note that Ui carries a holomorphic involution σi, which sends the point in
Ui with coordinate ζi, to the point in Ui with coordinate −ζi. In the cases, where
we consider Ui�1

× . . .×Ui�m
, we denote points in this cartesian product (z�1 , . . . z�m)

and we shall denote by ζi�i (z�i) their respective coordinates.

Let Δ = {(z, z) ∈ U2 ∣ z ∈ U} be the diagonal divisor and KU be the canonical
bundle of U . The initial data of the topological recursion is

ω0,1 ∈H0(U,KU), ω0,2 ∈H0(U2,K⊠2U (2Δ))
S2

with the extra condition that ω0,1(z) − ω0,1(σi(z)) has at most double zeros at oi.
In coordinates this means that we have

∀z ∈ Ui , ω0,1(z) = ∑
d≥0

ω0,1 [ id ] ζ
d
i (z)dζi(z)(4.1)

∀(z1, z2) ∈ Ui1 ×Ui2 , ω0,2(z1, z2) =
δi1i2 ti1 dζi1(z1)dζi2(z2)
(ζi1(z1) − ζi2(z2))2

+ ∑
d1,d2≥0

ω0,2 [ i1 i2
d1 d2

] ζd1

i1
(z1)ζd2

i2
(z2)dζi1(z1)dζi2(z2)

with ω0,1 [ i0 ] ≠ 0 or ω0,1 [ i2 ] ≠ 0. We usually assume that the coefficients of the
double poles are ti = 1 for all i.
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The topological recursion provides a sequence of symmetric forms in n variables,

(4.2) ωg,n ∈H0(Un, (KU(∗O))⊠n)Sn , for 2g − 2 + n > 0,

which describe the unique normalized solution of the “abstract loop equations” with
initial data (ω0,1, ω0,2) [20,21]. In (4.2), we take forms that are invariant under the
symmetric group Sn acting by permutation of the n factors of U . The definition
of ωg,n proceeds by induction on 2g − 2 + n > 0. We introduce the recursion kernel
(4.3)

Ki ∈H0(U ×Ui, [KU ⊠K−1Ui
(O)](Δ⊔Δσ)), Ki(z0, z) =

1

2

∫
z
σi(z)

ω0,2(⋅, z0)
ω0,1(z) − ω0,1(σi(z))

.

where Δσ = ⊔i{(z, σi(z)) ∣ z ∈ Ui}. Denote by I = {z2, . . . , zn} a set of (n − 1)
variables. The topological recursion formula defining the symmetric forms is

ωg,n(z1, I) = ∑
oi∈O

Res
z→oi

Ki(z0, z){ωg−1,n+1(z, σi(z), I)(4.4)

+ ∑
h+h′=g
J⊔J ′=I

(h,J)≠(0,∅),(g,I)

ωh,1+∣J ∣(z, J) ⊗ ωh′,1+∣J ′ ∣(σi(z), J ′)}.

The induction reduces ωg,n to an expression involving 2g − 2 + n residues of
products of Kis and g+n−1 factors of ω0,2. If the induction is completely unfolded,
ωg,n is a sum over certain trivalent graphs containing a spanning tree, having 2g −
2 + n vertices and g + n − 1 extra edges in the complement of the tree [38]. The
topological recursion also define a sequence of numbers (Fg)g≥2 by

Fg =
1

2 − 2g ∑oi∈O
Res
z→oi

(∮
z

oi
ω0,1)ωg,1(z)

Remark 4.1. Sometimes, the data of the differential form ω0,1 is replaced by
the data of a germ of functions y holomorphic at all the oi such that ω0,1(z) =
y(z)dx(z) for any z ∈ U .

4.2. Relation to cohomological field theories. For any local spectral curve,
the ωg,n can be represented in terms of intersection numbers on Mg,n [36]. There
is a partial converse presented in [33], where it is established that the correlators
of a semi-simple CohFT are computed by the topological recursion for a local spec-
tral curve prescribed by the corresponding R-matrix (we stress that not all local
spectral curves can arise from a CohFT). We now review this correspondence.

4.2.1. CohFT data. Let (ε̃i)i be a canonical basis, and εi = ε̃i/Δ1/2
i the or-

thonormal basis. We write the formal series expansions

T (u) = u(1 −R(u) ⋅ 1) = ∑
i

∑
d≥2

T [ id ] u
d εi(4.5)

B(u1, u2) =
b† −R(u1) ⊗R(u2) ⋅ b†

u1 + u2
(4.6)

= ∑
i1,i2

d1,d2≥0

B [ i1 i2
d1 d2

] ud1

1 ud2

2 εi1 ⊗ εi2

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



24 J. E. ANDERSEN, G. BOROT, AND N. ORANTIN

of the R-matrix and translation matrix defining uniquely a CohFT with canonical
basis (ε̃i)i. We denote by Ωg,n its correlators and Ωdeg 0

g,n the restriction to their
degree 0 part (which only depends on the norms Δi).

4.2.2. Local spectral curve data. We now define a local spectral curve, in terms
of the above CohFT data. Its ramification points are indexed by a canonical basis
(ε̃i)i of the underlying Frobenius manifold, and we set for z ∈ Ui

x(z) = x(oi) + ζ2i (z)/2

ωodd
0,1 (z) = −Δ−1/2i ζ2i (z)dζi(z) + ∑

d≥2

T [ id ]
(2d − 1)!! ζ

2d
i (z)dζi(z)

and for (z1, z2) ∈ Ui1 ×Ui2

ωodd
0,2 (z1, z2) = δi1i2 dζi1(z1)dζi2(z2)

(ζi1(z1) − ζi2(z2))2

+ ∑
d1,d2≥0

B [ i1 i2
d1 d2

]
(2d1 − 1)!!(2d2 − 1)!!

ζ2d1

i1
(z1) ζ2d2

i2
(z2)dζi1(z1)dζi2(z2).

(4.7)

By convention, (2d−1)!! = 1 for d = 0. Then, let ω��odd0,1 (z) be an arbitrary holomorphic

1-form which is invariant under the local involution ζi(z) → −ζi(z) in the patch
z ∈ Ui, and an arbitrary bidifferential of the form, for (z1, z2) ∈ Ui1 ×Ui2 ,

ω��odd0,2 (z1, z2) = ∑
d1,d2≥0

d1 or d2 even

ω0,2 [ i1 i2
d1 d2

] ζd1

i1
(z1)ζd2

i2
(z2)dζi1(z1)dζi2(z2).

We then consider the following quantities as initial data for the topological recursion

(4.8) ω0,1 = ωodd
0,1 + ω�

�odd
0,1 , ω0,2 = ωodd

0,2 + ω�
�odd

0,2 .

To sum up, in the decomposition

ω0,2(z1, z2) =
δi1i2dζi1(z1)dζi2(z2)
(ζi1(z1) − ζi2(z2))2

+ ∑
d1,d2≥0

ω0,2 [ i1 i2
d1 d2

] ζd1

i1
(z1)ζd2

i2
(z2)dζi1(z1)dζi2(z2),

the R-matrix of the CohFT only fixes the following coefficients.

ω0,2 [ i1 i2
2d1 2d2

] =
B [ i1 i2

d1 d2
]

(2d1 − 1)!!(2d2 − 1)!!
All the other coefficients can be arbitrarily chosen. With this ω0,2 at hand, we
build a family of meromorphic 1-forms Ξd,i(z0) indexed by ramification points and
an integer d ≥ 0

(4.9) Ξi,d(z0) ∶= Res
z→oi

(2d + 1)!! dζi(z)
ζi(z)2d+2 ∫

z

oi
ω0,2(⋅, z0).

The only singularity of this 1-form is a pole at z0 → oi, and we actually have, for
z0 ∈ Ui0 ,

(4.10) Ξi,d(z0)

= δii0
(2d + 1)!! dζi0(z0)

ζ2d+2i0
(z0)

+ (2d − 1)!! ∑
d0≥0

ω0,2 [ i i0
2d d0

] ζd0

i0
(z0)dζi0(z0).
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We stress that the domain of definition of Ξi,d is the whole U – as for ω0,2 – and
not only Ui.

Theorem 4.1. [33] Consider the n-forms ωg,n(z1, . . . , zn) defined by

(4.11) ωg,n(z1, . . . , zn) = ∑
i1,...,in

d1,...,dn≥0

∫
Mg,n

Ω∗g,n(εi1 ⊗⋯⊗ εin)
n

∏
�=1

ψd�

�

n

∏
�=1

Ξi�,d�
(z�).

Then, ωg,n is computed by the topological recursion (4.4) with initial data (4.8).

Note that, in the right-hand side, the only dependence in the choice of ω��odd0,2

lies in the meromorphic forms Ξd,i defined in (4.9) and on which the correlators are
decomposed. Further, the ωg,n do not depend on the constant x(oi) and the 1-form
ωeven
0,1 . Allowing them to be non-zero can simplify expressions, and does matter if

one is interested in building a Landau-Ginzburg model for which (4.7)-(4.7) is the
local expansion near the ramification divisors. This matter will be discussed in
Section 7.

We observe that

(4.12) ∫
R

e−ζ
2/2u

2(2πu)1/2 ζ
2d dζ = (2d − 1)!!ud.

Therefore, the relation between the initial data (4.5) and theR-matrix of the CohFT
is given by a Laplace transform, as it is well-known

1u + T (u) = ∑
i

(∫
γi

exp [ − x(z)−x(oi)
u

]
2(2πu)1/2 ω0,1(z)) εi

B(u1, u2) = ∑
i,j

(∫
γi×γj

exp [ − x(z1)−x(oi)
u1

− x(z2)−x(oj)

u2
]

4(2πu1)1/2(2πu2)1/2

⋅ {ω0,2(z1, z2) −
δij dζi(z1)dζj(z2)
(ζi(z1) − ζj(z2))2

}) εi ⊗ εj .

Here, γi is a steepest descent contour in the spectral curve passing through the
ramification point oi and going to ∞ in the direction Re [x(z)/u] → +∞. For the
case of local spectral curves we consider here, the meaning of the right-hand side
must be precised. We expand the non-exponential part of the integrand as power
series when z → oi, then integrate term by term against e−x(z)/u using (4.12). Each
term yields a monomial in u, and thus the right-hand side is a well-defined formal
power series in u.

4.2.3. 0-point correlation functions. The following lemma did not appear in
[33], but is an easy consequence of the content of that paper.

Theorem 4.2. For g ≥ 2, we have

∫
Mg,0

Ωg,0 = Fg ∶=
1

2 − 2g∑i
Res
z→oi

(∫
z

oi
ω0,1)ωg,1(z).

In order to prove it, we shall use the dilaton equation for the classes produced
by the action of the Givental group.
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Lemma 4.3. Given a semi-simple 2d TQFT (Ωdeg 0
g,n )g,n, a translation T (u) ∈

u2A[[u]] and an element R(u) ∈ End(A)[[u]], the cohomology classes Ω = T̂ R̂Ωdeg 0

satisfy

(4.13) (2g − 2 + n)∫
Mg,n

Ω∗g,n(⋅)

= ∫
Mg,n+1

Ω∗g,n+1(⋅ ⊗ 1)ψn+1 −∑
k
∫
Mg,n+1

Ω∗g,n+1(⋅ ⊗ Tk)ψk
n+1

for 2g − 2 + n > 0.

In particular, this result holds for CohFTs, where R and T are related by
T (u) = u(Id −R(u))1. Theorem 4.2 is then a simple consequence of (4.13) using a
residue representation.

Proof. We prove this formula in three steps. First, let us remark that this
statement is true for a vanishing T (u) and R(u) = Id by the dilaton equation on
the moduli space of curves

(4.14) ∫
Mg,n+1

[
n

∏
i=1

ψdi

i ]ψn+1 = (2g − 2 + n)∫
Mg,n

n

∏
i=1

ψdi

i .

Next, we check the validity of (4.13) for arbitraryR(u) with T (u) ≡ 0. By definition,
we have that

Ω̌g,n ∶ = (R̂Ω)g,n

= ∑
Γ∈Gg,n

1

∣AutΓ∣ (πΓ)∗( ∏
l=leaf

R(ψl) ∏
e=edge
{v′e,v

′′
e }

B(ψv′e , ψv′′e ) ∏
v=vertex

Ωdeg 0
g(v),n(v)

),

where Gg,n denotes the stable graphs of genus g with n legs. We can now compute

∫
Mg,n+1

Ω̌∗g,n+1(⋅ ⊗ 1)ψn+1

= ∑
Γ∈Gg,n+1

1

∣AutΓ∣ ∫Mg,n+1

ψn+1 (πΓ)∗

⋅ ( ∏
l=leaf/{n+1}

R(ψl) ∏
e=edge
{v′e,v

′′
e }

B(ψv′e , ψv′′e ) ∏
v=vertex

Ωdeg 0∗
g(v),n(v)

).
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Denoting by v∗ the unique vertex of Γ adjacent to the leaf corresponding to the
(n + 1)-th marked point, we can write it as a product of integrals over the moduli
spaces associated to each vertex

∫
Mg,n+1

Ω̌∗g,n+1(⋅ ⊗ 1)ψn+1

= ∑
Γ∈Gg,n+1

1

∣AutΓ∣ ∑
d(h)≥0 h=half−edge
i(v)∈�1,k� v=vertex

∏
e=edge
{v′e,v

′′
e }

B [ i(v′e) i(v′′e )
d(h1(e)) d(h2(e))

]

× ∏
v≠v∗

(Δg(v)−1

i(v) ∫
Mg(v),n(v)

n(v)

∏
j=1

ψ
dj(v)
j )

×Δg(v∗)−1

i(v∗) ∫
Mg(v∗),n(v∗)

[
n(v∗)−1

∏
j=1

ψ
dj(v

∗)
j ]ψn(v∗)

with the following notations. Each vertex v is assigned a label i(v) ∈ �1, k� where
k is the dimension of A. Each half-edge h is assigned a nonnegative integer d(h).
Each edge e is decomposed into a pair of half edges (h1(e), h2(e)) such that h1(e)
(resp. h2(e)) is adjacent to v′e (resp. v′′e ). The incident half-edges to a vertex v are
labeled (in some arbitrary way) from 1 to n(v) and we denote by dj(v) the label
d(h) where h is the j-th half edge incident to v. By convention, the d(v∗)-th half
edge is the one from v∗ to the (n + 1)-th leaf.

We can now apply the dilaton equation to the vertex v∗ in order to remove the
(n + 1)-th marked point leading to

∫
Mg,n+1

Ω̌∗g,n+1(⋅ ⊗ 1)ψn+1

= ∑
Γ∈Gg,n+1

1

∣AutΓ∣ ∑
d1(e),d2(e)

e=edge

∑
i(v)

v=vertex

∏
e=edge
{v′e,v

′′
e }

B [ i(v′e) i(v′′e )
d(h1(e)) d(h2(e))

]

× ∏
v≠v∗

⎡⎢⎢⎢⎢⎣
Δ

g(v)−1

i(v) ∫
Mg(v),n(v)

n(v)

∏
j=1

ψ
dj(v)
j

⎤⎥⎥⎥⎥⎦

×(2g(v∗) − 2 + n(v∗) − 1) Δg(v∗)−1

i(v∗) ∫
Mg(v∗),n(v∗)−1

⎡⎢⎢⎢⎢⎣

n(v)−1

∏
j=1

ψ
dj(v)
j

⎤⎥⎥⎥⎥⎦
.

Finally, recall that a graph of genus g with n + 1 leaves is nothing but a graph a
genus g with n leaves and a distinguished vertex – one recovers the first by adding
an (n + 1)-th leaf at the distinguished vertex. So, we can convert the sum into a
sum over Γ ∈ Gg,n, and since ∑v(2g(v) − 2 + n(v)) = 2g − 2 + n, we obtain

∫
Mg,n+1

Ω̌∗g,n+1(⋅ ⊗ 1)ψn+1 = (2g − 2 + n)∫
Mg,n

Ω̌∗g,n(⋅).

In the last step of the argument, we study the action of the translation on
the dilaton equation. Let (Ω∗g,n)g,n be a set of cohomology classes satisfying

∫Mg,n+1
Ω∗g,n+1(⋅ ⊗ 1)ψn+1 = (2g − 2 + n) ∫Mg,n

Ω∗g,n(⋅), and let T (u) = ∑k≥2 Tku
k ∈

u2A[[u]] be a formal series. For g ≥ 2, we have by definition that

(TΩ∗)g,1(1)ψ1 = ∑
m≥0

1

m!
∑

k1,...km≥2

(πm)∗{Ω∗g,1+m(1⊗ Tk1
⊗⋯⊗ Tkm

)ψk1

1 . . . ψkm
m }ψ1
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where we denote by πm ∶ Mg,1+m →Mg,1 the map forgetting the last m marked
points. This implies that

∫
Mg,1

(TΩ∗)g,1(1)ψ1

= ∑
m≥0

1

m!
∑

k1,...km≥2
∫
Mg,1+m

Ω∗g,1+m(1⊗ Tk1
⊗⋯⊗ Tkm

)ψk1

1 . . . ψkm
m ψ1.

Using the dilaton equation for the classes (Ωg,n)g,n, one can push it down to

∫
Mg,1

(TΩ∗)g,1(1)ψ1

= ∑
m≥0

(2g − 2 +m)
m!

∑
k1,...km≥2

∫
Mg,m

Ω∗g,m(Tk1
⊗⋯⊗ Tkm

)ψk1

1 . . . ψkm
m .

This can be decomposed into a sum of two terms which reads

∫
Mg,1

(TΩ∗)g,1(1)ψ0

= (2g − 2)∫
Mg,0

(TΩ∗)g,0(1)

+ ∑
m≥1

1

(m − 1)! ∑
k1,...km≥2

∫
Mg,1+m−1

Ω∗g,1+m(Tk1
⊗⋯⊗ Tkm

)ψk1

1 . . . ψkm
m .

One can see the second term as a contribution to (T̂Ω)g,1 by marking the first point
for example and making the change of variable m→m − 1. This proves the lemma
for n = 0. The generalization to n > 0 follows by similar arguments. �

In the next paragraphs, we apply Theorems 4.1-4.2 to the CohFT obtained
from a modular functor.

4.3. Topological recursion and Verlinde formula. We shall not repro-
duce the general proof of Theorem 4.1, but it is easy and nevertheless instructive to
derive it directly for the degree 0 part of the theory, i.e. for the 2d TQFT associated
to a modular functor. In this way, we exhibit the Verlinde formula computing the
dimension [Dλ⃗]g,n = dimVλ⃗(Σg,n) of the spaces provided by the modular functor
as a special case of topological recursion.

4.3.1. Verlinde formula. Let us start with a brief review of the Verlinde for-
mula. In terms of matrix elements in the (eλ)λ basis, it takes the following form

[Dλ⃗]g,n = [C[β;λ1]⋯C[β;λn]Wg]
11
= b(e1, eλ1

×⋯ × eλn
×Wg(e1)).

In this expression, we used the curve operators introduced in § 3.3.4, and

W = ∑
μ∈Λ

Tr(C[β;μ†]) C[β;μ].

Equation (4.15) – and its equivalent form below (4.16) – have been first conjec-
tured by Verlinde [93]. It was then proved by Moore and Seiberg [73] for modular
functors coming from modular tensor categories (though the notion had not been
coined yet), but the proof actually holds for any modular functor (see also [89]).
The strategy consists (a) in degenerating Σg,n in an arbitrary way to a nodal sur-
face whose smooth components all are thrice-punctured spheres, and then use the
factorization, thus expressing [D●]g,n in terms of [D●]0,3 ; (b) to show that the
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S-matrix diagonalizes the multiplication in the Frobenius algebra, which implies
(4.16) for (g, n) = (0, 3). For modular functors without further assumptions, this is
for instance proved in [84] and also in [5].

We can derive another expression by working in the ε̃-basis, taking advantage
of the fact that it diagonalizes simultaneously the curve operators and exploiting
e1 = ∑τ∈Λ ε̃τ . The eigenvalues of the curve operators are (3.11)

C[β;μ](ε̃τ) =
(S−1)μτ
(S−1)1τ

ε̃τ ,

so that the trace yields

(4.15) TrC[β;μ†] = ∑
ν∈Λ

(S−1)μ†ν

(S−1)1ν
= ∑

ν∈Λ

Sνμ

(S−1)1ν
.

Then the eigenvalues of W read, using (3.15),

W(ε̃τ) = ( ∑
μ,ν∈Λ

Sνμ

(S−1)1ν
(S−1)μτ
(S−1)1τ

) ε̃τ =
ε̃τ

[(S−1)1τ ]
2 .

Using that b(ε̃τ , ε̃τ ′) = [(S−1)1τ ]
2
δτ,τ ′ , we obtain the equivalent – and maybe better

known form – of (4.15)

(4.16) [Dλ⃗]g,n = ∑
τ∈Λ

(S−1)λ1τ ⋯ (S−1)λnτ

[(S−1)1τ ]
2g−2+n

.

4.3.2. Topological recursion for the 2d TQFT. We denote ωKdV
g,n the correlation

functions returned by the topological recursion for the Airy curve defined by

(4.17) U = C, x(ζ) = ζ2/2, y(z) = −z, ω0,2(ζ1, ζ2) =
dζ1dζ2
(ζ1 − ζ2)2

.

Although it is not needed in the proof of Proposition 4.4 below, we recall the
following well-known formula4.

(4.18) ωKdV
g,n (ζ1, . . . , ζn) = ∑

d1,...,dn≥0
∫
Mg,n

n

∏
i=1

ψdi

i

(2di + 1)!! dζi
ζ2di+2
i

.

Proposition 4.4. Consider the local spectral curve defined by the data of U =
⊔λ∈ΛUλ and, for z ∈ Uλ and (z1, z2) ∈ Uλ1

×Uλ2
in the expression of the following

data local coordinates.

(4.19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(z) = x(oλ) + (ζλ(z))2/2
y(z) = −(S−1)1λ ζλ(z)

ω0,2(z1, z2) = δλ1λ2

dζλ1
(z1)dζλ2

(z2)

(ζλ1
(z1)−ζλ2

(z2))2

.

Then, the correlation functions returned by the topological recursion for 2g−2+n > 0
are, for zi ∈ Uλi

,

(4.20) ωg,n(z1, . . . , zn) = ( ∑
μ⃗∈Λn

n

∏
i=1

Sλiμi
[Dμ⃗]g,n)ωKdV

g,n (ζλ(z1), . . . , ζλ(zn)).

4See [35] for a proof based on matrix model techniques. It can also be obtained directly from
the Virasoro constraints [29,97] satisfied by the intersection numbers.
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Remark that, since ω0,2 is purely diagonal in (4.19), the left-hand side in (4.20)
vanishes unless all zi belongs to the same open set Uλ1

. This is consistent with
(4.16) which shows that the bracket in the right-hand side of (4.20) vanishes unless
λi = λ for all i, and explains the notation used in the KdV factor. If we want to
compare with Theorem 4.1, we use (4.18) and the following basis of 1-forms.

z ∈ Uμ, Ξd,λ(z) = δλμ
(2d + 1)!!
[ζλ(z)]2d+2

.

Proof. In (4.19), we recognize several copies of the Airy curve, except for a

rescaling of y(z) → (S−1)1λ y(z) in the patch z ∈ Uλ. By the previous remark, we
can assume that for i ∈ �1, n�, we have all zi ∈ Uτ for some τ ∈ Λ. Since ωg,n is
obtained from the initial data by a sequence of 2g−2+n residues at the ramification
point oτ ∈ Uτ involving the kernel (4.3), we have that

ωg,n(z1, . . . , zn) =
ωKdV
g,n (z1, . . . , zn)
[(S−1)1τ ]

2g−2+n .

To conclude, we recognize with (4.16) that

1

[(S−1)1τ ]
2g−2+n = ∑

τ∈Λ

n

∏
i=1

Sτμi
[Dμ⃗]g,n.

�

The expression of the topological recursion in terms of intersection numbers
is naturally written in terms of local coordinates around the ramification points,
which are associated to the canonical basis (ελ)λ. To recover the expression in the
(eλ)λ-basis, one has to make a linear combination which cancels the S in (4.20).
So, the property that (ωg,n)g,n appearing in (4.11) satisfy the topological recursion
is equivalent to the Verlinde formula (4.16) for [D●]g,n.

We can reformulate the proof by saying that, in the sum over trivalent graphs
that computes the ωg,n of the topological recursion, the dependence in the indices
λi ∈ Λ of the weight of a graph is the same for all graphs5.

4.3.3. Change of basis. Denote zλ(ζ) ∈ Uλ the point such that ζλ(zλ(ζ)) = ζ,
and define the following forms

ω[λ⃗]g,n(ζ1, . . . , ζn) ∶= ωg,n(zλ1
(ζ1), . . . , zλn

(ζn)).
Proposition 4.4 can be alternatively written as

(4.21) ∑
λ⃗∈Λn

n

∏
i=1

(S−1)μiλi
ω[λ⃗]g,n(ζ1, . . . , ζn) = [Dμ⃗]g,n ωKdV

g,n (ζ1, . . . , ζn).

In anticipation of Section 7, we remark that if there exists a global spectral curve,
it corresponds to expressing the correlation functions in a different basis of coor-
dinates. In the Landau-Ginzburg picture, this amounts to taking a different linear
combination of vanishing cycles, while in the GW theory picture, it means taking
a different basis of the cohomology of the target space pulled back to the moduli
space by the evaluation map.

5While finishing this project, we heard that Dumitrescu and Mulase arrived independently
in [32] to Proposition 4.4.
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4.4. Local spectral curves for modular functors. For the CohFTs built
from a modular functor, we computed the R-matrix in (3.23). Working in the
orthonormal basis (ελ)λ introduced in (3.21), we deduce an expression for the local
spectral curve, but we exploit the freedom to add non-odd parts to the initial data
to simplify the result. Define the function B(ζ) by

(4.22) B(ζ) = cosh(ζ)
ζ2

− sinh(ζ)
ζ

,

and the renormalized Dehn twist by

(4.23) hλ = 2t(rλ + c/24).

From Lemma 2.4, we deduce that h1 = ct/12 and hλ = hλ† .

Theorem 4.5. The topological recursion applied to the initial data (ω0,1 =
ydx , ω0,2) with

x(z) = x(oλ) + [ζλ(z)]2 /2(4.24)

y(z) = −(S−1)1λ
exp[(ct/12)1/2ζλ(z)]

(ct/12)1/2

ω0,2(z1, z2) = ∑
τ∈Λ

Sλ2τ
(S−1)τλ1

hτ B[h1/2
τ (ζλ1

(z1) − ζλ2
(z2))]dζλ1

(z1)dζλ2
(z2)

where z ∈ Uλ and (z1, z2) ∈ Uλ1
× Uλ2

, computes the intersection indices of Chern
classes of the bundles [Zλ⃗]g,n, in the sense of Theorem 4.1-4.2 when decomposed
on the following basis of 1-forms.

∀z ∈ Uμ, Ξd,λ(z) = ∑
τ∈Λ

Sλτ(S
−1)τμ

Γ[2d + 2 ; h1/2
τ ζμ(z)]

2d d! [ζμ(z)]2d+2
dζμ(z)

where Γ[a ; x] ∶= ∫
∞
x dv va−1e−v is the incomplete Gamma function6.

With the notational remark of Section 4.3.3, we therefore obtain a generaliza-
tion of (4.21), which is our second main result

(4.25) ∑
λ⃗∈Λn

n

∏
i=1

(S−1)μiλi
ω[λ⃗]g,n(ζ1, . . . , ζn) = ∫

Mg,n

Cht(Zμ⃗(Σg,n))
n

∏
i=1

Ξ(ψi, h
1/2
μi

ζi)

where Ξ(u, ζ) is the following formal series in u with coefficients meromorphic forms
in a neighbourhood of ζ = 0

Ξ(u, ζ) = ∑
d≥0

Γ[2d + 2; ζ]
2dd! ζ2d+2

ud

And, for g ≥ 2, we have as well that

Fg = ∫
Mg,0

Cht(Z(Σg,0)).

6Since Γ[a ; x] = Γ(a) + O(xa−1) when x → 0, we see that Ξd,λ(z) = δλμ (2d +
1)!! [ζμ(z)]−(2d+2) dζμ(z) +O(1) as it should be.
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Proof. This is pure algebra. The inverse norm of ελ is introduced in (3.21),

and gives Δ
−1/2
λ = (S−1)

1λ
. Inserting r1 = 0 in (3.23), we obtain T (u) = u(1 −

eutc/24)1. Then, for z ∈ Uλ, we compute with (4.7)-(4.7) that

ωodd
0,1 (z) = (S−1)1λ( − [ζλ(z)]2 − ∑

d≥1

(ct/24)d [ζλ(z)]2d+2
d! (2d + 1)!! )dζλ(z)

= −(S−1)1λ(ζλ(z) + ∑
d≥1

(ct/12)d [ζλ(z)]2d+1

(2d + 1)! )ζλ(z)dζλ(z)

= −(S−1)1λ
sinh[(ct/12)1/2 ζλ(z)]

(ct/12)1/2 dx(z).(4.26)

By adding a suitable even part, we can choose

ω0,1(z) = −(S−1)1λ
exp[(ct/12)1/2ζλ(z)]

(ct/12)1/2
dζλ(z).

We now proceed to the 2-point function. We have b† = ∑λ∈Λ eλ⊗ eλ† . Thus, we
obtain from the definition (4.6) that

B(u1, u2) = ∑
λ1,λ2∈Λ

( ∑
τ∈Λ

1 − exp [(u1hτ + u2hτ†)/2]
u1 + u2

(S−1)τλ1
(S−1)τ†λ2

) ελ1
⊗ ελ2

.

There is some simplification because hτ = hτ† , and (S−1)τ†λ2
= Sλ2τ

according to
(3.16), so we get that

(4.27) B(u1, u2) = ∑
λ1,λ2∈Λ

( ∑
τ∈Λ

1 − exp [(u1 + u2)hτ /2]
u1 + u2

Sλ2τ
S−1τλ1

) ελ1
⊗ ελ2

.

Let z1 ∈ Uλ1
and z2 ∈ Uλ2

. We decompose in power series of (u1, u2) and compute
with (4.7)-(4.7) for the odd part

ωodd
0,2 (z1, z2) −

δλ1λ2
dζλ1

(z1)dζλ2
(z2)

(ζλ1
(z1) − ζλ2

(z2))
2

= − ∑
τ∈Λ

Sλ2τ
(S−1)τλ1 ∑

k≥0

(hτ /2)k+1
(k + 1)! ( ∑

d1,d2≥0
d1+d2=k

k!

d1!d2!

[ζλ1
(z1)]2d1 [ζλ2

(z2)]2d2

(2d1 − 1)!!(2d2 − 1)!!
)

⋅ dζλ1
(z1)dζλ2

(z2)

= − ∑
τ∈Λ

Sλ2τ
(S−1)τλ1 ∑

k≥0

hk+1
τ

4(k + 1) ⋅ (2k)!{(ζλ1
(z1) + ζλ2

(z2))2k + (ζλ1
(z1) − ζλ2

(z2))2k}

⋅ dζλ1
(z1)dζλ2

(z2)

= −1
2
∑
τ∈Λ

Sλ2τ
(S−1)τλ1

hτ{B̃[h1/2
τ (ζλ1

(z1) + ζλ2
(z2))] + B̃[h1/2

τ (ζλ1
(z1) − ζλ2

(z2))]}

⋅ dζλ1
(z1)dζλ2

(z2).
It is expressed in terms of the renormalized Dehn twist introduced in (4.22)

and the following series

B̃(ζ) = ∑
k≥0

ζ2k

2(k + 1) ⋅ (2k)! =
1 − cosh(ζ)

ζ2
+ sinh(ζ)

ζ
= 1

ζ2
− B(ζ).
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Writing δλ1λ2
= ∑τ∈Λ Sλ2τ

(S−1)τλ1
, the double pole can also be incorporated in the

sum in the right-hand side. By adding a suitable non-odd part, we can choose a
bidifferential with a rather simple expression
(4.28)

ω0,2(z1, z2) ∶= ∑
τ∈Λ

Sλ2τ
(S−1)τλ1

hτ B[h1/2
τ (ζλ1

(z1) − ζλ2
(z2))]dζλ1

(z1)dζλ2
(z2).

This is the result announced in (4.24). Eventually, we compute from (4.9) the basis
of 1-form induced by this choice of ω0,2. Taking advantage of the fact that

B(ζ) = cosh(ζ)
ζ2

− sinh(ζ)
ζ

= −f
′(ζ) + f ′(−ζ)

2
, f(ζ) = exp(ζ)

ζ
,

we find that, for z0 ∈ Uμ,

Ξd,λ(z0)
dζμ(z0)

= Res
z→oλ

(2d + 1)!!
ζ2d+2λ (z) ∫

z

oλ

ω0,2(⋅, z0)
dζμ(z0)

= − ∑
τ∈Λ

Sμτ(S
−1)τλ Res

ζ→0

exp[h1/2
τ (ζ − ζμ(z0))]
ζ − ζμ(z0)

(2d + 1)!! dζ
ζ2d+2

= ∑
τ∈Λ

Sμτ(S
−1)τλ(

(2d + 1)!!
[ζμ(z0)]2d+2

− ∑
m≥0

(2d + 1)!!
(2d + 1)!

(−1)mh
d+1+m/2
τ [ζμ(z0)]m

(2d + 2 +m) ⋅m!
)

= ∑
τ∈Λ

Sμτ(S
−1)τλ(

(2d + 1)!!
[ζμ(z0)]2d+2

− hd+1
τ

2d d!
∫

1

0
dv v2d+1 exp[−h1/2

τ ζμ(z0)v])

= ∑
τ∈Λ

Sμτ(S
−1)τλ

Γ[2d + 2 ; h1/2
τ ζμ(z0)]

2d d! [ζμ(z0)]2d+2
.

�

Remark 4.2. For t ≠ 0, the dependence in t can easily be absorbed by defining
ζ̃λ(z) = t1/2ζλ(z). More precisely

ωg,n∣t(z1, . . . , zn) = t3g−3+3n/2 [ωg,n(z1, . . . , zn)∣
t=1
]
ζλ(z)→t1/2ζλ(z)

and subsequently

Fg ∣t = t3g−3 Fg ∣t=1
The latter is also true for t = 0, as it is known that FKdV

g = 0 for all g ≥ 2.

In the remaining of the text, we comment on the local spectral curves obtained
for two important families of modular functors, which are both related to quantum
Chern-Simons theory in 2+1-dimensions, with a gauge group G which is either finite
(Section 5) or simply-connected compact (Section 6). Without entering into the
details of the construction, we present the main facts necessary to apply effectively
the results of the previous sections. We also discuss in Section 7 the problem of
constructing global spectral curves in which the local expansion at the ramification
gives (4.24).
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5. Example: Modular functors associated to finite groups

The simplest examples of modular functors are provided by quantum Chern-
Simons theory with finite gauge groups G in (2+ 1)-dimensions. These TQFT was
studied by Dijkgraaf and Witten as a particular case of quantization of Chern-
Simons theory with arbitrary compact (maybe non simply connected) gauge group,
and its construction depends on a cocycle [α] ∈ H3(BG,U(1)) [30], where BG is
the classifying space for G. When G is a finite group, the path integral producing
the TQFT correlation functions over a manifold X is reduced to a finite sum over
isomorphism classes of certain G-principal bundles on X. The theory is therefore an
attractive playground to have a grasp on TQFTs. The construction of the modular
functor was presented in [42] shortly after. The central extension of the mapping
class group plays no role here, i.e. c̃ = 1 and the central charge is always 0. This
model is also known as the “holomorphic orbifold model”, and fits in the framework
of VOA.

We summarize below the untwisted theory [α] = 0. The modular functor in
this case can also be obtained from the modular tensor category of representa-
tions of D(G), the quantum double of the finite group G [12]. We have that
A = Rep(D(G)), which is also equipped with the structure of a Frobenius man-

ifold. Then, the Dehn twist eigenvalues are also trivial: d̃λ = 1 for all λ ∈ Λ.
Therefore, the CohFT we produce is rather trivial, like in Section 4.3, and does not
remember more than the dimensions of the TQFT vector spaces.

The twisted theory deals with projective representations of G, with cocycle
determined by the class [α]. We refer to [28,30,42] for a full presentation. But,
we will point out in Section 5.2 that it gives Dehn twist eigenvalues depending in
a non-trivial way on the class [α], and therefore leads to CohFTs which do not sit
only in degree 0.

5.1. The untwisted theory.
5.1.1. Frobenius algebra. If g ∈ G, Cg denotes the conjugacy class of g, and

Zg the centralizer of g in G, i.e. the set of all elements commuting with g. We
obviously have that

#Cg =
#G

#Zg
.

The label set Λ consists of ordered pairs (i, ) where Ci is a conjugacy class of
G, and  = i,gi an (isomorphism class of) irreducible representation of Zgi for some
gi ∈ Ci. Remark that, for any two representatives gi, g

′
i ∈ Ci, Zgi and Zg′i

(hence

their representations) are canonically isomorphic, by the following formula.

(5.1) i,kgk−1(h) = i,g(k−1hk).

We denote i† the index of the conjugacy class containing g−1i , and † the dual
representation. Then, (i, ) ↦ (i†, †) endows Λ with an involution. The vector
space A = ⊕(i,�)C.e(i,�) is equipped with a product reflecting the operation of
tensor product of representations. If i and j are representations of Zgi and Zgj ,
one has to consider i ⊗ j as defining a representation of Zgk for each gk that can
appear as the product of two elements in Ci and Cj .
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The algebra A contains two remarkable subalgebras Aconj and Arep which en-
code respectively the product induced by the group algebra of G on its center, and
the representation theory of G.

The space Arep is a subalgebra spanned by the vectors e(1,�), where i = 1
is reserved for the conjugacy class of the identity in G, and  is an irreducible
representation of G = Z1. The subalgebra Aconj is spanned by the vectors e(i,1),
which indexes conjugacy classes Ci of G, and the centralizer is equipped with the
trivial representation, so that i,1(g) is constant equal to 1. It is isomorphic as an
algebra to the center of the group algebra of G, and as such it has a natural structure
of commutative associative algebra. The structure constants in the product

(5.2) e(i,1) ×
conj

e(j,1) =∑
k

Nijk e(k,1)

compute the number of factorizations of the identity in G by elements in fixed
conjugacy classes. It can be expressed as follows

Ni1i2i3 =
#{(g1, g2, g3) ∈ Ci1 ×Ci2 ×Ci3 ∣ g1g2g3 = 1}

#Ci3

=
#{p ∈ Hom(π1(Σ0,3),G) ∣ p(lj) ∈ Cij j = 1, 2, 3}

#Ci3

.

Here, lj is a loop around the j-th puncture of Σ0,3. The numerator is also the
number of G-bundles on a sphere with 3 punctures, in which the monodromy around
the j-th point belongs to the conjugacy class Cij .

5.1.2. Scalars and S-matrix. These modular functors have c̃ = 1 and r̃(i,�) = 1,
but their VOA origin provides canonical log-determinations (see Section 3.5):

c = 0, rλ = 0.

For each i labeling a conjugacy class, gi ∈ Ci, and a representation  ∶= i,gi
of Zgi , we denote by χi,gi(h) = Tri,gi(h) its character. We take as convention
χi,gi(h) = 0 whenever h ∉ Zgi . Let Zi be the centralizer of some (arbitrary) repre-
sentative of Ci, and Vi,� be the vector space on which Zi acts via the representation
. The dimension of this module is dimVi,� = i,gi(1). We reserve the label i = 1
for the conjugacy class of the identity in G, and then in (1, ),  must be a repre-
sentation of G. Its character will be denoted χ�, and V1,� ∶= V� the vector space of
the representation.

The S-matrix is computed in [28,42]. Keeping the notations of Section 3.3, it
reads

(5.3) S(i1,�1)(i2,�2)
= 1

#G
∑

gj∈Cij

[g1,g2]=1

χi1,g1(g−12 )χi2,g2(g−11 ).
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We list for bookkeeping some special entries of the S-matrix.

S(1,1)(1,1) = 1

#G

S(i,1)(1,1) = #Ci

#G

S(1,�)(1,1) = dimV�

#G

S(i,1)(1,�) = #Ci χ�(Ci)
#G

S(i,�)(1,1) = #Ci

#G
dimVi,� =

dimVi,�

#Zi
(5.4)

S(i,1)(j,1) = #Commutant(Ci, Cj)
#G

S(1,�)(1,τ) = dimVτ dimV�

#G

S(i,�)(1,τ) = dimVi,�

#G
#Ci ⋅ χτ(Ci†).

The matrix S can be thought as an extension of the character table of G which
appears in (5.4), so that both indices i and  are treated on the same footing.
This matrix is clearly symmetric, and it can be checked by direct computation that
S2 = C is the operator sending eλ to eλ† .

5.1.3. Local spectral curve. Since c = 0 and r(i,�) = 0, the CohFT just consists
of several (suitably rescaled) copies of the trivial CohFT, and the local spectral
curve consists of several copies of the Airy curve (4.17). The only information left
from the modular functor is the dimension of the representations, appearing as the
rescaling

x(z) = [ζi,�(z)]2/2, y(z) = −dimVi,�

#G
ζi,�(z), z ∈ Ui,�

and as we have seen in Section 4.3, this is just enough to compute the dimensions
of the TQFT vector spaces.

5.2. The twisted theory. Let us choose a 3-cocycle α representing the class
[α], and introduce for any h ∈ G, the following 2-cocycle for Zh

(5.5) ch(g1, g2) =
α(h, g1, g2)α(g1, g2, h)

α(g1, h, g2)
.

Choosing another representative α′, we would obtain a 2-cocycle c′h differing from
ch only by a coboundary. A projective representation of Zh with cocycle ch is a
map h ∶ Zh → GL(V ) for a finite dimensional vector space, such that h(1) = 1
and one has that

∀(g1, g2) ∈ G2, h(g1)h(g2) = ch(g1, g2)h(g1g2).
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In the construction of the modular functor for the twisted theory, i,g are now the
projective representations of Zgi with cocycle cgi [42]. The S-matrix takes the form

S(i1,�1)(i2,�2)
= 1

#G
∑

gj∈Cij

[g1,g2]=1

χi1,g1(g−12 )χi2,g2(g−11 )σ(g1∣g2)

and the Dehn twist eigenvalues are

r̃(i,�) = σ(gi∣gi)−1/2

for some arbitrary gi ∈ Ci. The function σ(g1∣g2) depends in a non-trivial way on
[α], but must satisfy σ(g1∣g2) = σ(g2∣g1) and another condition of cohomological
nature [28]. The relation between σ and α is explained in full generality in [41].
In the simpler case where all 2-cocycles ch defined in (5.5) are coboundaries, let us
take a 1-cocycle βh such that

ch(g1, g2) =
βh(g1)βh(g2)
βh(g1g2)

.

The consistency conditions impose βh−1(g) = βg−1(h) = [βg(h)]−1, and the expres-
sion for σ is then [28]

σ(g1∣g2) = βg1(g2)βg2(g1).
As we see, the Dehn twist eigenvalue r̃(i,�) now depends on i, but still not on

the representation  of Zi. In the computation of ω0,2 from (4.24), one encounters
the following terms, for a fixed i,

∑
�

S(i2,�2)(i,�)
(S−1)(i,�)(i1,�1)(5.6)

=∑
�

S(i†1,�
†
1)(i,�)

S(i2,�2)(i,�)

= 1

(#G)2 ∑
g1∈Ci1

, g2∈Ci2
h1,h2∈Ci

[gj ,hj]=0

σ(g−11 ∣h1)σ(g2∣h2)χi1,g1(g)χi2,g2(h−12 )

⋅ (∑
χ

χi,h2
(g−12 )χi,h1

(g1)).

We focus on the quantity in the brackets, which is a sum over all projective
representations of Zi. Since there exists k ∈ G such that h1 = kh2k

−1, we have
χi,h2

(g−12 ) = χi,h1
(kg−12 k−1). The characters of projective representations of Zi

form an orthonormal basis of ch1
-class functions – the proof, as for representations,

only relies on Schur’s lemma. Therefore, the sum over χ in (5.6) vanishes when g1
and kg−12 k−1 do not belong to the same conjugacy class in Zi. A fortiori, to have
a non-zero result in (5.6), we need g1 and g2 to be in the same conjugacy class in
G, i.e. i1 = i2. Therefore, ω0,2(z1, z2) for zj ∈ U(ij ,�j) is proportional to δi1i2 , and
it follows from the residue formula (4.4) that

Lemma 5.1. For zj ∈ U(ij ,�j), ωg,n(z1, . . . , zn) vanishes unless all ij are equal
for j ∈ �1, n�.

We find that the CohFT does not couple the representation theory of different
centralizers, or in the words of [30], it does not couple different interaction channels.
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However, ω0,2 in a given channel will mix various ’s, and thus the CohFT is non-
trivial, unlike the untwisted case.

6. Example: WZW model for compact Lie groups

6.1. Short presentation. We briefly review the definition of the Verlinde
bundle that arises from the Wess-Zumino-Witten model, and the corresponding
modular functor. It is based on the representation theory of a VOA, namely an
algebra that incorporates the Virasoro algebra – describing infinitesimal coordinate
reparametrizations in a disk neighbourhood of a puncture on a Riemann surface
– together with a central extension and extra symmetries coming from a simple
complex Lie algebra g. Since the seminal work of Tsuchiya, Ueno and Yamada
[88], there is a vast literature on the Verlinde bundles, that readers with different
backgrounds will appreciate differently; we can suggest the nice article of Beauville
[14] giving a proof of the Verlinde formula for the non-exceptional g, the book of
Ueno [91], and the review of Looijenga [67]. A complete proof that these theories
gives modular functors was given by Andersen and Ueno in [3,4].

6.1.1. Affine Kač-Moody algebras. We refer to [62] for the detailed theory. Let
h be the Cartan subalgebra, Δ+ the set of positive roots, θ the highest root – which
is the highest weight for the adjoint representation – and  = 1

2 ∑α>0 α the Weyl
vector. We normalize the Killing form ⟨⋅, ⋅⟩ such that ⟨θ, θ⟩ = 2. It induces an
isomorphism between h and h∗, which we use systematically to identify h and h∗.
In particular, we use the notation  for the Weyl vector in h or the corresponding

element in h∗. Let (ei)dimh

i=1 be an orthonormal basis of h for the Killing form. The
quadratic Casimir is the element of the universal enveloping algebra of g defined

by Q = 1
2 ∑

dimh

i=1 ei⊗ ei. It acts as a scalar on the highest weight g-module Vλ, more
precisely, one has that

Q∣Vλ
= 1

2
⟨λ,λ + 2⟩ idVλ

.

This scalar on the adjoint is denoted h∨(g), and called the dual Coxeter number
of g, namely h∨(g) = 1 + ⟨θ, ⟩. Let gR be the compact real form of g, and hR its
Cartan subalgebra. The weight lattice in h∗ is denoted LW , it consists of all λ ∈ h∗

R

such that

∀α ∈Δ+, 2
λ(α)
⟨α,α⟩ ∈ Z.

For a fixed � ≥ 1, we introduce the set of highest weights at level � defined by

(6.1) P� = {λ ∈ LW ∣ 0 ≤ λ(θ) ≤ �}.
Consider the untwisted affine Lie algebra

ĝ = C.c⊕ g⊗C((ξ)).
It is a central extension of g⊗C((ξ)), with the Lie bracket defined by

∀X1,X2 ∈ g, ∀f1, f2 ∈ C((ξ)),
[X1 ⊗ f1,X2 ⊗ f2] = ⟨X,Y ⟩ (Res

ξ→0
f1df2) ⋅ c + [X1,X2] ⊗ f1f2.

We can use the following decomposition

ĝ = p+ ⊕ p−, p+ = g+ ⊕ g⊕C.c, g+ = ξ ⋅ g[[ξ]].
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If λ ∈ P�, we promote the g-module Vλ to a p+ module, by declaring that g+

annihilates Vλ, and the central element c acts as � ⋅ idVλ
. Then, one introduces the

Verma module as

Mλ = U(g) ⊗p+ Vλ.

It is a left ĝ-module, which is not irreducible. However, it contains a maximal
proper submodule defined by

Jλ = U(p̂−) ⋅ (θ ⊗ ξ−1)�−⟨θ,λ⟩+1.

Then, Hλ = Mλ/Jλ becomes irreducible, and it is actually an integrable highest
weight module for ĝ. If P is a finite set, define the multi-variable analogue of ĝ by

ĝP = C.c⊕ ⊕
p∈P

g⊗C((ξp)).

Now, if X = (Σ, P ; ξ) is a Riemann surface Σ equipped with a finite marked set of
points P and ξ = (ξp)p∈P a set of local coordinates at the points of P , then the Lie
algebra

ĝ(X) = g⊗C H0(Σ,OΣ(∗P ))
is naturally embedded as a subalgebra of ĝP .

6.1.2. From the space of vacua to the modular functor. For any X as above,
and λ⃗ ∶ P → P� a set of labels, we define the space of vacua by

Vλ⃗(X) =Hλ⃗/ĝ(X)Hλ⃗.

Then, one can show [67,87,88] that, if X and X′ differ by a change of coordinates
ξ → ξ′, there is a canonical isomorphism between Vλ⃗(X) and Vλ⃗(X′). This allows

us to define Vλ⃗(X) as a bundle over the Teichmüller space T̃Σ,P .
By the work of Tsuchiya, Ueno and Yamada [88], this bundle carries a projec-

tively flat connection, and enjoys nice factorization properties over families where
the surface is pinched. Exploiting this connection, Andersen and Ueno proved [3,4],
that one can make a definition independent of the complex structure: They assign
unambiguously a vector space Vλ⃗(Σ) to any marked surface Σ, and prove that
this assignment defines a modular functor in the sense of Section 2. Moreover, in
[5, 7] Andersen and Ueno established that, for g = slN , this modular functor is
isomorphic to the modular functor obtained from the modular tensor category of
representations of the quantum group U−q1/2(g) with

(6.2) q = exp[2iπ/(� + h∨(g))].

6.1.3. More notations. Let W be the Weyl group of g. We denote w0 ∈W its
longest element. Its length is ∣Δ+∣, and it is the unique element that sends positive
roots to negative roots. By definition of the Weyl vector, w0() = −.

We consider as label set Λ ∶= P�, the set of representations of gR at level �. It
is equipped with the involution λ† = −w0(λ). Note that λ† is actually the highest
weight of V ∗λ .

If β ∈ h, qβ stands for the function h → C defined by x ↦ q⟨β,x⟩ on h. The
character of Vλ is denoted chλ ∶ h→ C, and is given by the Weyl character formula

chλ(qβ) =
∑w∈W sgn(w) q⟨λ+�,w(β)⟩

∑w∈W sgn(w) q⟨�,w(β)⟩ .
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The q-dimension is defined as dimq Vλ = chλ(1), and using the Weyl denominator
formula, it reads

dimq λ ∶= ∏
α>0

[⟨α,λ + ⟩]q
[⟨α, ⟩]q

, [x]q = qx/2 − q−x/2.

The weight lattice LW has a sublattice Lθ spanned by the elements ⟨w(θ), ⋅⟩ with
w ∈W. The integer

D� ∶=# (LW /(� + h∨)Lθ)
appears as a normalization constant in

∑
λ∈Λ

∣chλ(qβ)∣
2 =D−1� ⋅ ∣ ∏

α>0

[⟨α,β⟩]q∣
2

.

Consider the matrix

Sλμ =D−1/2� ∑
w∈W

sgn(w) q⟨λ+�,w(μ+�)⟩(6.3)

=D−1/2� ⋅ ∏
α>0

[⟨α, ⟩]q ⋅ dimq Vλ ⋅ chμ(qλ+�)

with the value q = exp[2iπ/(� + h∨)]. From the first equality we see that S is

symmetric, and since the scalar product is W-invariant and sgn(w0) = (−1)∣Δ+∣, we
have that

C S = (−1)∣Δ+∣ S∗,
where we recall that C is the matrix of the involution †. It is less obvious but also
true using orthogonality of characters that S is unitary which means that

SS∗ = 1.
6.1.4. Scalars and S-matrix. The modularity of characters of the underlying

VOA gives canonical log-determinations for the eigenvalues of the central element
and the Dehn twist. These are the conformal weights and the central charge [59,88]

(6.4) rλ =
⟨λ,λ + 2⟩
2(� + h∨) , c = � dimg

� + h∨(g) .

The formulas manifestly satisfy r1 = 0 and rλ = rλ† . With Freudenthal strange
formula, we can also write that

c

24
= �

h∨
⟨, ⟩

2(� + h∨(g)) .

The S-matrix appearing in Section 3.3 is given by the Kač-Peterson formula
[59, Proposition 4.6(d)]

(6.5) Sλμ = i∣Δ+∣ S∗λμ or equivalently S−1λμ = (−i)∣Δ+∣ Sλμ.
Since the diversity of notations in the literature can be confusing, let us make two
checks ensuring that (6.5) in our notations is correct. Firstly, with the properties
of S just pointed out, we can write

S⊺S = (−1)∣Δ+∣ S∗S∗ = C SS∗ = C
as it should be according to (3.16). Secondly, the Verlinde formula (3.17)-(4.16) in
our notations does agree, once we insert (6.5) in the Verlinde formula [14, Corollary
9.8].
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6.1.5. The case g = slN . Let CN be equipped with its canonical orthonormal
basis (ei)Ni=1, and e∗i be the dual basis. The Cartan algebra of slN can be identified

with the hyperplane in CN orthogonal to ∑N
i=1 ei, and the Killing form is induced

from the scalar product on CN . The positive roots are ei − ej for 1 ≤ i < j ≤ N , the
highest root is θ = e1 − eN , and the Weyl vector is

 = 1

2

N

∑
i=1

(N + 1 − 2i) ei.

Here h∗ (resp. the weight lattice LW ) is the C-span (resp. Z-span) of (e∗i )Ni=1
modulo the relation ∑N

i=1 e
∗
i = 0. If λ ∈ h∗, let us denote ∣λ∣ = ∑N

i=1 λi. The Killing
form induced on h∗ is [45]

⟨
N

∑
i=1

λi e
∗
i ,

N

∑
j=1

μj e
∗
j ⟩ =

N

∑
i=1

λiμi −
∣λ∣∣μ∣
N

.

The element representing the Weyl vector in h∗ is

 = 1

2

N

∑
i=1

(N + 1 − 2i) e∗i =
N−1

∑
i=1

(N − i)e∗i mod (
N

∑
i=1

e∗i ).

The fundamental weights are

1 ≤ i ≤ N − 1, wi =
i

∑
j=1

e∗j

and the corresponding highest weight slN -modules are ⋀iCN . Irreducible highest
weight representations of slN are encoded in an (N − 1)-tuple λ = (λ1, . . . , λN−1)
such that λ1 ≥ ⋯ ≥ λN−1 ≥ 0, which corresponds to the highest weight vector

λ =
N

∑
j=1

λj e
∗
j =

N−1

∑
j=1

(λj − λj+1)wj

with the convention λN = 0. The representations at level � are those with λ1 ≤ �.
The Weyl group permutes the (ei)Ni=1, and its longest element is the permutation

ei ↦ eN+1−i for all i ∈ �1,N�. Since e∗N = −∑
N−1
i=1 e∗i on the hyperplane h, we see that

the involution takes λ to its “complement” as in Figure 2, i.e. λ†
i = λ1 − λN−i+1.

The characters chλ are the Schur polynomials, and the central charge and Dehn
twist eigenvalues are

h∨(slN) = N, c = �(N2 − 1)
� +N , rλ =

1

2(� +N)(
N−1

∑
i=1

λi(λi−2i+1)+N ∣λ∣−
∣λ∣2
N
).

Since the Weyl group acts transitively on the set of roots, Lθ is just the root lattice

Lθ = {
N

∑
i=1

aie
∗
i ,

N

∑
j=1

aj = 0}/{
N

∑
i=1

e∗i = 0}

and it has index N in the weight lattice. Therefore, the normalization integer reads

D� = N (� +N)N−1.
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λ

�

N − 1

N

λ†

Figure 2. The involution λ† = −w0(λ) in terms of Young tableaux.

In the case N = 2 for level � ≥ 0, Λ is the set of integers from 0 to �, the
involution is the identity, and D� = 2(� + 2). The scalars and S-matrix read

∀λ,μ ∈ �0, �� c = 3�

� + 2 , rλ =
λ(λ + 2)
4(� + 2) ,

S−1λμ =
√

2

� + 2 sin [π(λ + 1)(μ + 1)
� + 2 ].

6.2. CohFT and double Hurwitz numbers. The Chern character of the
Verlinde bundle has already been studied in [69,87], and [70] showed that it defines
a CohFT – this was in fact the example motivating our work. In this particular case,
our work only completes [70] by remarking that the CohFT correlation functions are
computed by the topological recursion with the local spectral curve of Theorem 4.5.
It would be interesting to know the meaning of this CohFT from an enumerative
geometry perspective. For g = slN , we show that ω0,2 given in (4.24) is related in
some way to double Hurwitz numbers.

6.2.1. Hurwitz numbers. Let us first review the definition of Hurwitz numbers.
For any finite group G, we consider the number ofG-principal bundles over a surface
of genus g and n punctures, whose monodromy around the j-th punctures belongs
to the conjugacy class Cij of G. It is computed by the Frobenius formula [99]

(6.6)
#{R ∈ Hom(π1(Σg,n),G) ∣ R(lj) ∈ Cj}

#G
= ∑

ν

[χν(1)
#G

]
2−2g n

∏
j=1

fν(Cj)

where the sum ranges over irreducible representations of G, and

fν(C) ∶=
#C χν(C)

χν(1)
.

When G =Sd, this is the number of (possibly disconnected) branched coverings
of degree d over a surface of genus g. Conjugacy classes of Sd are labeled by
partitions μ of d: The parts of μ are the lengths of the cycles of a representative of
Cμ. For a collection of partitions μ1, . . . , μn ⊢ d, the numbers

Hd
g (μ⃗) =

#{R ∈ Hom(π1(Σg,n),Sd) ∣ R(lj) ∈ Cμj
}

d!

are called “Hurwitz numbers” of genus g. Though it is a good starting point, the
formula (6.6) involving the character table of Sd is not the end of the story.

Let C(2) be the conjugacy class of a transposition. One often would like to
count branched coverings with arbitrary number b of simple ramification points.
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The corresponding Hurwitz numbers are

Hg(μ⃗ ∣T ) ∶= ∑
b≥0

T b

b!
Hd

g (μ⃗, C(2), . . . , C(2)
qrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrt

b times

).

If we keep n points with arbitrary ramifications μ⃗, this is the generating series of
n-tuples Hurwitz numbers in genus7 g. For instance, the generating series of double
Hurwitz numbers in genus 0 and degree d is, according to (6.6),

(6.7) Hd
0 (μ1, μ2 ∣T ) =

1

d!2
∑
ν⊢d

#Cμ1
#Cμ2

χν(Cμ1
)χν(Cμ2

) eT fν(C(2)).

The generating series of genus 0 simple [19,23,37,49,50] and double [25,53,54,
58,78] Hurwitz numbers have been intensively studied from the point of view of
combinatorics, mirror symmetry, and integrable systems. The generating series
of Hurwitz numbers in genus 1 is somewhat simpler because the coupling in (6.6)
disappears, and there is a nice theory relating them to quasimodular forms [27,60].
The realm of genus g ≥ 2 seems uncharted.

6.2.2. Rewriting of the 2-point function. We recall two elementary facts on
symmetric functions [68]. By Schur-Weyl duality, for a partition with ∣λ∣ = d boxes,
the Schur polynomials decompose on the power sums as

chλ(x) =
1

d!
∑
μ⊢d

#Cμ χλ(Cμ)pμ(x).

Further, fλ(C(2)) = 1
2 ∑

N
i=1 λi(λi − 2i+ 1) is related to the quadratic Casimir, hence

to the Dehn twist eigenvalues by the formula

rλ =
1

� +N [fλ(C(2)) +
N ∣λ∣
2
− ∣λ∣

2

2N
].

Putting together the expression (6.3)-(6.5) of the S-matrix and these two observa-
tions, we can compute with (4.27) the 2-point function

B(u1, u2) = ∑
λ1,λ2∈Λ

δλ1λ2
−Bλ1,λ2

(u1 + u2)
u1 + u2

ελ1
⊗ ελ2

.

We recall that Bλ1,λ2
(u1 + u2) is essentially the Laplace transform of ω0,2 in Uλ1

×
Uλ2

.

Lemma 6.1. With T = ut/(� +N), we have that

Bλ1,λ2
(u) =D−1� ∣ ∏

α>0

[⟨α, ⟩]q∣
2

dimq Vλ1
(dimq Vλ2

)∗

⋅ { ∑
d≥0

e(Nd/2−d2/2N+c/24)T ∑
μ1,μ2⊢d

pμ1
(qλ1+�)pμ2

(q−(λ2+�))Hd,[�,N]
0 (μ1, μ2 ∣T )}

7For connected coverings, g should not be confused with the genus g̃ of the total space, which
is given by the Riemann-Hurwitz formula.

d(2 − 2g) = 2 − 2g̃ − b −
n

∑
i=1

{∣μi∣ − �(μi)}.
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with

H
d,[�,N]
0 (μ1, μ2 ∣T ) =

1

d!2
∑
ν ⊢d

�(ν)≤N−1
ν1≤�

#Cμ1
#Cμ2

χν(Cμ1
)χν(Cμ2

) eT fν(C(2)).

The generating series H
d,[�,N]
0 (μ1, μ2 ∣T ) only differs from the generating series

of double Hurwitz numbers in genus 0 (6.7) by the fact that, instead of using
Frobenius formula (6.6), we only sum over partitions ν ⊢ d which belong to Λ, i.e.
included in the rectangle of size � × (N − 1). For d ≤ min(�,N − 1), this is not a

restriction, namely H
d,[�,N]
0 =Hd

0 exactly encodes double Hurwitz numbers.

It would be interesting to devise a combinatorial meaning for H
d,[�,N]
0 , maybe

by counting coverings with extra geometric constraints, or counting paths between
Cμ1

and Cμ2
in Sd with certain properties [49,53], or to relate it to tau functions

[53]. It is natural to ask if such a combinatorial interpretation could be extended
to higher genus g of the base. Since we already know that we have a CohFT –
or equivalently since we have the topological recursion formula – all correlation
functions ωg,n are determined by these [�,N]-restricted double Hurwitz numbers.
As there is already a good knowledge of the Chern character of the Verlinde bundle
– including its expression on the boundary for n = 0 [69] – this would provide an
ELSV-like formula [34] for a combinatorial problem yet to be found.

6.2.3. Remark. In [61], Karev considered a generating series for the numbers
(6.6), and by combinatorial means, he expressed it in terms of an Airy-like integral
over the center of the group algebra of G, which can be reexpressed as a product of
1d Airy integrals after a suitable change of basis. We shall explain how his results
square from the CohFT perspective.

The product on C[G] and the trace ∑k∈G ck k ↦ c1 induces the structure of
a semi-simple Frobenius algebra on the center Z(C[G]) – which is the Aconj of
Section 5.1.1. The conjugacy classes define a basis

eλ =
1√
#Cλ

∑
k∈Cλ

k

while the characters define another basis

ελ = ∑
k∈G

χλ(k)√
#G

k

and by these notations we mean that the properties of Section 3.1.1 are satisfied,
with Δ−1λ = (dimλ)2. The change of basis matrix is

eλ =∑
μ

S−1λμ εμ, S−1λμ =
√

#Cλ

#G
χμ(Cλ)

and up to rescaling, this is a (unitary) submatrix of the S-matrix of the modu-
lar functor described in Section 3.1.1. Then, we consider the trivial CohFT on
Z(C[G]), and apply a rescaling to define

Ω∗g,n(ελ1
, . . . , ελn

) = ( #G

dimλ
)
2g−2+n

[Mg,n].
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If we change basis, we obtain, according to Frobenius formula (6.6),

Ω∗g,n( ∑
k1∈Cλ1

k1
#G

⊗⋯⊗ ∑
kn∈Cλn

kn
#G

)

=
#{R ∈ Hom(π1(Σg,n),G) ∣ R(li) ∈ Cλi

}
#G

⋅ [Mg,n].

These numbers are encoded in the CohFT partition function
(6.8)

ZCohFT ∶= exp( ∑
n≥1
∑
g≥0

h̵g−1

n!
∑

d1,...,dn≥0
λ1,...,λn≥0

{∫
Mg,n

Ω∗g,n(
n

⊗
j=1

ελj
)

n

∏
j=1

ψ
dj

j }
n

∏
j=1

tdj ,λj
).

Since we have several copies of the rescaled trivial CohFT, ZCohFT is a product
of suitably rescaled matrix Airy function [64]. Karev’s partition function is (6.8)
after specialization of the times to td,λ = ξdpλ for a set of formal variables pλ.

6.3. Bundle comparison and families index formulae. TheWess-Zumino-
Witten SU(N)� theory can also be approached from the perspective of geometric
quantization of moduli spaces of flat SU(N) connections. This allows us to give
an interpretation of the CohFT correlations functions via families index formulae
– (6.15) below – modulo some identifications (Hypothesis I below) which have not
been proved yet to the best of our knowledge. As the statement of current vs.
unknown results is subtle, we thought it useful to explain it in detail.

For g ≥ 2, let U(N)g,0 be the moduli space of pairs (X,E) where X is a Riemann
surface of genus g and E a semistable holomorphic vector bundle on X of rank

N with trivial determinant. By the Narasimhan-Seshadri theorem [76], U(N)g,0 is

homeomorphic toMg,0 ×MSU(N)
g,0 , where the last factor is the moduli space of flat

SU(N) connections on a smooth surface of genus g. The fibration π ∶ U(N)g,0 →Mg,0

is proper, in particular for each choice of complex structure σ on the smooth surface
of genus g, π−1(σ) is the moduli space of semi-stable bundles of rank N and trivial
determinant, which compactifies the smooth part of the fiber consisting of the
moduli space of stable rank N bundles with trivial determinant. Caporaso for
N = 1 [24], and Pandharipande [79] for general N , constructed a compactification

U(N)g,0 of this moduli space, as a projective variety together with a proper fibration

π ∶ U(N)g,0 →Mg,0.
This picture was later generalized to genus g surfaces with n ≥ 1 punctures.

Here, one fixes a sequence of conjugacy classes c = (c1, . . . , cn) with finite order in

SU(N), and consider, on the one hand the moduli space M
SU(N)
g,n (c) of flat SU(N)

flat connections on a smooth surface such that the holonomies of the connection
around the i-th puncture belongs to ci and on the other hand, the moduli space

U(N)g,n (c) of pairs (X,E) where X is a Riemann surface, E is a semistable parabolic
holomorphic vector bundle of rank N with trivial determinant with a parabolic
structure at the i-th puncture prescribed by ci. By the Mehta-Seshadri theorem

[72], U(N)g,n (c) is homeomorphic to Mg,n ×MSU(N)
g,n (c). In a recent thesis, Schlüter

[85] constructs a compactification U(N)g,n (c), giving a fibration of projective varieties

π ∶ U(N)g,n (c) →Mg,n.
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For the remaining, we fix the level � ≥ 1. For any λ⃗ ∈ Λn, we consider the
sequence of conjugacy classes cλ⃗ ∶= ([exp(λi/�)])ni=1, recalling that λi is a highest
weight at level �. We shall denote

M
(N)

g,n,λ⃗
∶=MSU(N)

g,n (cλ⃗), U(N)
g,n,λ⃗

∶= U(N)g,n (cλ⃗)

6.3.1. Geometric quantization using Quillen determinant line bundles. The mod-

uli space U(N)g,n,λ⃗ carries the Quillen determinant line bundle LQ, and one can con-

sider the �-th power

L ⊗�
Q U(N)g,n,λ⃗

Mg,n

π

Then, by push-forward we obtain the coherent sheaf

[Z(Q)
λ⃗
]g,n = π!(L ⊗�

Q ).

As the restriction of L ⊗�
Q to fibers of π over Mg,n have no higher cohomology, the

restriction of this sheaf toMg,n defines a bundle. This bundle by its very definition

extends to a sheaf over Mg,n (it is expected to remain locally free, but we do not
use this). By the version of Grothendieck-Riemann-Roch of [13], we have that

(6.9) Ch([Z(Q)
λ⃗
]g,n) = π∗(e�c1(LQ) ∩Td(Kerdπ)).

If we restrict to the degree 0 part, we recover the index formula for the rank of the
bundles

(6.10) dim [Z(Q)
λ⃗
]g,n = e�� ∩Td(M (N)

g,n,λ⃗
),

where � is the first Chern class of the restriction of LQ to a fiber of π. We return
to � in the next paragraph, but we can already state that it does not depend on
the complex structure, compatible with that the dimension is independent of the
complex structure, since the higher cohomology groups of the restriction of LQ to
the fibers of π vanishes.

6.3.2. Geometric quantization using the Chern-Simons line bundles and com-
parison. The moduli space of flat SU(N) connections over a surface Σ of genus
g minus the n punctures, with prescribed holonomies c around the punctures, is
equipped with the Goldman symplectic form �, and for each σ ∈Mg,n, with a com-
plex structure coming from the Riemann surface Σσ, making it a Kähler variety

(MSU(N)
g,n (c))σ with Kähler form �. It further supports the Chern-Simons line bun-

dle LCS, which supports the Chern-Simons connection whose curvature is −i�. The

geometric quantization procedure associates to it the bundle [Z(CS)

λ⃗
]g,n �→Mg,n

whose fiber above σ is H0((MSU(N)
g,n (c))σ,L k

CS). For each σ ∈ Mg,n, using the
isomorphism of Narasimhan-Seshadri, one finds that the Chern-Simons line bundle

LCS is isomorphic to LQ, as topological bundles on M
SU(N)
g,n (c) and as smooth line

bundles over the smooth part of the moduli space. Therefore, c1(LQ) restricted

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



MODULAR FUNCTORS, COHFTS AND TOPOLOGICAL RECURSION 47

to the smooth locus of M
SU(N)
g,n (c) is represented by �. Over M

SU(N)
g,n (c), one has

the comparison isomorphism [44] for n = 0 of holomorphic vector bundles

(6.11) ι∗LQ ⊗ π∗L⊗ND ≃LCS.

From this we conclude that over Mg,0 we have the isomorphism

(6.12) [Z(Q)]g,0 ⊗L⊗N�
D ≃ [Z(CS)]g,0.

It is expected, though currently unproved, that these results also hold for n > 0,
maybe upon twisting [Z(Q)

λ⃗
]g,n by ⊗n

i=1L
�nλi

i for some integers ni ∈ Z.
6.3.3. Comparison with our bundle. It is clear from the construction of the

WZW modular functor in [4] that [Z(CFT)

λ⃗
]g,n is isomorphic to the bundle that we

obtain in Theorem 2.9 by specializing to the WZW modular functor and for the
specific choice (6.4) of log-determinations of twists and central charge. Besides, for
n = 0 combining the isomorphism (6.12) with the isomorphism from [69, Section
5.3], we have the following isomorphism of holomorphic bundles over Mg,0

(6.13) [Z(CS)]g,0 ≃ [Z(Q)]g,0 ⊗L⊗N�
D ≃ [Z(CFT)]g,0.

The fact that the first isomorphism hold projectively over Mg,0 follows directly
from the fact that the Picard group of the moduli space semi-stable bundles of
rank n bundles with trivial determinant is a copy of the integers. That the second
isomorphisms holds projectively over Mg,0 is an older result of Laszlo [66], which
actually also identifies projective the Hitchin connection [55] in the second bundle
with the TUY-connection in the last bundle [88]. See also [6] for the projective
identification of the Axelrod, Della-Pietra and Witten [11] connection in the first
bundle and the Hitchin connection in the second bundle.

Restricting overMg,0, we see that the bundle [Z(Q)λ⃗
]g,0 coincide with our bun-

dle of Theorem 2.9 for a non-standard choice (compare to (6.4)) of log-determination
c′ of the central charge

(6.14) c′ = �(N2 − 1)
� +N + 2N�

It is expected, but to our knowledge currently unproved, that

● the sheaf [Z(Q)]g,0 over Mg,0 remains locally free over the Deligne-

Mumford compactification, i.e. exists as a bundle over Mg,0.

● the second isomorphism in (6.13) extends to Mg,0.
● these results extend for n > 0, so that there is an isomorphism of bundles
over Mg,n

[Z(Q)
λ⃗
]g,n ⊗L⊗N�

D ⊗
n

⊗
i=1

L�nλi

i ≃ [Z(CFT)

λ⃗
]g,n

for some integers (n′λ)λ∈Λ.
For convenience, we call this expectation Hypothesis I. If it were true, it would mean

that [Z(Q)
λ⃗
]g,n coincide with the bundle we construct in Theorems 2.5-2.9 for the

choice (6.14) of log-determination of the central charge, and for the non-standard
choice (compare to (6.4)) of log-determination of the Dehn twist eigenvalues

r′λ =
⟨λ,λ + 2⟩
2(� +N) − n

′
λ.
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6.3.4. Families Index interpretation of the CohFT correlation functions. If Hy-
pothesis I holds, we deduce that the ωg,n of the CohFT we produce for the specific
choice of log-determinations (6.4), have an index interpretation. By homogeneity,
it is enough to state it for t = 1 and t = 0. For t = 1, following (6.9) we have for
n ≥ 1
(6.15)

∑
λ⃗∈Λn

n

∏
i=1

S−1μiλi
ω[λ⃗]g,n(ζ1, . . . , ζn) = π̃∗ (

n

∏
i=1

Ξ(ψi, h
1/2
μi

ζi) ∪ π∗(e�c1(LQ) ∩Td(Kerdπ)))

where π̃ is the morphism from Mg,n to a point. On the left-hand side, we use the
notations of § 4.3.3, and on the right-hand side, we recall that

hμ = rμ +
c

24
, Ξ(u, ζ) = ∑

d≥0

Γ[2d + 2; ζ]dζ
2dd! ζ2d+2

ud.

And, for n = 0 and g ≥ 2
Fg = π̃∗(e�c1(LQ) ∩Td(Kerdπ)).

For t = 0, we do not need Hypothesis I. As explained in § 4.3.2 the left-hand
side computed by topological recursion factors into the Verlinde dimensions and
the intersection numbers over Mg,n

∑
λ⃗∈Λn

n

∏
i=1

S−1μiλi
ω[λ⃗]g,n(ζ1, . . . , ζn) = [Dμ⃗]g,n ωKdV

g,n (ζ1, . . . , ζn).

On the other hand, it is known, see e.g. [2], Theorem 8.1, that [Dμ⃗]g,n are given by

the index formula (6.10). Recalling that ωKdV
g,n is a generating series of intersection

of ψ-classes over Mg,n, this can be rewritten as follows

(6.16) ∑
λ⃗∈Λn

n

∏
i=1

S−1μiλi
ω[λ⃗]g,n(ζ1, . . . , ζn) = (e�� ∩Td(M

(N)

g,n,λ⃗
))(∫

Mg,n

n

∏
i=1

Ξ(ψi, ζi))

with

Ξ(u, ζ) = ∑
d≥0

(2d + 1)!!dζ
ζ2d+2

ud.

The factorization between the moduli space of curves, and the moduli space of flat
connections over a smooth surface, is nicely displayed in (6.16), while for general t
the ωg,n is interpreted by (6.15) as a families index of the determinant line bundle

over the universal moduli space of bundles, seen as a family over Mg,n.

7. Discussion about global spectral curves

A global spectral curve is by definition a Riemann surface Σ equipped with a
branched cover x ∶ Σ → P1. One recover a local spectral curve by considering the
disconnected neighbourhoods of the ramification points of x. The only difference
in the axiomatics is that, in the global case, we require that8

ω0,2 ∈H0(Σ2,K⊠2Σ (−2Δ))S2

and therefore (4.9) defines meromorphic 1-forms on Σ, i.e. Ξd,i ∈ H0(Σ,KΣ((2d +
2){oi})).

8Although not strictly necessary, one often adds the assumption that ω0,1 ∈H0(Σ′,KΣ′) for
a dense open subset Σ′ ⊆ Σ.
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Although the topological recursion is well-defined for local spectral curves as
presented in Section 4.1, it was originally defined on global spectral curves and this
allows further properties and manipulations [22,38]. It is thus desirable, whenever
we have a local spectral curve, to realize it embed in a global spectral curve. This is
not always possible, but given the geometric origin of modular functors and general
ideas from mirror symmetry, we may still hope it admits a global description.

7.1. Landau-Ginzburg models and Frobenius manifolds. Among the
different realizations of a Frobenius manifold, let us focus on a particular one which
gives rise in a natural way to global spectral curves – or more generally, varieties.

In singularity theory, one is interested in the study of Landau-Ginzburg (LG)
models. They are defined by a family of germs of functions

xa ∶ Cd �→ C,

called “potentials” and parameterized by a point a living in a k-dimensional man-
ifold A obtained as a miniversal deformations of a function x0 with an isolated
singularity at z = 0 with Milnor number k. The tangent spaces Aa ∶= TaA are
naturally identified with the Jacobi ring

Jac(xa) ∶=
C[z1, . . . , zd]

⟨∂z1xa, . . . , ∂zdxa⟩
.

The multiplication in this polynomial ring is denoted ×, and the unit is 1. For any
holomorphic volume form Ω, one can define the residue pairing by
(7.1)

∀(ϕ,ψ) ∈ Jac(xa), b(ϕ,ψ) ∶= 1

(2iπ)d ∮∣∂xa/∂z1∣=ε1
⋯ ∮

∣∂xa/∂zd ∣=εd

ϕ(z)ψ(z)Ω(z)
∏d

i=1 ∂xa/∂zi
for small enough εi’s. According to Saito [83], there exists a volume form – called a
primitive – such that (7.1) is a flat metric. It thus provides Jac(xa) with a Frobenius
structure, promoting (Aa)a∈A to a Frobenius manifold A. If for a generic a ∈ A,
xa has only isolated Morse singularities, the associated CohFT is semi-simple. We
denote by (ti)ki=1 flat coordinates on an open set A′ ⊆ A, (ϕi)ki=1 the corresponding
frame in the tangent bundle, ∇ the Levi-Civita connection, and

ϕi ×ϕj =
k

∑
�=1

N �
ij(t)ϕ�

the multiplication in the Jacobi ring. We also denote (ai)ki=1 canonical coordinates
(that we can also assume to be defined on A′), i.e. such that (∂ai

)ki=1 form a canon-
ical basis of the tangent bundle. To connect with the notations of Section 3.1.1,
∂ai
= ε̃i and Δi = 1/b(∂ai

, ∂ai
), and let Ψ ∈ End(T ∗A′) the change of basis from the

flat to the canonical coordinates

Ψ(dti) =Δ−1/2i dai.

In this example of a Frobenius manifold, the R-matrix can be written in terms
of oscillating integrals. Indeed, given a Frobenius manifold A, the axioms of a

CohFT ensure that ∇(u)i ∶= ∇i + u−1ϕi× forms a flat pencil of connections on A
parametrized by u ∈ C∗. This ensures the compatibility of the following PDEs for
a section J(u) = ∑k

i=1 Ji(u)dti of T ∗A′

∀i, j ∈ �1, k�, u∂tiJj(u; t) =
k

∑
�=1

N �
ij(t)J�(u; t).
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If A′ is semi-simple and conformal9, there is a unique basis of solutions [31, 48]
such that, in matrix form one has that

(7.2) J(u; t) = ΨR(u; t) exp(a(t)/u)

where a∈End(T ∗A′) is defined such that a(dai)=ai dai andR(u; t)∈End(T ∗A′)[[u]]
is an operator satisfying a unitarity and homogeneity condition. This R-matrix is
the one appearing in Section 3.1.4.

For the Frobenius manifold attached to a Landau-Ginzburg model with poten-
tial xt, one can find a simple integral representation of this solution of the form (in
flat coordinates)

(7.3) Jij(u; t) =
1

(2iπu)d/2 ∫Γj

exp[−xt(z)/u]ϕi(z)Ω(z),

where (Γj)kj=1 are cycles in Cd which can be constructed through Morse theory of
the function Re[xt/u]. By the Fubini theorem, this integral can be rewritten as an
integral along the path Xj = xt(Γj) ⊂ C, whose integrand itself is an integral over
some vanishing cycle γj(X) ⊆ x−1t {X} over a point X ∈ Xj

Jij(u; t) =
1

(2iπu)d/2 ∫Xj

e−X/u ∫
γj(X)

ϕiΩ.

Comparing with (7.2), this provides us with an integral representation of the
R-matrix of the form

Rij(u; t) =
Δ

1/2
i

(2iπu)d/2 ∫Xj

e−(X−aj(t))/u ∫
γj(X)

ϕiΩ

and the condition that R(u = 0) = id implies that the paths Xj start from aj(t),
and extends to −∞.

7.2. 1d Landau-Ginzburg models. The realization of a given Frobenius
manifold via a LG model, when it exists, has no reason to be unique, and sev-
eral realizations may have different dimensions. It is particularly interesting, for
tractability, if a 1-dimensional LG model can be found. This means having a family
of Riemann surfaces Σ together with a family of potentials xt ∶ Σ → C such that
the local algebra of xt at the ramification points is isomorphic to the tangent space
TtA of our Frobenius manifold A. In this case, the vanishing cycle γj(X) is just an
ordered pair of points {z(X), σj(z(X))} ⊆ Σ above X ∈ C, related to each other by
the (analytic continuation of the) local involution σj permuting the two sheets that
meet at the ramification point above aj . In flat coordinates, the R-matrix then
reads

(7.4) Rij(u; t) =
Δ

1/2
i

(2iπu)1/2 ∮Xj

e−(X−aj(t))/u [ϕi ω]oddσj

for some 1-form ω on Σ, and thimbles (Xj)kj=1. Here we have used the notation

[f]oddσ ∶= f − σ∗f .

9Conformal here means there exists a vector field E on A′ such that the Lie derivative LE

acts by multiplication by a scalar on the metric tensor, on the product tensor, and on the unit
vector field.
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7.3. Fusion potentials for modular functors. In this paragraph, we give
an easy argument for how to obtain a 1d LG model for the Frobenius algebra A
of any modular functor (see Section 3.3), i.e. a function x0 – called the “fusion
potential” – whose Jacobi ring is isomorphic to A. Then the Frobenius manifold
will be (at least locally) defined by considering miniversal deformations (xa)a of the
potential. For the Wess-Zumino-Witten models (Section 6), this has been posed as
a conjecture by Gepner [46], which was later answered by Di Francesco and Zuber
[26] and further studied by Aharony [1]. We borrow the idea of [26] to propose a
family of fusion potentials for the Frobenius algebra of any modular functor, which
hinges on the commutativity of the curve operators (C[β;λ])λ∈Λ.

For any vector f ∈ C[Λ], let us define
Cf [β] ∶= ∑

λ∈Λ

fλ C[β;λ].

Its characteristic polynomial reads

Pf(η) ∶= det(η − Cf [β]) = ∏
μ∈Λ

(η − cμ,f), cμ,f = ∑
λ∈Λ

fλ cμ[λ]

with the eigenvalues cμ[λ] of the curve operators given in (3.18). Let Qf(η) be any
polynomial such that Q′f(η) = Pf(η).

Lemma 7.1. For generic f ∈ C[Λ], the Jacobi ring of x0 ∶ C → C defined by
x0 = Qf (η) is isomorphic to the Frobenius algebra A of the modular functor.

Proof. The Jacobi ring is Jac(x0) = C[η]/⟨Pf(η)⟩. For generic f , the roots
(cμ,f)μ∈Λ are pairwise distinct. Therefore, we can construct by Lagrange interpo-
lation a unique set of polynomials (ϕλ,f)λ∈Λ such that

∀μ ∈ Λ, ϕλ,f(cμ,f) = cμ[λ].
This is actually a basis of the Jacobi ring. Indeed, if there is a relation∑λ∈Λ kλ Pλ(η)
= 0, by evaluation at cμ,f and using the expression (3.18) we would have that

∀μ ∈ Λ, ∑
λ∈Λ

kλ (S−1)λμ = 0

which implies kλ = 0 for any λ ∈ Λ since (S−1)⊺ is invertible. Then, by definition
and evaluation at the eigenvalues, their multiplication modulo the annihilating
polynomial Pf reads

ϕλ(η)ϕμ(η) = ∑
ν∈Λ

Nλμν† ϕν(η) mod Pf(η).

Thus, we have build a basis of the Jacobi ring in which we identify the Frobenius
algebra of Section 3.3. �

Notice that, knowing (cμ,f)μ, the position of the ramification points appearing
in (7.4) is

aμ ∶= x(oμ) = Qf(cμ,f).
Alternatively, one can decide to impose the values (aμ)μ∈Λ, and ask for the deter-
mination of roots (ημ)μ∈Λ and a polynomial Q of degree ∣Λ∣ + 1 such that

(7.5) ∀μ ∈ Λ, Q(ημ) = aμ and Q′(ημ) = 0.
Remark that Q(η), (ημ)μ is a solution iff Q(η) ← Q(γη + γ′) and ημ ← γ−1(ημ − γ′)
is a solution. Hence, (7.5) represents 2∣Λ∣ constraints for the same number of
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independent unknowns, and can be solved for generic a’s, and we can find the
corresponding f ’s by the formula

fλ = ∑
μ∈Λ

Sμλ ημ (S
−1)1μ.

7.4. Open question: Global spectral curve for modular functors. This
defines, at least locally around an (arbitrary, generic) origin a0, a 1d LGmodel (xa)a
that we can try to use to describe as a “global curve” Σa for the modular functor.
However, the explicit construction of a primitive form and a good set of integration
cycles is a serious issue in general which we have not been able address so far. To
restate (a part of) the problem in an elementary way, it is not easy to find a 1-form
ω0,1 on Σa whose expansion at the ramification point is equal to (4.24) modulo the
even part – at least when a ∶= a(t) is coupled in some way to the single parameter
t on which our local curve depend.

In a handful of examples, one can rely on an indirect derivation of a (higher-
dimensional) Landau-Ginzburg model through mirror symmetry. For instance, for
the slN , level � WZW models recapped in Section 6, Witten [98] proved that the
Frobenius algebra A is isomorphic to the quantum cohomology of a Grassmannian.
On the other hand, the Landau-Ginzburg model mirror dual to Grassmannians has
been built in [71], but, in most cases, the issue of finding a primitive form and a
good basis of cycles has not been solved yet, except in some very simple examples
such as P2 [51]. The complete construction of a global spectral curve thus remains
an open problem, even in simple examples. It must be addressed if, for instance,
one wishes to take advantage of the topological recursion to study the level � →∞
limit in WZW models.

Appendix A. Extra properties of the S-matrix

In this section we derive the symmetries of the S-matrix in the case the modular
functor in question has duality or is unitary.

MF-U. Let us first assume that the modular functor V is unitary. We recall
from Section 3.2 that Σ1 is an oriented closed surface of genus 1 and α,β two ori-
ented simple closed curves on Σ1, such that they intersect in exactly one point with

intersection number one. Then we have two marked surfaces Σ
(α)
1 = (Σ1,{α}) and

Σ
(β)
1 = (Σ1,{β}). Both V(Σ(α)1 ) and V(Σ(β)1 ) are equipped with hermitian inner

products, which are compatible with the factorization isomorphisms (Section 3.3.1)

V(Σ(α)1 ) ≅ ⊕
μ∈Λ

V(Σ0,2, μ, μ
†)

and

V(Σ(β)1 ) ≅ ⊕
μ∈Λ

V(Σ0,2, μ, μ
†).

The basis ζ[μ] ∈ V(Σ0,2, μ, μ
†) induces via these isomorphisms the basis eμ of

V(Σ(α)1 ) and εμ of V(Σ(β)1 ). The unique orientation preserving diffeomorphism S
that sends (α,β) to (β,−α) sends the e-basis to the ε-basis

εμ = ∑
λ∈Λ

Sμλ eλ .
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Now we simply compute

δλμ = (ζ[λ], ζ[μ])
= (eλ, eμ)
= (V(S)(eλ),V(S)(eμ))
= ∑

�,�̃∈Λ

S∗λ�Sμ�̃ (ε�, ε�̃)

= ∑
�∈Λ

S∗λ�Sμ� .

where ∗ here denotes complex conjugation. Hence we get that the S-matrix is
unitary

(S∗)⊺S = 1
when the modular functor is unitary.

MF-D. Let us now instead assume that the modular functor V satisfies the ori-
entation reversal axiom. Let now Cα be the orientation reversing self-diffeomorphism
of Σ1 which maps (α,β) to (α,−β). Let Cβ the same as Cα, except that the roles of
α and β are exchanged. Then, we have the following commutative diagram, where
⋆ denotes the dual operation

V(Σ(α)1 ) V(S)����→ V(Σ(β)1 )

V(Cα)
����

����
V(Cβ)

V(−Σ(α)1 ) V(S)����→ V(−Σ(β)1 )

≅
����

����
≅

V(Σ(α)1 )⋆ V(S−1)⋆����→ V(Σ(β)1 )⋆.
Let us denote the dual basis of (eλ)λ by (e⋆λ)λ. We see, by compatibility

between the glueing isomorphism and the orientation reversal isomorphism, that
eλ, under the composition of the two maps in the first column in the above diagram,
is taken to (e⋆λ†)λ and likewise for β in the last column. But since we have the
following easy computation

V(S−1)⋆(e⋆λ†)(εμ) = e⋆λ†(V(S−1)(εμ))

= e⋆λ†

⎛
⎝∑�∈Λ

S−1μ�e�
⎞
⎠

= S−1μλ† ,

we see that the orientation reversal axiom implies that

Sλμ = S−1μλ† .
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