Inversion Theory and Conformal Mapping

David E. Blair
Selected Titles in This Series

Volume

9 David E. Blair
 Inversion theory and conformal mapping
 2000

8 Edward B. Burger
 Exploring the number jungle: A journey into diophantine analysis
 2000

7 Judy L. Walker
 Codes and curves
 2000

6 Gérald Tenenbaum and Michel Mendès France
 The prime numbers and their distribution
 2000

5 Alexander Mehlmann
 The game’s afoot! Game theory in myth and paradox
 2000

4 W. J. Kaczor and M. T. Nowak
 Problems in mathematical analysis I: Real numbers, sequences and series
 2000

3 Roger Knobel
 An introduction to the mathematical theory of waves
 2000

2 Gregory F. Lawler and Lester N. Coyle
 Lectures on contemporary probability
 1999

1 Charles Radin
 Miles of tiles
 1999
STUDENT MATHEMATICAL LIBRARY
Volume 9

Inversion Theory and
Conformal Mapping

David E. Blair

AMS
AMERICAN MATHEMATICAL SOCIETY
About the cover: The picture on the cover is M. C. Escher’s “Hand with Reflecting Sphere”, a self-portrait of the artist. Reflection (inversion) in a sphere is a conformal map; thus, while distances are distorted, angles are preserved and the image is recognizable. It is for this reason that we commonly use spherical mirrors, e.g., the right-hand rear view mirror on an automobile.
To Marie and Matthew
Contents

Preface ix

Chapter 1. Classical Inversion Theory in the Plane 1

§1.1. Definition and basic properties 1

§1.2. Cross ratio 9

§1.3. Applications 14

§1.4. Miquel’s Theorem 17

§1.5. Feuerbach’s Theorem 21

Chapter 2. Linear Fractional Transformations 27

§2.1. Complex numbers 27

§2.2. The extended complex plane and stereographic projection 29

§2.3. Linear fractional transformations 34

§2.4. Cross ratio 37

§2.5. Some special linear fractional transformations 39

§2.6. Extended Möbius transformations 43

§2.7. The Poincaré models of hyperbolic geometry 52
Contents

<table>
<thead>
<tr>
<th>§2.8. A distortion theorem</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3. Advanced Calculus and Conformal Maps</td>
<td>63</td>
</tr>
<tr>
<td>§3.1. Review of advanced calculus</td>
<td>63</td>
</tr>
<tr>
<td>§3.2. Inner products</td>
<td>70</td>
</tr>
<tr>
<td>§3.3. Conformal maps</td>
<td>73</td>
</tr>
<tr>
<td>Chapter 4. Conformal Maps in the Plane</td>
<td>75</td>
</tr>
<tr>
<td>§4.1. Complex function theory</td>
<td>75</td>
</tr>
<tr>
<td>§4.2. Abundance of conformal maps</td>
<td>78</td>
</tr>
<tr>
<td>Chapter 5. Conformal Maps in Euclidean Space</td>
<td>83</td>
</tr>
<tr>
<td>§5.1. Inversion in spheres</td>
<td>83</td>
</tr>
<tr>
<td>§5.2. Conformal maps in Euclidean space</td>
<td>87</td>
</tr>
<tr>
<td>§5.3. Sphere preserving transformations</td>
<td>92</td>
</tr>
<tr>
<td>Chapter 6. The Classical Proof of Liouville’s Theorem</td>
<td>95</td>
</tr>
<tr>
<td>§6.1. Surface theory</td>
<td>95</td>
</tr>
<tr>
<td>§6.2. The classical proof</td>
<td>103</td>
</tr>
<tr>
<td>Chapter 7. When Does Inversion Preserve Convexity?</td>
<td>107</td>
</tr>
<tr>
<td>§7.1. Curve theory and convexity</td>
<td>107</td>
</tr>
<tr>
<td>§7.2. Inversion and convexity</td>
<td>110</td>
</tr>
<tr>
<td>§7.3. The problem for convex bodies</td>
<td>114</td>
</tr>
</tbody>
</table>

Bibliography | 115 |

Index | 117 |
It is rarely taught in an undergraduate, or even graduate, curriculum that the only conformal maps in Euclidean space of dimension greater than 2 are those generated by similarities and inversions (reflections) in spheres. This contrasts with the abundance of conformal maps in the plane, a fact which is taught in most complex analysis courses. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The result was proved in 1850 in dimension 3 by J. Liouville [22]. In Chapter 5 of the present text we give a proof in general dimension due to R. Nevanlinna [26] and in Chapter 6 give a differential geometric proof in dimension 3 which is often regarded as the classical proof, though it is not Liouville’s proof. For completeness, in Chapter 4 we develop enough complex analysis to prove the abundance of conformal maps in the plane.

In addition this book develops inversion theory as a subject along with the auxiliary theme of “circle preserving maps”.

The text as presented here is at the advanced undergraduate level and is suitable for a “capstone course”, topics course, senior seminar, independent study, etc. The author has successfully used this material for capstone courses at Michigan State University. One particular feature is the inclusion of the paper on circle preserving transformations by C. Carathéodory [6]. This paper divides itself up nicely into small sections, and students were asked to present the paper to the
class. This turned out to be an enjoyable and profitable experience for the students. When there were more than enough students in the class for this exercise, some of the students presented Section 2.8.

The author expresses his appreciation to Dr. Edward Dunne and the production staff of the American Mathematical Society for their kind assistance in producing this book.
Bibliography

Index

accumulation point, 64
analytic, 75
angle of parallelism, 55
anti-holomorphic, 78
anti-homography, 43
arc-wise connected, 63
area of a surface, 99
bounded set, 63
Bundle Theorem, 20
Cauchy-Riemann equations, 76
characteristic function, 74
class C^∞, 65
class C^k, 65
complex exponential, 28
complex number infinity, 29
complex sphere, 30
component functions, 64
conformal transformation, 7
continuous function, 64
covex, 108
coordinate patch, 97
cross ratio, 11
cross ratio of complex numbers, 37
curvature, 96
cyclic cross ratio, 13
dense subset, 64
derivative of complex function, 75
differential, 65, 66
directed distance, 9
division of a segment, 10
eccircle, 22
extended complex plane, 29
extended Möbius transformation, 43
first fundamental form, 99
Frenet equation, 96
Gaussian curvature, 102
geodesic curvature, 103
geodesic torsion, 102
gradient, 72
harmonic conjugates, 11
harmonic set, 11
higher order differential, 68
holomorphic, 75
homography, 34
horocycle, 57
hyperbolic geometry, 6, 52
hyperplane, 85
incircle, 22
inner product, 70
inversion in a circle, 1
inversion in a sphere, 84
inversive plane, 20, 29
Jacobian, 66
limit, 64
limit point, 64
line of curvature, 101
linear fractional transformation, 34
Möbius transformation, 34
nine-point circle, 22
normal curvature, 103
normal section, 100
open ball, 63
open set, 63
osculating circle, 107
Pappus’ Theorem, 14
partial derivative, 64
point at infinity, 29
principal curvatures, 100
principal directions, 100
principal normal, 96
principal spheres, 114
Ptolemy’s Theorem, 16
radical axis, 15
real analytic, 65
region, 63
regular curve, 67, 96
regular surface, 97
Riemann sphere, 30
simply-connected set, 80
smooth function, 65
Steiner’s Theorem, 16
stereographic projection, 30
strongly star-shaped, 113
surface, 97
symmetric bilinear form, 72
tangent plane, 98
tangent vector, 6, 67
transitive action, 54
triply orthogonal system, 103
umbilical point, 101
unit normal to a surface, 97
unit tangent field, 96
velocity vector, 67
Weingarten map, 99
Inversion Theory and Conformal Mapping
David E. Blair

It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane.

The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Carathéodory with the remarkable result that any circle-preserving transformation is necessarily a Möbius transformation—not even the continuity of the transformation is assumed.

The text is at the advanced undergraduate level and is suitable for a capstone course, topics course, senior seminar or independent study. Students and readers with university courses in differential geometry or complex analysis bring with them background to build on, but such courses are not essential prerequisites.