Ramsey Theory on the Integers

Bruce M. Landman
Aaron Robertson
Ramsey Theory
on the Integers
To

Eleanor
Emma and Sarah

–Bruce

To

Elisa
Quinn and Ava

–aaron
Contents

List of Tables xi

Preface xiii

Chapter 1. Preliminaries 1

§1.1. The Pigeonhole Principle 3
§1.2. Ramsey’s Theorem 5
§1.3. Some Notation 9
§1.4. Three Classical Theorems 11
§1.5. A Little More Notation 14
§1.6. Exercises 16
§1.7. Research Problems 19
§1.8. References 20

Chapter 2. Van der Waerden’s Theorem 21

§2.1. The Compactness Principle 25
§2.2. Alternate Forms of van der Waerden’s Theorem 27
§2.3. Computing van der Waerden Numbers 29
§2.4.	Bounds on van der Waerden Numbers	35
§2.5.	The Erdős and Turán Function	41
§2.6.	Proof of van der Waerden’s Theorem	43
§2.7.	Exercises	49
§2.8.	Research Problems	51
§2.9.	References	52

Chapter 3. Supersets of AP

§3.1.	Quasi-progressions	56
§3.2.	Generalized Quasi-progressions	66
§3.3.	Descending Waves	70
§3.4.	Semi-progressions	72
§3.5.	Iterated Polynomials	81
§3.6.	Arithmetic Progressions as Recurrence Solutions	91
§3.7.	Exercises	93
§3.8.	Research Problems	96
§3.9.	References	100

Chapter 4. Subsets of AP

§4.1.	Finite Gap Sets	105
§4.2.	Infinite Gap Sets	111
§4.3.	Exercises	129
§4.4.	Research Problems	131
§4.5.	References	133

Chapter 5. Other Generalizations of $w(k;r)$

| §5.1. | Sequences of Type $x, ax + d, bx + 2d$ | 135 |
| §5.2. | Homothetic Copies of Sequences | 147 |
Contents

§5.3. Sequences of Type $x, x + d, x + 2d + b$ 152
§5.4. Exercises 158
§5.5. Research Problems 159
§5.6. References 160

Chapter 6. Arithmetic Progressions (mod m) 163
§6.1. The Family of Arithmetic Progressions (mod m) 164
§6.2. A Seemingly Smaller Family is More Regular 167
§6.3. The Degree of Regularity 173
§6.4. Exercises 176
§6.5. Research Problems 178
§6.6. References 180

Chapter 7. Other Variations on van der Waerden’s Theorem 181
§7.1. The Function $\Gamma_m(k)$ 181
§7.2. Monochromatic Sets $a(S + b)$ 185
§7.3. Having Most Elements Monochromatic 187
§7.4. Permutations Avoiding Arithmetic Progressions 191
§7.5. Exercises 195
§7.6. Research Problems 196
§7.7. References 197

Chapter 8. Schur’s Theorem 199
§8.1. The Basic Theorem 200
§8.2. A Generalization of Schur’s Theorem 211
§8.3. Refinements of Schur’s Theorem 216
§8.4. Exercises 219
§8.5. Research Problems 221
§8.6. References

Chapter 9. Rado’s Theorem

§9.1. Rado’s Single Equation Theorem

§9.2. Some Rado Numbers

§9.3. Generalizations of the Single Equation Theorem

§9.4. Exercises

§9.5. Research Problems

§9.6. References

Chapter 10. Other Topics

§10.1. Folkman’s Theorem

§10.2. Doublefree Sets

§10.3. Diffsequences

§10.4. Brown’s Lemma

§10.5. Patterns in Colorings

§10.6. Zero-sums

§10.7. Exercises

§10.8. Research Problems

§10.9. References

Notation

Bibliography

Index
List of Tables

Table 2.1: Mixed van der Waerden values .. 34
Table 2.2: Lower bounds and values for $w(k; r)$ 38
Table 3.1: Values and lower bounds for $Q_{k-i}(k)$ 66
Table 3.2: Values and lower bounds for $GQ_{f(x)}(k)$ 69
Table 3.3: Values and lower bounds for $SP_m(k)$ 81
Table 3.4: Values of $R(S_n, k; r)$ and $R(AP ∪ P_n, k)$ 91
Table 4.1: Values of $w(f(x), 3; 2)$... 121
Table 5.1: Values and lower bounds for $T(a, b)$ 146
Table 5.2: Degree of regularity of (a, b)-triples 147
Table 5.3: Values of $R(c, AUG_b, 3)$.. 157
Table 6.1: Values and lower bounds for $R(AP_m, k; 2)$ 166
Table 6.2: Degree of regularity of families of type AP_m 176
Table 10.1: Values of $Δ(D, k)$... 276
Table 10.2: Number of squarefree and cubefree colorings 281
Preface

Ramsey Theory on the Integers covers a variety of topics from the field of Ramsey theory, limiting its focus to the set of integers – an area that has seen a remarkable burst of research activity during the past twenty years.

The book has two primary purposes: (1) to provide students with a gentle, but meaningful, introduction to mathematical research – to give them an appreciation for the essence of mathematical research and its inescapable allure and also to get them started on their own research work; (2) to be a resource for all mathematicians who are interested in combinatorial or number theoretical problems, particularly “Erdős-type” problems.

Many results in Ramsey theory sound rather complicated and can be hard to follow; they tend to have a lot of quantifiers and may well involve objects whose elements are sets whose elements are sets (that is not a misprint). However, when the objects under consideration are sets of integers, the situation is much simpler. The student need not be intimidated by the words “Ramsey theory,” thinking that the subject matter is too deep or complex – it is not! The material in this book is, in fact, quite accessible. This accessibility, together with the fact that scores of questions in the subject are still to be answered, makes Ramsey theory on the integers an ideal subject for a student’s first research experience. To help students find suitable
projects for their own research, every chapter includes a section of “Research Problems,” where we present a variety of unsolved problems, along with a list of suggested readings for each problem.

Ramsey Theory on the Integers has several unique features. No other book currently available on Ramsey theory offers a cohesive study of Ramsey theory on the integers. Among several excellent books on Ramsey theory, probably the most well-known, and what may be considered the Ramsey theory book, is by Graham, Rothschild, and Spencer (*Ramsey Theory, 2nd Edition* [127]). Other important books are by Graham (*Rudiments of Ramsey Theory* [122]), McCutcheon (*Elemental Methods in Ergodic Ramsey Theory* [184]), Nešetřil and Rödl (*Mathematics of Ramsey Theory* [199]), Prümel and Voigt (*Aspects of Ramsey Theory* [207]), Furstenberg (*Dynamical Methods in Ramsey Theory* [111]), and Winn (*Asymptotic Bounds for Classical Ramsey Numbers* [274]). These books, however, generally cover a broad range of subject matter of which Ramsey theory on the integers is a relatively small part. Furthermore, the vast majority of the material in the present book is not found in any other book. In addition, to the best of our knowledge, ours is the only Ramsey theory book that is accessible to the typical undergraduate mathematics major. It is structured as a textbook, with numerous (over 150) exercises, and the background needed to read the book is rather minimal: a course in elementary linear algebra and a 1-semester junior-level course in abstract algebra would be sufficient; an undergraduate course in elementary number theory or combinatorics would be helpful, but not necessary. Finally, *Ramsey Theory on the Integers* offers something new in terms of its potential appeal to the research community in general. Books offering a survey of solved and unsolved problems in combinatorics or number theory have been quite popular among researchers; they have also proven beneficial by serving as catalysts for new research in these fields. Examples include *Old and New Problems and Results in Combinatorial Number Theory* [92] by Erdős and Graham, *Unsolved Problems in Number Theory* [135] by Guy, and *The New Book of Prime Number Records* [220] by Ribenboim. With our text we hope to offer mathematicians an additional resource for intriguing unsolved problems. Although not
nearly exhaustive, the present book contains perhaps the most sub-
stantial account of solved and unsolved problems in Ramsey theory
on the integers.

This text may be used in a variety of ways:

• as an undergraduate or graduate textbook for a second course in
 combinatorics or number theory;
• in an undergraduate or graduate seminar, a capstone course for
 undergraduates, or an independent study course;
• by students working under an REU program, or who are en-
 gaged in some other type of research experience;
• by graduate students looking for potential thesis topics;
• by the established researcher seeking a worthwhile resource in
 its material, its list of open research problems, and its
 somewhat enormous (often a fitting word when discussing
 Ramsey theory) bibliography.

Chapter 1 provides preliminary material (for example, the pi-
geonhole principle) and a brief introduction to the subject, including
statements of three classical theorems of Ramsey theory: van der
Waerden’s theorem, Schur’s theorem, and Rado’s theorem. Chapter
2 covers van der Waerden’s theorem; Chapters 3–7 deal with various
topics related to van der Waerden’s theorem; Chapter 8 is devoted to
Schur’s theorem and a generalization; Chapter 9 explores Rado’s the-
orem; and Chapter 10 presents several other topics involving Ramsey
theory on the integers.

The text provides significant latitude for those designing a syl-
labus for a course. The only material in the book on which other
chapters depend is that through Section 2.2. Thus, other chapters or
sections may be included or omitted as desired, since they are essen-
tially independent of one another (except for an occasional reference
to a previous definition or theorem). We do, however, recommend
that all sections included in a course be studied in the same order in
which they appear in the book.

Each chapter concludes with a section of exercises, a section of
research problems, and a reference section. Since the questions con-
tained in the Research Problem sections are still open, we cannot say
with certainty how difficult a particular one will be to solve; some may actually be quite simple and inconsequential. The problems that we deem most difficult, however, are labeled with the symbol ∗. The reference section of each chapter is organized by section numbers (including the exercise section). The specifics of each reference are provided in the bibliography at the end of the book.

The material covered in this book represents only a portion of the subject area indicated by the book’s title. Many additional topics have been investigated, and we have attempted to include at least references for these in the reference sections. Yet, for every problem that has been thought of in Ramsey theory, there are many more which that problem will generate and, given the great variety of combinatorial structures and patterns that lie in the set of integers, countless new problems wait to be explored.

We would like to thank Dr. Edward Dunne and the members of the AMS production staff for their assistance in producing this book. We also thank Tom Brown, Scott Gordon, Jane Hill, Dan Saracino, Dan Schaal, Ralph Sizer, and the AMS reviewers for their helpful comments and advice, which greatly improved the manuscript. We also express our gratitude to Ron Graham and Doron Zeilberger for their support of this project. We owe a big debt to the pioneers and masters of the field, especially Ron Graham, Jarik Nešetřil, Joel Spencer, Neil Hindman, Tom Brown, Timothy Gowers, Hillel Furstenberg, Vitaly Bergelson, Vojtěch Rödl, Endre Szemerédi, László Lovász (we had to stop somewhere), and of course Bartel van der Waerden, Issai Schur, Richard Rado, and Frank Ramsey. To all of the others who have contributed to the field of Ramsey theory on the integers, we extend our sincere appreciation. Finally, we want to acknowledge that this book would not exist without the essential contributions of the late Paul Erdős. But beyond the content of his achievements, he has personally inspired the authors as mathematicians. Our professional lives would have had far less meaning and fulfillment without his work and his presence in our field. For that pervasive, though perhaps indirect, contribution to this text, we are in his debt.
Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>⌈·⌉</td>
<td>Ceiling function</td>
<td>10</td>
</tr>
<tr>
<td>⌊·⌋</td>
<td>Floor function</td>
<td>10</td>
</tr>
<tr>
<td>⊕</td>
<td>Modular addition</td>
<td>107</td>
</tr>
<tr>
<td>[a, b]</td>
<td>({a, a+1, \ldots, b})</td>
<td>9</td>
</tr>
<tr>
<td>A − B</td>
<td>({x \in A : x \notin B})</td>
<td>9</td>
</tr>
<tr>
<td>(A_D)</td>
<td>Family of arithmetic progressions with gaps in (D)</td>
<td>104</td>
</tr>
<tr>
<td>(AP)</td>
<td>Family of arithmetic progressions</td>
<td>14</td>
</tr>
<tr>
<td>(AP_{a(m)})</td>
<td>Family of arithmetic progressions with gaps congruent to (a \mod m)</td>
<td>163</td>
</tr>
<tr>
<td>(AP_{a(m)}^*)</td>
<td>(AP_{a(m)} \cup A_{{m}})</td>
<td>168</td>
</tr>
<tr>
<td>(AP_{(m)})</td>
<td>Set of arithmetic progressions (\mod m)</td>
<td>164</td>
</tr>
<tr>
<td>(AUG_b)</td>
<td>Family of augmented progressions with tail (b)</td>
<td>152</td>
</tr>
<tr>
<td>(Bi(f; r))</td>
<td>Brown number</td>
<td>278</td>
</tr>
<tr>
<td>cul(j)</td>
<td>Culprit of color (j)</td>
<td>32</td>
</tr>
<tr>
<td>(\Delta_{{a, b, c}})</td>
<td>Triangle on vertices (a, b, c)</td>
<td>205</td>
</tr>
<tr>
<td>(\Delta(D, k; r))</td>
<td>Diffsequence Ramsey-type number</td>
<td>266</td>
</tr>
<tr>
<td>doa</td>
<td>Degree of accessibility</td>
<td>270</td>
</tr>
<tr>
<td>dor</td>
<td>Degree of regularity</td>
<td>138</td>
</tr>
<tr>
<td>dor(k)</td>
<td>Degree of regularity for (T_{k-1}(a))</td>
<td>145</td>
</tr>
<tr>
<td>(DW(k))</td>
<td>Descending wave 2-color Ramsey-type number</td>
<td>70</td>
</tr>
<tr>
<td>(F(k; r))</td>
<td>Folkman number</td>
<td>262</td>
</tr>
<tr>
<td>(\Gamma_s(k))</td>
<td>Least (s) guaranteeing (k)-term arithmetic progressions in all (s)-term ([1, m])-gap sequences</td>
<td>73</td>
</tr>
<tr>
<td>(GQ_s(k))</td>
<td>2-color Ramsey-type function for generalized quasi-progressions</td>
<td>67</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>$g(r,k)$</td>
<td>Least integer such that for all S with $</td>
<td>S</td>
</tr>
<tr>
<td>g^s</td>
<td>Gap size</td>
<td></td>
</tr>
<tr>
<td>(k, n, d)-progression</td>
<td>k-term quasi-progression with diameter n and low-difference d</td>
<td></td>
</tr>
<tr>
<td>$H(s_1, \ldots, s_k)$</td>
<td>2-color Ramsey-type function for homothetic copies of ${1, 1+s_1, \ldots, 1+s_1+\cdots+s_k}$</td>
<td></td>
</tr>
<tr>
<td>$\lambda(c, k; r)$</td>
<td>Special r-coloring of $[1, cr(k-1)^2]$ that avoids monochromatic k-term c-a.p.'s</td>
<td></td>
</tr>
<tr>
<td>$E(t)$</td>
<td>Equation $x_1 + \cdots + x_{t-1} = x_t$</td>
<td></td>
</tr>
<tr>
<td>$\mu(k)$</td>
<td>$\min{</td>
<td>E</td>
</tr>
<tr>
<td>$M_\lambda(n)$</td>
<td>Number of monochromatic Schur triples in $[1, n]$ under χ</td>
<td></td>
</tr>
<tr>
<td>$\nu(k)$</td>
<td>Erdős and Turán function</td>
<td></td>
</tr>
<tr>
<td>$\Omega_m(k)$</td>
<td>Least n so that every ${x_1, \ldots, x_n}$ with $x_i \in [((i-1)m, im - 1)$ contains a k-term arithmetic progression</td>
<td></td>
</tr>
<tr>
<td>P_n</td>
<td>Family of sequences generated by iteration of a polynomial of degree n</td>
<td></td>
</tr>
<tr>
<td>$P_{n,k}$</td>
<td>Family of k-term members of P_n</td>
<td></td>
</tr>
<tr>
<td>$Q_n(k)$</td>
<td>2-color Ramsey-type function for a polynomial of degree at most n</td>
<td></td>
</tr>
<tr>
<td>$R(\text{AP}_{n(m)}^*, k; l; r)$</td>
<td>Generalization of $R(\text{AP}_{n(m)}^*, k; r)$</td>
<td></td>
</tr>
<tr>
<td>$r(\mathcal{E}; s)$</td>
<td>Rado number for equation \mathcal{E}</td>
<td></td>
</tr>
<tr>
<td>$R(\mathcal{F}, k; r)$</td>
<td>Ramsey-type number for family \mathcal{F}</td>
<td></td>
</tr>
<tr>
<td>$R(k_1, \ldots, k_r)$</td>
<td>r-color (classical) Ramsey number</td>
<td></td>
</tr>
<tr>
<td>$R_c(k)$</td>
<td>$R(k, \ldots, k)$</td>
<td></td>
</tr>
<tr>
<td>$RR(S; r)$</td>
<td>Reverse r-regular number</td>
<td></td>
</tr>
<tr>
<td>$S(k_1, \ldots, k_r)$</td>
<td>Generalized Schur number</td>
<td></td>
</tr>
<tr>
<td>$\hat{S}(k_1, \ldots, k_r)$</td>
<td>Strict generalized Schur number</td>
<td></td>
</tr>
<tr>
<td>S_n</td>
<td>Family of sequences generated by iteration of a polynomial of degree at most n</td>
<td></td>
</tr>
<tr>
<td>$S_{n,k}$</td>
<td>Family of k-term members of S_n</td>
<td></td>
</tr>
<tr>
<td>$SP_n(k)$</td>
<td>Ramsey-type number for semi-progressions</td>
<td></td>
</tr>
<tr>
<td>$\lambda(r)$</td>
<td>Schur number</td>
<td></td>
</tr>
<tr>
<td>$\hat{\lambda}(r)$</td>
<td>Strict Schur number</td>
<td></td>
</tr>
<tr>
<td>$T_{a,b}$</td>
<td>Set of (a, b)-triples</td>
<td></td>
</tr>
<tr>
<td>$T(a, b; r)$</td>
<td>Ramsey-type number for (a, b)-triples</td>
<td></td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>$T(a_1, \ldots, a_{k-1})$</td>
<td>Ramsey-type function for generalization of (a, b)-triples</td>
<td>145</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Set of permutations of $[1, n]$ with no 3-term arithmetic progression</td>
<td>194</td>
</tr>
<tr>
<td>$\theta(n)$</td>
<td>$</td>
<td>\Theta(n)</td>
</tr>
<tr>
<td>V_m</td>
<td>${ x \in \mathbb{Z}^+ : m \nmid x }$</td>
<td>273</td>
</tr>
<tr>
<td>$V_{m,n}$</td>
<td>${ x \in \mathbb{Z}^+ : m \nmid x, n \nmid x }$</td>
<td>289</td>
</tr>
<tr>
<td>$w(k)$</td>
<td>$w(k; 2)$</td>
<td>25</td>
</tr>
<tr>
<td>$w(k; r)$</td>
<td>van der Waerden number</td>
<td>11</td>
</tr>
<tr>
<td>$w(k_1, \ldots, k_r; r)$</td>
<td>Mixed van der Waerden number</td>
<td>33</td>
</tr>
<tr>
<td>$w'(c, k; r)$</td>
<td>Ramsey-type number for arithmetic progressions with gaps at least c</td>
<td>111</td>
</tr>
<tr>
<td>$w'(f(x), k; r)$</td>
<td>Ramsey-type number for f-a.p.'s</td>
<td>116</td>
</tr>
<tr>
<td>$w^*(k, j)$</td>
<td>Ramsey-type number for arithmetic progressions with color discrepancy at least j</td>
<td>187</td>
</tr>
<tr>
<td>\mathbb{Z}^+</td>
<td>Positive integers</td>
<td>9</td>
</tr>
</tbody>
</table>
Bibliography

[60] T. C. Brown and A. R. Freedman, Small sets which meet all the k(n)-term arithmetic progressions in the interval [1, n], *J. Combinatorial Theory Series A* **51** (1989), 244-249.

[137] D. Hanson, Lower bounds for certain types of van der Waerden numbers, *J. Combinatorial Theory Series A* 12 (1972), 143-146.

[159] W. Kosek and D. Schaal, Rado numbers for the equation $\sum_{i=1}^{m-1} x_i + c = x_m$ for negative values of c, Advances Applied Math. 27 (2001), 805-815.

[160] B. Landman, Avoiding arithmetic progressions (mod m) and arithmetic progressions, Utilitas Math. 52 (1997), 173-182.

[165] B. Landman, On some generalizations of the van der Waerden number $w(3)$, Discrete Math. 207 (1999), 137-147.

[31] R. Salem and D. Spencer, On sets which do not contain a given number of terms in arithmetical progression, Nieuw Archief voor Wiskunde 23 (1950), 133-143.

[247] I. Schur, Über die Kongruenz $x^m + y^m = z^m \pmod{p}$, *Jahresbericht der Deutschen Mathematiker-Vereinigung* 25 (1916), 114-117.

[262] X. Sun, New lower bound on the number of ternary square-free words, preprint.

Index

(a, b)-triple: 135
Abbott, H.: 292
Accessible set: 266
Ackermann, W.: 39
Ackermann function: 39, 40, 53
Alon, N.: 185, 197
a (mod m)-progression: 163
Arithmetic progression: 11
Monotone: 191
Arithmetic progression (mod m): 163
Ascending wave: 100
Asymptotic notation: 10
Big-O notation: 10
Little-o notation: 10
Augmented progression: 152

Baudet’s conjecture: 54
Baumgartner, J.: 291
Bergelson, V.: 134, 222, 258, 291
Berlekamp, E.: 35
Bialostocki, A.: 223
Big-O notation: 10
Brakemeier, W.: 291
Brown’s lemma: 276, 278, 291
Brown, T.: 100, 134, 291
Burr, S.: 258

Cantor’s diagonal argument: 25
Ceiling function: 10
Coloring
 edge-coloring: 7
 r-coloring: 9
Columns condition: 252
Compactness principle: 25
Complete graph: 7
Composition function: 38, 117
Cubefree coloring: 279
Culprit: 31

Datskovsky, B.: 222
Degree of accessibility: 269
Degree of regularity: 138, 139, 147, 176
Derived coloring: 44
Descending wave: 70, 100, 176
Deuber, W.: 258
Difference coloring: 19
Diffsequence: 267, 276
Doublefree set: 265

Edge: 6
Edge-coloring: 7
Equation
 Homogeneous: 226
 Nonhomogeneous: 229
Regular: 13, 219, 226
Erdős, P.: 18, 19, 20, 35, 40, 41, 43, 51, 52, 53, 54, 100, 134, 200, 222, 264
Erdős-Ginzburg-Ziv theorem: 283, 291
Erdős and Turán function: 41, 53, 100
Ergodic theory: 53, 128, 134, 222
Everts, F.: 53
Exoo, G.: 222

Fermat’s last theorem: 200, 222
Fibonacci numbers: 275, 288, 290
Fields medal: 38
Floor function: 10
Folkman number: 264
Folkman’s theorem: 261, 262, 291
Folkman-Rado-Sanders theorem: 261
Fredricksen, H.: 222
Freedman, A.: 100
Furstenburg, H.: 53

Gap set: 104
Finite: 105
Infinite: 111
Gap size: 278
Generalized quasi-progression: 66
Generalized Schur number: 212
Strict: 221
Geometric progression: 125
Gleason, A.: 20
Goodman, A.: 222
GQ\textsubscript{d}-progression: 66
Graham, R.: 40, 41, 134, 198, 222
Graph: 6
Complete graph: 7
Subgraph: 6
Graver, J.: 20
Greatest integer function: 10
Greenwood, R.: 20
Grinstead, C.: 20
Hajnal, A.: 53
Hales-Jewett theorem: 162
Harary, F.: 1, 20
Harborth, H.: 258
Hilbert, D.: 11, 20, 39, 223
Hindman, N.: 258, 291
Hindman’s theorem: 291
Homogeneous: 226
Homothetic copy: 147
Hyperedge: 35
Hypergraph: 35
Irving, R.: 222
Isosceles triple: 242
Iterated function: 81
Kalbfleisch, J.: 20
Kéry, G.: 20
Landman, B.: 180
Large set: 124, 133, 266, 268, 272, 273, 274, 291
r-large set: 124, 266, 274
Least integer function: 10
Lefmann, H.: 100
Leibman, A.: 133, 134
Linear homogeneous equation: 226
Linear nonhomogeneous equation: 228
Little-o notation: 10
Liu, A.: 292
Long, A.: 180
Loo, S.: 258
Lovasz’s local lemma: 53
Low-difference: 57
Maasberg, S.: 258
McKay, B.: 20
Min, Z.: 20
Mixed van der Waerden number: 33, 34, 49, 51, 53
Monochromatic: 7, 9
Monotone arithmetic progression: 191
Monotonic sequence: 4
Morse-Hedlund sequence: 258, 280, 291
Nathanson, M.: 197
Nonhomogeneous: 229
Off-diagonal Rado number: 250
Off-diagonal Ramsey number: 250
Parrilo, P.: 222
Party problem: 6
Permutation: 191
Piecewise syndetic: 276
Pigeonhole principle: 3, 17
p\textsubscript{n}-sequence: 81
p\textsubscript{n}-function: 81
Polynomial
Generating: 81
Iterated: 81
Pomerance, C.: 54
Probabilistic method: 18, 50, 54
Product-set: 264
Property B: 36, 53
Prouhet-Thue-Morse sequence: 280
Quasi-progression: 56
Rabung, J.: 100, 197
Rado, R.: 13, 53, 211, 225, 258, 277
Rado numbers: 13, 230, 239, 257
Off-diagonal Rado numbers: 250
Rado’s full theorem: 253, 258, 262
Rado’s selection principle: 25
See compactness principle: 25
Rado’s single equation theorem: 13, 225, 226
Ramsey, F.: 1, 8, 20
Ramsey number: 8, 15, 20, 202, 203, 218, 249, 250
Off-diagonal: 250
Ramsey’s theorem: 2, 7, 19, 200, 202, 222
Ramsey-type: 11, 14
Rankin, R.: 53
r-coloring: 9
Recurrence relation: 91
Refined triple: 45
Regular: 13, 15, 138, 173, 219, 226
Regular system of equations: 226
Index

-regular: 13, 15, 138, 173, 226, 250
Reverse regular: 185
Riddell, J.: 54, 292
Roberts, S.: 20
Robertson, A.: 222
Rödl, V.: 222
Roth, K.: 43, 53, 197
Rucinski, A.: 222
Sanders, J.: 291
Schaal, D.: 223, 259
Schmidt, W.: 35
Schmidt’s lemma: 37, 53
Schoen, T.: 222
Schur, I.: 11, 12, 199, 200, 202, 222
Schur number: 12, 19, 201, 214, 222
Generalized: 212, 222
Strict: 221
Strict generalized: 221
Schur’s theorem: 12, 19, 20, 200, 201
Schur triple: 201, 222
Scope: 72
Semi-progression: 72
Shelah, S.: 40
Shiue, P.: 100
Sidorenko, A.: 197
Sós, V.: 19
Spencer, J.: 20, 54, 197, 198, 262
Squarefree coloring: 279
Stirling’s formula: 18
Strict generalized Schur numbers: 221
Strict Schur numbers: 221
Subgraph: 6
Sumset: 261
Superset: 56
Sweet, M.: 222
 Syndetic: 276
Szekeres, G.: 20, 100, 200, 222
Szemerédi, E.: 43, 53
Szemerédi’s theorem: 43

Tail: 152
Thue-Morse sequence: 280, 289, 291
Tic-tac-toe game: 245
Tower function: 38, 39, 40, 53
Turán, P.: 41, 43, 53, 99

Valid coloring: 15, 29, 99, 117
Valko, B.: 197
Vandermonde determinant: 83
Van der Waerden, B. L.: 11
Van der Waerden’s theorem: 11, 12, 20, 23, 43, 53
Equivalent statements: 27
Finite version: 25
Vertices: 6

Walters, M.: 134
Wave
Ascending: 100
Descending: 70, 93, 100
Wiles, A.: 200, 222
Witzenhausen, H.: 198
Wow function: 39, 40, 53
Wróblewski, J.: 53
Yackel, J.: 20
Zaks, A.: 185, 197
Zeilberger, D.: 222
Zero-sum sequence: 282
Titles in This Series

24 Bruce M. Landman and Aaron Robertson, Ramsey theory on the integers, 2004
23 S. K. Lando, Lectures on generating functions, 2003
22 Andreas Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, 2003
21 W. J. Kaczer and M. T. Nowak, Problems in mathematical analysis III: Integration, 2003
20 Klaus Hulek, Elementary algebraic geometry, 2003
19 A. Shen and N. K. Vereshchagin, Computable functions, 2003
18 V. V. Yaschenko, Editor, Cryptography: An introduction, 2002
17 A. Shen and N. K. Vereshchagin, Basic set theory, 2002
16 Wolfgang Kühnel, Differential geometry: curves - surfaces - manifolds, 2002
15 Gerd Fischer, Plane algebraic curves, 2001
14 V. A. Vassiliev, Introduction to topology, 2001
13 Frederick J. Almgren, Jr., Plateau’s problem: An invitation to varifold geometry, 2001
12 W. J. Kaczer and M. T. Nowak, Problems in mathematical analysis II: Continuity and differentiation, 2001
10 John Oprea, The mathematics of soap films: Explorations with Maple®, 2000
9 David E. Blair, Inversion theory and conformal mapping, 2000
8 Edward B. Burger, Exploring the number jungle: A journey into diophantine analysis, 2000
7 Judy L. Walker, Codes and curves, 2000
6 Gérald Tenenbaum and Michel Mendès France, The prime numbers and their distribution, 2000
5 Alexander Mehlmann, The game’s afoot! Game theory in myth and paradox, 2000
4 W. J. Kaczer and M. T. Nowak, Problems in mathematical analysis I: Real numbers, sequences and series, 2000
3 Roger Knobel, An introduction to the mathematical theory of waves, 2000
2 Gregory F. Lawler and Lester N. Coyle, Lectures on contemporary probability, 1999
1 Charles Radin, Miles of tiles, 1999
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. *Ramsey Theory on the Integers* offers students something quite rare for a book at this level: a glimpse into the world of mathematical research and the opportunity to begin pondering unsolved problems themselves.

In addition to being the first truly accessible book on Ramsey theory, this innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subarea of Ramsey theory. The result is a breakthrough book that will engage students, teachers, and researchers alike.