Lectures on Surfaces
(Almost) Everything You Wanted to Know about Them

Anatole Katok
Vaughn Climenhaga
Lectures on Surfaces

(Almost) Everything You Wanted to Know about Them
Lectures on Surfaces
(Almost) Everything You Wanted to Know about Them

Anatole Katok
Vaughn Climenhaga
Topographic data for illustration of Earth in Figure 1.12 is taken from the National Oceanic and Atmospheric Administration’s ETOPO2v2 data set, available at www.ngdc.noaa.gov.

2000 Mathematics Subject Classification. Primary 51–01, 53–01, 57N05; Secondary 53A05, 57R05.

For additional information and updates on this book, visit www.ams.org/bookpages/stml-46

Library of Congress Cataloging-in-Publication Data
Katok, A. B.
Lectures on surfaces : (almost) everything you wanted to know about them / Anatole Katok, Vaughn Climenhaga.
p. cm. — (Student mathematical library ; v. 46)
Includes bibliographical references and index.
ISBN 978-0-8218-4679-7 (alk. paper)
QA571.K34 2008
516—dc22 2008029299

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2008 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 13 12 11 10 09 08
Contents

Foreword: MASS and REU at Penn State University xi

Preface xiii

Chapter 1. Various Ways of Representing Surfaces and Basic Examples 1

Lecture 1 1
a. First examples 1
b. Equations vs. other methods 4
c. Planar models 8
d. Projective plane and flat torus as factor spaces 9

Lecture 2 11
a. Equations for surfaces and local coordinates 11
b. Other ways of introducing local coordinates 14
c. Parametric representations 16
d. Metrics on surfaces 17

Lecture 3 18
a. More about the Möbius strip and projective plane 18
b. A first glance at geodesics 20
c. Parametric representations of curves 22
d. Difficulties with representation by embedding 24
e. Regularity conditions for parametrically defined surfaces 27
Lecture 4
a. Remarks on metric spaces and topology 28
b. Homeomorphisms and isometries 31
c. Other notions of dimension 32
d. Geodesics 33

Lecture 5
a. Isometries of the Euclidean plane 34
b. Isometries of the sphere and the elliptic plane 38

Lecture 6
a. Classification of isometries of the sphere and the elliptic plane 39
b. Area of a spherical triangle 41

Lecture 7
a. Spaces with lots of isometries 43
b. Symmetric spaces 45
c. Remarks concerning direct products 47

Chapter 2. Combinatorial Structure and Topological Classification of Surfaces 49

Lecture 8
a. Topology and combinatorial structure on surfaces 49
b. Triangulation 52
c. Euler characteristic 56

Lecture 9
a. Continuation of the proof of Theorem 2.4 58
b. Calculation of Euler characteristic 65

Lecture 10
a. From triangulations to maps 67
b. Examples 70

Lecture 11
a. Euler characteristic of planar models 73
b. Attaching handles 74
c. Orientability 77
d. Inverted handles and Möbius caps 79
Contents

Lecture 12
a. Non-orientable surfaces and Möbius caps
b. Calculation of Euler characteristic
c. Covering non-orientable surfaces
d. Classification of orientable surfaces
80
81
83
85

Lecture 13
a. Proof of the classification theorem
b. Non-orientable surfaces: Classification and models
86
91

Lecture 14
a. Chain complexes and Betti numbers
b. Homology of surfaces
c. A second interpretation of Euler characteristic
92
94
96

Lecture 15
a. Interpretation of the Betti numbers
b. Torsion in the first homology and non-orientability
c. Another derivation of interpretation of Betti numbers
98
100
101

Chapter 3. Differentiable Structure on Surfaces: Real and Complex

Lecture 16
a. Charts and atlases
b. First examples of atlases
103
106

Lecture 17
a. Differentiable manifolds
b. Diffeomorphisms
c. More examples of charts and atlases
109
110
113

Lecture 18
a. Embedded surfaces
b. Gluing surfaces
c. Quotient spaces
d. Removing singularities
117
117
118
120

Lecture 19
a. Riemann surfaces: Definition and first examples
b. Holomorphic equivalence of Riemann surfaces
121
125
c. Conformal property of holomorphic functions and
 invariance of angles on Riemann surfaces 127

d. Complex tori and the modular surface 129

Lecture 20 130
a. Differentiable functions on real surfaces 130
b. Morse functions 135
c. The third incarnation of Euler characteristic 138

Lecture 21 141
a. Functions with degenerate critical points 141
b. Degree of a circle map 145
c. Brouwer’s fixed point theorem 149

Lecture 22 150
a. Zeroes of a vector field and their indices 150
b. Calculation of index 153
c. Tangent vectors, tangent spaces, and the tangent
 bundle 155

Chapter 4. Riemannian Metrics and Geometry of Surfaces 159

Lecture 23 159
a. Definition of a Riemannian metric 159
b. Partitions of unity 163

Lecture 24 165
a. Existence of partitions of unity 165
b. Global properties from local and infinitesimal 169
c. Lengths, angles, and areas 170

Lecture 25 172
a. Geometry via a Riemannian metric 172
b. Differential equations 174
c. Geodesics 175

Lecture 26 178
a. First glance at curvature 178
b. The hyperbolic plane: two conformal models 181
c. Geodesics and distances on H^2 186

Lecture 27 189
a. Detailed discussion of geodesics and isometries in the
 upper half-plane model 189
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. The cross-ratio</td>
<td>193</td>
</tr>
<tr>
<td>c. Circles in the hyperbolic plane</td>
<td>196</td>
</tr>
<tr>
<td>Lecture 28</td>
<td>198</td>
</tr>
<tr>
<td>a. Three approaches to hyperbolic geometry</td>
<td>198</td>
</tr>
<tr>
<td>b. Characterisation of isometries</td>
<td>199</td>
</tr>
<tr>
<td>Lecture 29</td>
<td>204</td>
</tr>
<tr>
<td>a. Classification of isometries</td>
<td>204</td>
</tr>
<tr>
<td>b. Geometric interpretation of isometries</td>
<td>213</td>
</tr>
<tr>
<td>Lecture 30</td>
<td>217</td>
</tr>
<tr>
<td>a. Area of triangles in different geometries</td>
<td>217</td>
</tr>
<tr>
<td>b. Area and angular defect in hyperbolic geometry</td>
<td>218</td>
</tr>
<tr>
<td>Lecture 31</td>
<td>224</td>
</tr>
<tr>
<td>a. Hyperbolic metrics on surfaces of higher genus</td>
<td>224</td>
</tr>
<tr>
<td>b. Curvature, area, and Euler characteristic</td>
<td>228</td>
</tr>
<tr>
<td>Lecture 32</td>
<td>231</td>
</tr>
<tr>
<td>a. Geodesic polar coordinates</td>
<td>231</td>
</tr>
<tr>
<td>b. Curvature as an error term in the circle length formula</td>
<td>233</td>
</tr>
<tr>
<td>c. The Gauss-Bonnet Theorem</td>
<td>235</td>
</tr>
<tr>
<td>d. Comparison with traditional approach</td>
<td>240</td>
</tr>
<tr>
<td>Chapter 5. Topology and Smooth Structure Revisited</td>
<td>243</td>
</tr>
<tr>
<td>Lecture 33</td>
<td>243</td>
</tr>
<tr>
<td>a. Back to degree and index</td>
<td>243</td>
</tr>
<tr>
<td>b. The Fundamental Theorem of Algebra</td>
<td>246</td>
</tr>
<tr>
<td>Lecture 34</td>
<td>249</td>
</tr>
<tr>
<td>a. Jordan Curve Theorem</td>
<td>249</td>
</tr>
<tr>
<td>b. Another interpretation of genus</td>
<td>253</td>
</tr>
<tr>
<td>Lecture 35</td>
<td>255</td>
</tr>
<tr>
<td>a. A remark on tubular neighbourhoods</td>
<td>255</td>
</tr>
<tr>
<td>b. Proving the Jordan Curve Theorem</td>
<td>256</td>
</tr>
<tr>
<td>c. Poincaré-Hopf Index Formula</td>
<td>259</td>
</tr>
<tr>
<td>Lecture 36</td>
<td>260</td>
</tr>
<tr>
<td>a. Proving the Poincaré-Hopf Index Formula</td>
<td>260</td>
</tr>
<tr>
<td>b. Gradients and index formula for general functions</td>
<td>265</td>
</tr>
<tr>
<td>c. Fixed points and index formula for maps</td>
<td>267</td>
</tr>
<tr>
<td>d. The ubiquitous Euler characteristic</td>
<td>269</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>271</td>
</tr>
<tr>
<td>Hints</td>
<td>275</td>
</tr>
<tr>
<td>Index</td>
<td>283</td>
</tr>
</tbody>
</table>
Foreword: MASS and REU at Penn State University

This book is part of a collection published jointly by the American Mathematical Society and the MASS (Mathematics Advanced Study Semesters) program as a part of the Student Mathematical Library series. The books in the collection are based on lecture notes for advanced undergraduate topics courses taught at the MASS and/or Penn State summer REU (Research Experiences for Undergraduates). Each book presents a self-contained exposition of a non-standard mathematical topic, often related to current research areas, accessible to undergraduate students familiar with an equivalent of two years of standard college mathematics and suitable as a text for an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced undergraduate students from across the USA. The program’s curriculum amounts to sixteen credit hours. It includes three core courses from the general areas of algebra/number theory, geometry/topology and analysis/dynamical systems, custom designed every year; an interdisciplinary seminar; and a special colloquium. In addition, every participant completes three research projects, one for each core course. The participants are fully immersed into mathematics, and
this, as well as intensive interaction among the students, usually leads to a dramatic increase in their mathematical enthusiasm and achievement. The program is unique for its kind in the United States.

The summer mathematical REU program is formally independent of MASS, but there is a significant interaction between the two: about half of the REU participants stay for the MASS semester in the fall. This makes it possible to offer research projects that require more than seven weeks (the length of the REU program) for completion. The summer program includes the MASS Fest, a two to three day conference at the end of the REU at which the participants present their research and that also serves as a MASS alumni reunion. A non-standard feature of the Penn State REU is that, along with research projects, the participants are taught one or two intense topics courses.

Detailed information about the MASS and REU programs at Penn State can be found on the website www.math.psu.edu/mass.
Preface

This book is a result of the MASS course in geometry in the fall semester of 2007. MASS core courses are traditionally labeled as analysis, algebra, and geometry, but the understanding of each area is broad, e.g. number theory and combinatorics are allowed as algebra courses, topology is considered as a part of geometry, and dynamical systems as a part of analysis. No less importantly, an interaction of ideas and concepts from different areas of mathematics is highly valued.

The topic came to me as very natural under these conditions. Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry proper, topology, complex analysis, Morse theory, group theory, and suchlike. At the same time, many of those notions appear in a technically simplified and more graphic form than in their general “natural” settings. So, here was an opportunity to acquaint a group of bright and motivated undergraduates with a wealth of concepts and ideas, many of which would be difficult for them to absorb if presented in a traditional fashion. This is the central idea of the course and the book reflects it closely.

The first, primarily expository, chapter introduces many (but not all) principal actors, such as the round sphere, flat torus, Möbius strip, Klein bottle, elliptic plane, and so on, as well as various methods of
describing surfaces, beginning with the traditional representation by
equations in three-dimensional space, proceeding to parametric rep-
resentation, and introducing the less intuitive, but central for our
purposes, representation as factor spaces. It also includes a prelimi-
nary discussion of the metric geometry of surfaces. Subsequent chap-
ters introduce fundamental mathematical structures: topology, com-
binatorial (piecewise-linear) structure, smooth structure, Riemannian
metric, and complex structure in the specific context of surfaces. The
assumed background is the standard calculus sequence, some linear
algebra, and rudiments of ODE and real analysis. All notions are
introduced and discussed, and virtually all results proved, based on
this background.

The focal point of the book is the Euler characteristic, which ap-
pears in many different guises and ties together concepts from com-
binatorics, algebraic topology, Morse theory, ODE, and Riemannian
geometry. The repeated appearance of the Euler characteristic pro-
vides both a unifying theme and a powerful illustration of the notion
of an invariant in all those theories.

A further idea of both the motivations and the material presented
in the book may be found in the Table of Contents, which is quite
detailed.

My plan for teaching the course was somewhat bold and ambi-
tious, and could have easily miscarried had I not been blessed with a
teaching assistant who became the book’s co-author. I decided to use
no text either for my own preparations or as a prop for students. In-
stead, I decided to present the material the way I understand it, with
not only descriptions and examples, but also proofs, coming directly
from my head. A mitigating factor was that, although sufficiently
broadly educated, I am not a professional topologist or geometer.
Hence, the stuff I had ready in my head or could easily reconstruct
should not have been too obscure or overly challenging.

So, this is how the book came about. I prepared each lecture
(usually without or with minimal written notes), and my TA, the
third year Ph.D. student Vaughn Climenhaga, took notes and within
24 hours, usually less, prepared a very faithful and occasionally even
somewhat embellished version typed in TeX. I usually did some very
light editing before posting each installation for the students. Thus, the students had the text growing in front of their eyes in real time.

By the end of the Fall semester the notes were complete: additional work involved further editing and, in a few cases, completing and expanding proofs; a slight reordering of material to make each chapter consist of complete lectures; and in a couple of cases, merging two lectures into one, if in class a considerable repetition appeared. But otherwise the book fully retained the structure of the original one-semester course, and its expansion is due to the addition of a large number of pictures, a number of exercises (some were originally given in separate homework sets, others added later), and some “prose”, i.e. discussions and informal explanations. All results presented in the book appeared in the course, and, as I said before, only in a few cases did proofs need to be polished or completed.

Aside from creating the original notes, my co-author Vaughn Climenhaga participated on equal terms in the editorial process, and, very importantly, he produced practically all of the pictures, including dozens of beautiful 3-dimensional images for which, in many cases, even the concept was solely his. Without him, I am absolutely sure that I would not have been able to turn my course into a book in anything approaching the present timeframe, and even if I did at all, the quality of the final product would have been considerably lower.

Anatole Katok
Index

[·, ·], 33
⟨·, ·; ·, ·⟩, 188
⟨·, ·⟩_p, 160
\(A\), 104
\(\beta_k\), 93
\(C\), 92
d(·, ·), 28
\(\delta_{ij}\), 39
\(\partial_k\), 92
dS, 235
ds, 173
\(E_n\), 146
\(\Gamma\), 224
\(GL(n, \mathbb{R})\), 32
\(H^2\), 181
\(H_k\), 93
\(\text{ind}_p f\), 267
\(\text{ind}_p \gamma\), 152
\(\text{ind}_p X\), 151
\(\text{Isom}\), 31
\(I_x\), 45
\(\kappa\), 180
\(M\), 61
\(O(3)\), 39
\(\phi_{\gamma}\), 150
\(PSL(2, \mathbb{R})\), 184
\(\rho_{i}\), 164
\(\mathbb{R}^n\), 20
\(\mathbb{R}P^2\), 10
\(S^2\), 20
\(SL(2, \mathbb{R})\), 184
\(S_n\), 67
\(SO(3)\), 40
\(\text{supp}\), 164
\(T^2\), 44
\(T\), 54
\(T^n\), 61
\(\chi\), 56

absolute geometry, 198
action, 175
affine map, 35
angle, 171
angular defect, 217, 229
angular excess, 43, 235, 238
area, 171, 181, 229
of a triangle, 41, 217, 223, 238
asymptotic triangle, 220, 222
atlas, 104, 106, 117
compatible, 105

barycentric coordinates, 53, 67
barycentric subdivision, 57
Betti number, 93, 97
interpretation, 98, 100
boundary, 93, 96
boundary operator, 92
for a triangulation, 95
Brouwer’s fixed point theorem, 149, 267
bump function, 167

chain, 93, 96
chain complex, 92
for a triangulation, 94
chart, 104, 106, 109, 132
projection, 117
Christoffel symbol, 242
circle map, 145
classification, 29, 48, 53, 111
complex tori, 129
finitely generated abelian groups, 93
isometries of H^2, 204
matrices, 210
non-orientable surfaces, 91
orientable surfaces, 85
surfaces, 253
coarsening, 57, 60, 70
compact, 30
complete, 30
cone, 2, 22
conformal, 122, 128, 173, 181
conjugacy, 209
conjugate points, 177
connected, 30, 49
covering space, 83, 84
critical point, 14, 131, 150, 169, 259
degenerate, 141, 154
cross cap, see Möbius cap
cross-ratio, 193
crystallographic restriction, 45
curvature, 169, 182, 219, 233, 241
and angular excess, 238
Gaussian, 178, 241
principal, 241
cycle, 93, 96
cylinder, 2, 22
degree, 145, 151, 244, 267
in higher dimensions, 148
diffeomorphism, 51, 111, 249
and holomorphic equivalence, 125
differential equation, 158, 174, 234, 259, 266
dimension, 31, 32, 50
direct product, 47, 85, 160
disc model, 185, 197, 217, 232
elipsoid, 3, 177
elliptic isometry, 205, 215
elliptic matrix, 210
elliptic plane, see projective plane
equidistant curve, 208, 214, 226, 252
Euler characteristic, 65, 73, 254, 269
and Betti numbers, 98
and continuous maps, 269
and curvature, 228
and Morse functions, 139
and vector fields, 259
combinatorial definition, 56
in higher dimensions, 270
modifying, 76, 82, 140
of covering space, 84
Euler-Lagrange equation, 170, 174, 176
exact sequence, 92

factor space, see quotient space
Fermi geodesic coordinates, 252
flow, 158
fractional linear transformation, 124, 183, 201
preserves cross-ratio, 193
fundamental domain, 10, 224, 227
fundamental group, 101, 256
Fundamental Theorem of Algebra, 246
Gauss-Bonnet Theorem, 229, 235, 239
genus, 99, 254
geodesic, 19, 20, 33, 170, 175, 186, 195, 206, 207, 226, 252, 268
geodesic flip, 45, 178
geodesic polar coordinates, 231, 236, 240
geographic coordinates, 16, 163
gerometry, 2, 27, 127, 172, 259
glide reflection, 37
gradient, 152, 155
graph, 13
handle, 4, 74, 89, 250
Index

inverted, 79, 83
Hessian, 133, 170
holomorphic, 121
homeomorphism, 29, 51, 249
homology, 65, 92, 148
homothety, 108, 129, 182, 216
homotopy, 65, 87, 146, 154, 256
horocycle, 206, 213
hyperbolic isometry, 207, 216, 226
hyperbolic matrix, 210
hyperbolic plane, 181, 217, 225
hyperboloid, 239, 241
hypercircle, see equidistant curve
ideal boundary, 185, 211, 213
index
 Morse, 141
 of a continuous map, 267
 of a curve, 152, 243, 250, 258
 of a vector field, 151, 259
inner product, 160
integral curve, 158
isometry, 31, 34
 orientation reversing, 199
isometry group, 44, 183, 211, 224, 227
Jordan Curve Theorem, 51, 249, 256
Klein bottle, 7, 24, 72, 264
lattice, 45
length, 170, 175, 181, 234
lift, 145
limit circle, see horocycle
Liouville’s theorem, 125
local coordinates, 13, 109, 155, 163
manifold, 49, 70
 complex, 122
 Riemannian, 161, 172
 smooth, 103, 109, 251
map, 60, 67, 69, 229
 homology of, 100
metric, 17
metric space, 28
metrisable, 49
Möbius cap, 80, 82, 91, 250
Möbius strip, 6, 18, 77, 80
Möbius transformation, see fractional linear transformation
modular surface, 129
Morse function, 136
Morse lemma, 134
neutral geometry, see absolute geometry
norm, 170
normal subgroup, 211
orientability, 77, 81, 84, 88, 99, 113, 252
 and homology, 100
osculating circle, 241
parabolic isometry, 206, 216
parabolic matrix, 210
parallel, 2, 212, 214
parallel postulate, 187, 198, 213
parametric representation
 of curves, 22
 of surfaces, 16, 27
partition of unity, 164, 165, 169, 266
patch, 104, 106, 163
Peano curve, 244
pencil, 206
planar model, 8, 69, 71, 73, 80, 224
 notation, 72
 smooth structure, 120
Poincaré conjecture, 90, 138
Poincaré duality, 270
Poincaré-Hopf Index Formula, 259
polarisation identity, 40
positive definite, 160, 162
pretzel, see surface of genus two
projective plane, 10, 18, 38, 66, 71, 269
pseudosphere, 186, 190
quotient space, 11, 260
 smooth structure, 116, 118, 227
refinement, 61
reflection, 36
regular point, 14, 131
regularisation, 173
Riemann sphere, 123, 195
Riemann surface, 122
 orientability, 124
Riemannian metric, 161, 169, 172
rotation, 35, 39, 129, 154, 185, 205, 215

saddle, 134, 140, 153
 monkey, 143
scalar product, see inner product
Schoenflies Theorem, 249, 253
simplex, 53
skeleton, 87
skew, 2
sphere, 1, 18, 20, 38, 55, 65, 71, 114, 177, 269
 Morse function, 135
stereographic projection, 15, 115, 123, 163
surface of genus two, 4, 118, 225, 227, 254
symmetric space, 46
synthetic geometry, 39, 198
tangent bundle, 155, 160
 unit, 182
tangent space, 155, 160, 171
tangent vector, 43
Teichmüller, 130, 228
Theorema Egregium, 242
topology, 2, 27, 28, 259
torus, 4, 56, 66, 69, 112, 116, 177, 264
 complex, 126, 129
 flat, 9, 26, 45, 47, 123, 224, 228
 Morse function, 136
transition map, 104, 110, 113, 162
transitivity, 43, 127
translation, 36, 108, 182, 226
tree, 87
triangulation, 54, 67, 70, 253
 and smooth structure, 112, 121, 229, 254
 homology of, 94
 orientable, 78
tubular neighbourhood, 251, 255
ultraparallel, 212, 214, 226
universal cover, 225
upper half-plane, 181, 190, 197, 214, 222
vector field, 150, 161, 259, 266
Titles in This Series

46 Anatole Katok and Vaughn Climenhaga, Lectures on surfaces: (Almost) everything you wanted to know about them, 2008
45 Harold M. Edwards, Higher arithmetic: An algorithmic introduction to number theory, 2008
44 Yitzhak Katznelson and Yonatan R. Katznelson, A (terse) introduction to linear algebra, 2008
43 Ilka Agricola and Thomas Friedrich, Elementary geometry, 2008
42 C. E. Silva, Invitation to ergodic theory, 2007
41 Gary L. Mullen and Carl Mummert, Finite fields and applications, 2007
40 Deguang Han, Keri Kornelson, David Larson, and Eric Weber, Frames for undergraduates, 2007
39 Alex Iosevich, A view from the top: Analysis, combinatorics and number theory, 2007
38 B. Fristedt, N. Jain, and N. Krylov, Filtering and prediction: A primer, 2007
37 Svetlana Katok, p-adic analysis compared with real, 2007
36 Mara D. Neusel, Invariant theory, 2007
35 Jörg Bewersdorff, Galois theory for beginners: A historical perspective, 2006
34 Bruce C. Berndt, Number theory in the spirit of Ramanujan, 2006
33 Rekha R. Thomas, Lectures in geometric combinatorics, 2006
32 Sheldon Katz, Enumerative geometry and string theory, 2006
31 John McCleary, A first course in topology: Continuity and dimension, 2006
30 Serge Tabachnikov, Geometry and billiards, 2005
29 Kristopher Tapp, Matrix groups for undergraduates, 2005
28 Emmanuel Lesigne, Heads or tails: An introduction to limit theorems in probability, 2005
27 Reinhard Illner, C. Sean Bohun, Samantha McCollum, and Thea van Roode, Mathematical modelling: A case studies approach, 2005
26 Robert Hardt, Editor, Six themes on variation, 2004
25 S. V. Duzhin and B. D. Chebotarevsky, Transformation groups for beginners, 2004
24 Bruce M. Landman and Aaron Robertson, Ramsey theory on the integers, 2004
23 S. K. Lando, Lectures on generating functions, 2003
22 Andreas Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, 2003
21 W. J. Kaczor and M. T. Nowak, Problems in mathematical analysis III: Integration, 2003
20 Klaus Hulek, Elementary algebraic geometry, 2003
TITLES IN THIS SERIES

19 **A. Shen and N. K. Vereshchagin**, Computable functions, 2003
18 **V. V. Yaschenko, Editor**, Cryptography: An introduction, 2002
17 **A. Shen and N. K. Vereshchagin**, Basic set theory, 2002
15 **Gerd Fischer**, Plane algebraic curves, 2001
14 **V. A. Vassiliev**, Introduction to topology, 2001
13 **Frederick J. Almgren, Jr.**, Plateau’s problem: An invitation to varifold geometry, 2001
12 **W. J. Kaczor and M. T. Nowak**, Problems in mathematical analysis II: Continuity and differentiation, 2001
11 **Mike Mesterton-Gibbons**, An introduction to game-theoretic modelling, 2000
10 **John Oprea**, The mathematics of soap films: Explorations with Maple®, 2000
9 **David E. Blair**, Inversion theory and conformal mapping, 2000
8 **Edward B. Burger**, Exploring the number jungle: A journey into diophantine analysis, 2000
7 **Judy L. Walker**, Codes and curves, 2000
6 **Gérald Tenenbaum and Michel Mendès France**, The prime numbers and their distribution, 2000
5 **Alexander Mehlmann**, The game’s afoot! Game theory in myth and paradox, 2000
4 **W. J. Kaczor and M. T. Nowak**, Problems in mathematical analysis I: Real numbers, sequences and series, 2000
3 **Roger Knobel**, An introduction to the mathematical theory of waves, 2000
2 **Gregory F. Lawler and Lester N. Coyle**, Lectures on contemporary probability, 1999
1 **Charles Radin**, Miles of tiles, 1999
Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry, topology, complex analysis, Morse theory, and group theory. At the same time, many of those notions appear in a technically simpler and more graphic form than in their general “natural” settings.

The first, primarily expository, chapter introduces many of the principal actors—the round sphere, flat torus, Möbius strip, Klein bottle, elliptic plane, etc.—as well as various methods of describing surfaces, beginning with the traditional representation by equations in three-dimensional space, proceeding to parametric representation, and also introducing the less intuitive, but central for our purposes, representation as factor spaces. It concludes with a preliminary discussion of the metric geometry of surfaces, and the associated isometry groups. Subsequent chapters introduce fundamental mathematical structures—topological, combinatorial (piecewise-linear), smooth, Riemannian (metric), and complex—in the specific context of surfaces.

The focal point of the book is the Euler characteristic, which appears in many different guises and ties together concepts from combinatorics, algebraic topology, Morse theory, ordinary differential equations, and Riemannian geometry. The repeated appearance of the Euler characteristic provides both a unifying theme and a powerful illustration of the notion of an invariant in all those theories.

The assumed background is the standard calculus sequence, some linear algebra, and rudiments of ODE and real analysis. All notions are introduced and discussed, and virtually all results proved, based on this background.

This book is a result of the MASS course in geometry in the fall semester of 2007.