Thirty-three Miniatures

Mathematical and Algorithmic Applications of Linear Algebra

Jiří Matoušek
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Notation</td>
<td>ix</td>
</tr>
<tr>
<td>Miniature 1. Fibonacci Numbers, Quickly</td>
<td>1</td>
</tr>
<tr>
<td>Miniature 2. Fibonacci Numbers, the Formula</td>
<td>3</td>
</tr>
<tr>
<td>Miniature 3. The Clubs of Oddtown</td>
<td>5</td>
</tr>
<tr>
<td>Miniature 4. Same-Size Intersections</td>
<td>7</td>
</tr>
<tr>
<td>Miniature 5. Error-Correcting Codes</td>
<td>11</td>
</tr>
<tr>
<td>Miniature 6. Odd Distances</td>
<td>17</td>
</tr>
<tr>
<td>Miniature 7. Are These Distances Euclidean?</td>
<td>19</td>
</tr>
<tr>
<td>Miniature 8. Packing Complete Bipartite Graphs</td>
<td>23</td>
</tr>
<tr>
<td>Miniature 9. Equiangular Lines</td>
<td>27</td>
</tr>
<tr>
<td>Miniature 10. Where is the Triangle?</td>
<td>31</td>
</tr>
<tr>
<td>Miniature 11. Checking Matrix Multiplication</td>
<td>35</td>
</tr>
<tr>
<td>Miniature 12. Tiling a Rectangle by Squares</td>
<td>39</td>
</tr>
</tbody>
</table>

iii
Miniature 13. Three Petersens Are Not Enough 41
Miniature 14. Petersen, Hoffman–Singleton, and Maybe 57 45
Miniature 15. Only Two Distances 51
Miniature 16. Covering a Cube Minus One Vertex 55
Miniature 17. Medium-Size Intersection Is Hard To Avoid 57
Miniature 18. On the Difficulty of Reducing the Diameter 61
Miniature 19. The End of the Small Coins 67
Miniature 20. Walking in the Yard 71
Miniature 21. Counting Spanning Trees 77
Miniature 22. In How Many Ways Can a Man Tile a Board? 85
Miniature 24. Perfect Matchings and Determinants 107
Miniature 25. Turning a Ladder Over a Finite Field 113
Miniature 26. Counting Compositions 119
Miniature 27. Is It Associative? 125
Miniature 28. The Secret Agent and the Umbrella 131
Miniature 29. Shannon Capacity of the Union: A Tale of Two Fields 139
Miniature 30. Equilateral Sets 147
Miniature 31. Cutting Cheaply Using Eigenvectors 153
Miniature 32. Rotating the Cube 163
Miniature 33. Set Pairs and Exterior Products 171
Index 179
Preface

Some years ago I started gathering nice applications of linear algebra, and here is the resulting collection. The applications belong mostly to the main fields of my mathematical interests—combinatorics, geometry, and computer science. Most of them are mathematical, in proving theorems, and some include clever ways of computing things, i.e., algorithms. The appearance of linear-algebraic methods is often unexpected.

At some point I started to call the items in the collection “miniatures”. Then I decided that in order to qualify for a miniature, a complete exposition of a result, with background and everything, should not exceed four typeset pages (A4 format). This rule is absolutely arbitrary, as rules often are, but it has some rational core—namely, this extent can usually be covered conveniently in a 90-minute lecture, the standard length at the universities where I happened to teach. Then, of course, there are some exceptions to the rule, such as six-page miniatures that I just couldn’t bring myself to omit.

The collection could obviously be extended indefinitely, but I thought thirty-three was a nice enough number and a good point to stop.

The exposition is intended mainly for lecturers (I’ve taught almost all of the pieces on various occasions) and also for students interested in nice mathematical ideas even when they require some
thinking. The material is hopefully class-ready, where all details left
to the reader should indeed be devil-free.

I assume a background in basic linear algebra, a bit of familiarity
with polynomials, and some graph-theoretical and geometric termin-
ology. The sections have varying levels of difficulty, and generally
I have ordered them from what I personally regard as the most ac-
cessible to the more demanding.

I wanted each section to be essentially self-contained. With a
good undergraduate background you can as well start reading at Sec-
tion 24. This is kind of opposite to a typical mathematical textbook,
where material is developed gradually, and if one wants to make sense
of something on page 123, one usually has to understand the previous
122 pages, or with luck, some suitable 38 pages.

Of course, the anti-textbook structure leads to some boring rep-
etitions and, perhaps more seriously, it puts a limit on the degree of
achievable sophistication. On the other hand, I believe there are ad-
vantages as well: I gave up reading several textbooks well before page
123, after I realized that between the usually short reading sessions
I couldn’t remember the key definitions (people with small children
will know what I’m talking about).

After several sections the reader may spot certain common pat-
terns in the presented proofs, which could be discussed at great
length, but I have decided to leave out any general accounts on linear-
algebraic methods.

Nothing in this text is original, and some of the examples are
rather well known and appear in many publications (including, in a few
cases, other books of mine). Several general reference books are listed
below. I’ve also added references to the original sources where I could
find them. However, I’ve kept the historical notes at a minimum,
and I’ve put only a limited effort into tracing the origins of the ideas
(apologies to authors whose work is quoted badly or not at all—please
let me know about such cases).

I would also appreciate learning about mistakes and hearing sug-
gestions of how to improve the exposition.
Further reading. An excellent textbook is

Unfortunately, it has never been published officially. It can be obtained, with some effort, as lecture notes of the University of Chicago. It contains several of the topics discussed here, a lot of other material in a similar spirit, and a very nice exposition of some parts of linear algebra.

Algebraic graph theory is treated, e.g., in the books

and

Probabilistic algorithms in the spirit of Sections 11 and 24 are well explained in the book

Acknowledgments. For valuable comments on preliminary versions of this booklet, I would like to thank Otfrid Cheong, Esther Ezra, Nati Linial, Jana Maxová, Helena Nyklová, Yoshio Okamoto, Pavel Paták, Oleg Pikhurko, and Zuzana Safernová, as well as all other people whom I may have forgotten to include in this list. Thanks also to David Wilson for permission to use his picture of a random lozenge tiling in Miniature 22, and to Jennifer Wright Sharp for careful copy-editing. Finally, I’m grateful to many people at the Department of Applied Mathematics of the Charles University in Prague and at the Institute of Theoretical Computer Science of the ETH Zurich for excellent working environments.
Notation

Most of the notation is defined in each section where it is used. Here are several general items that may not be completely unified in the literature.

The integers are denoted by \(\mathbb{Z} \), the rationals by \(\mathbb{Q} \), the reals by \(\mathbb{R} \), and \(\mathbb{F}_q \) stands for the \(q \)-element finite field.

The transpose of a matrix \(A \) is written as \(A^T \). The elements of that matrix are denoted by \(a_{ij} \), and similarly for all other Latin letters. Vectors are typeset in boldface: \(\mathbf{v}, \mathbf{x}, \mathbf{y} \), and so on. If \(\mathbf{x} \) is a vector in \(\mathbb{K}^n \), where \(\mathbb{K} \) is some field, \(x_i \) stands for the \(i \)th component, so \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \).

We write \(\langle \mathbf{x}, \mathbf{y} \rangle \) for the standard scalar (or inner) product of vectors \(\mathbf{x}, \mathbf{y} \in \mathbb{K}^n \): \(\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n \). We also interpret such \(\mathbf{x}, \mathbf{y} \) as \(n \times 1 \) (single-column) matrices, and thus \(\langle \mathbf{x}, \mathbf{y} \rangle \) could also be written as \(\mathbf{x}^T \mathbf{y} \). Further, for \(\mathbf{x} \in \mathbb{R}^n \), \(\| \mathbf{x} \| = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2} \) is the Euclidean norm (length) of the vector \(\mathbf{x} \).

Graphs are simple and undirected unless stated otherwise; i.e., a graph \(G \) is regarded as a pair \((V, E) \), where \(V \) is the vertex set and \(E \) is the edge set, which is a set of unordered pairs of elements of \(V \). For a graph \(G \), we sometimes write \(V(G) \) for the vertex set and \(E(G) \) for the edge set.
Some conventions. When an important notion is defined in the text, it appears in **boldface**, which should help in looking it up. Less important terms, or general mathematical notions that are only reminded, are marked in *italics*.

In the index, mathematical notation involving a specific letter, such as S_n for the symmetric group or $E(G)$ for the edge set of a graph, is listed at the beginning of the corresponding letter’s section. Only notation composed of special symbols or Greek letters appears at the beginning of the index.
Index

≡ (congruence), 18
\| \cdot \| (Euclidean norm), xi
\| \cdot \|_1 (\ell_1 \text{ norm}), 148
\| \cdot \|_\infty (\ell_\infty \text{ norm}), 164
\langle \cdot, \cdot \rangle (\text{standard scalar product}), xi
A^T (\text{transposed matrix}), xi
u \wedge v (\text{exterior product}), 174
\overline{G} (\text{graph complement}), 141
G \cdot H (\text{strong product}), 133
\alpha(G) (\text{independence number}), 133
\vartheta(G) (\text{Lovász theta function}), 136
\Theta(G) (\text{Shannon capacity}), 133

adjacency matrix, 32, 42, 48
bipartite, 86, 102
algebra
exterior, 173
Grassmann, 173
algorithm, probabilistic, 35, 36, 110, 121, 126
alphabet, 12
arctic circle, 94
associativity, 125
Bertrand’s postulate, 109
binary operation, 125
Binet’s formula, 4
bipartite adjacency matrix, 86, 102
bipartite graph, 86, 101, 107
bits, parity check, 14

Borsuk’s conjecture, 62
Borsuk’s question, 61
capacity, Shannon, 133, 139
Cauchy–Schwarz inequality, 149, 159
characteristic vector, 59, 62
checking matrix multiplication, 35
checking, probabilistic, 107, 126
Cheeger–Alon–Milman inequality, 156
Cholesky factorization, 21
cromatic number, 136
code, 12
error-correcting, 11
generalized Hamming, 15
Hamming, 12
linear, 14
color class, 23
covering, 55
congruence, 17
conjecture
Borsuk’s, 62
Kaheyà’s, 116
corrects \(t \) errors, 13

cosine theorem, 17, 21
covering, 55
d of edges of \(K_n \), 41
cube, 55
curve, moment, 172
cut, 154
 sparsest, 154
cycle
evenly placed, 89
 properly signed, 89
decoding, 13
degree, 78
 minimum, 45
δ-dense set, 166
density, 154
determinant, 18, 77, 85, 107, 176
 Vandermonde, 172
diagonalizable matrix, 21
diagram, Ferrers, 97
diameter, 61
diameter-reducing partition, 61
digraph, 79
 functional, 82
dimension, 142
 Hausdorff, 116
dimer model, 94
directed graph, 79
discrepancy theory, 67
disjoint union (of graphs), 140
distance
 Euclidean, 19
 Hamming, 13
 ℓ1, 148
 minimum (of a code), 13
 odd, 17
 only two, 51
divide and conquer, 153
E(G), xi
eigenvalue, 149
eigenvalue (of a graph), 41, 45, 49
eigenvector, 155
encoding, 13
equiangular lines, 27
equilateral set, 147
Erdős–Ko–Rado theorem, 57
error-correcting code, 11
Euclidean distance, 19
Euclidean norm, xi
Euler’s formula, 92
evenly placed cycle, 89
exponent of matrix multiplication, 33
exterior algebra, 173
exterior product, 171, 174
extremal set theory, 171
Fq, xi
factorization, Cholesky, 21
fast matrix multiplication, 33, 35, 110, 121
Ferrers diagram, 97
Fibonacci number, 1, 3
Fiedler value, 156
finite field, xi, 59, 116
Fisher inequality, generalized, 7
 Binet’s, 4
 Euler’s, 92
Frankl–Wilson inequality, 60
function, Lovász theta, 136
functional digraph, 82
functional representation, 141
general position, 172
generalized Fisher inequality, 7
generalized Hamming code, 15
generalized polygon, 46
generator matrix (of a code), 14
girth, 45
Gottlieb’s theorem, 103
Gram matrix, 22, 147
graph, xi
 bipartite, 86, 101, 107
 complete bipartite, 23
directed, 79
 Hoffman–Singleton, 47
 honeycomb, 86
 Moore, 46
 Petersen, 41, 47
 Pfaffian, 89
 planar, 88
 square grid, 85
 2-connected, 88
graph isomorphism, 42, 104
Grassmann algebra, 173
group
 action, 100
 symmetric, 86, 119
Index

groupoid, 125
Hamming code, 12
Hamming distance, 13
Hausdorff dimension, 116
Hoffman–Singleton graph, 47
honeycomb graph, 86
hyperplane, 55
\mathcal{I}_n, 24
icosahedron, regular, 27
independence number (of a graph), 133
independent set, 133
inequality
Cauchy–Schwarz, 149, 159
Cheeger–Alon–Milman, 156
Frankl–Wilson, 60
generalized Fisher, 7
triangle, 19
inversion, 173
isometry, 165
isomorphism, graph, 42, 104
\mathcal{J}_n, 24
K_n (complete graph), 24
Kakeya needle problem, 113
Kakeya set, 114
Kakeya’s conjecture, 116
Kasteleyn signing, 88
Knaster’s question, 163
ℓ_1 distance, 148
Laplace matrix, 77, 155
lemma
rank, 149
Sperner, 57
Steinitz, 74
linear code, 14
Lovász theta function, 136
Lovász umbrella, 134
lozenge tiling, 86
matching, 107
perfect, 85, 107
random, 93
matrix
adjacency, 32, 42, 48
adjacency, bipartite, 86, 102
diagonalizable, 21
generator (of a code), 14
Gram, 22, 147
Laplace, 77, 155
multiplication
checking, 35
fast, 33, 35, 110, 121
orthogonal, 21
parity check, 15
positive semidefinite, 20, 156
matrix-tree theorem, 77
minimum degree, 45
minimum distance (of a code), 13
model, dimer, 94
moment curve, 172
Moore graphs, 46

norm
Euclidean, x_i
ℓ_1, 148
ℓ_∞, 164
number
chromatic, 136
Fibonacci, 1, 3
odd distances, 17
Oddtown, 5
operation, binary, 125
orthogonal matrix, 21
orthogonal representation, 133
parity check bits, 14
parity check matrix, 15
partition
diameter-reducing, 61
integer, 97
partitioning, spectral, 155
PCP theorem, 37
perfect matching, 85, 107
random, 93
permanent, 87
permutation, 119
Petersen graph, 41, 47
Pfaffian graph, 89
planar graph, 88
polygon, generalized, 46
polynomial, 52, 60, 108, 116, 129, 172
polynomials, vector space, 52, 56
positive definite matrix, 8
positive semidefinite matrix, 20, 156
postulate, Bertrand’s, 109
probabilistic algorithm, 35, 36, 110, 121, 126
probabilistic checking, 37, 107, 126
problem, Kakeya needle, 113
product
 exterior, 171, 174
 standard scalar, \(\xi \)
 strong, 133, 139
tensor, 63, 136, 143
 wedge, 174
properly signed cycle, 89
question
 Borsuk’s, 61
 Knaster’s, 163
random perfect matching, 93
rank, 5, 8, 24, 99, 147
rank lemma, 149
recurrence, 2
representation
 functional, 141
 orthogonal, 133
rhombic tiling, 86
\(S^n \), 163
\(S_n \), 86, 119
scalar product, standard, \(\xi \)
Schwartz–Zippel theorem, 109
 application, 117, 121, 129
semigroup, 125
set
 \(\delta \)-dense, 166
 equilateral, 147
 independent, 133
 Kakeya, 114
set-pair method, 171, 178
Shannon capacity, 133, 139
sign (of a permutation), 78, 173
signing, Kasteleyn, 88
skew Bollobás theorem, 172
spanning tree, 77
sparsest cut, 154
spectral partitioning, 155
Sperner lemma, 57
square grid graph, 85
Steinitz lemma, 74
Strassen algorithm, 32
strong product, 133, 139
symmetric group, 86, 119
tensor product, 63, 136, 143
theorem
 cosine, 17, 21
 Erdős–Ko–Rado, 57
 Gottlieb’s, 103
 matrix-tree, 77
 PCP, 37
 Schwartz–Zippel, 109
 application, 117, 121, 129
 skew Bollobás, 172
theta function, Lovász, 136
thinning, 114
tiling
 lozenge, 86
 of a board, 85
 of a rectangle, 39
 rhombic, 86
trace, 49, 150
tree, spanning, 77
triangle, 31
triangle inequality, 19
2-connected graph, 88
umbrella, Lovász, 134
unimodal, 99
\(V(G) \), \(\xi \)
value, Fiedler, 156
Vandermonde determinant, 172
vector, characteristic, 59, 62
vector space of polynomials, 52, 56
wall-equivalence, 100
wedge product, 174
word, 12
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra.

The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovász bound on the Shannon capacity, and a counterexample to Borsuk’s conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products.

The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations.