AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Erdős Distance Problem
About this Title
Julia Garibaldi, Alex Iosevich, University of Rochester, Rochester, NY and Steven Senger
Publication: The Student Mathematical Library
Publication Year
2011: Volume 56
ISBNs: 978-0-8218-5281-1 (print); 978-1-4704-1639-3 (online)
DOI: http://dx.doi.org/10.1090/stml/056
MathSciNet review: MR2721878
MSC: Primary 52-01; Secondary 05-01, 11-01, 42-01, 51-01
Table of Contents
Front/Back Matter
Chapters
- Introduction
- Chapter 1. The $\sqrt {n}$ theory
- Chapter 2. The $n^{2/3}$ theory
- Chapter 3. The Cauchy-Schwarz inequality
- Chapter 4. Graph theory and incidences
- Chapter 5. The $n^{4/5}$ theory
- Chapter 6. The $n^{6/7}$ theory
- Chapter 7. Beyond $n^{6/7}$
- Chapter 8. Information theory
- Chapter 9. Dot products
- Chapter 10. Vector spaces over finite fields
- Chapter 11. Distances in vector spaces over finite fields
- Chapter 12. Applications of the Erdős distance problem
- Appendix A. Hyperbolas in the plane
- Appendix B. Basic probability theory
- Appendix C. Jensen’s inequality