The Erdős Distance Problem
Julia Garibaldi
Alex Iosevich
Steven Senger
The Erdős Distance Problem
The Erdős Distance Problem

Julia Garibaldi
Alex Iosevich
Steven Senger
Contents

Foreword ix
Acknowledgements xi
Introduction 1
 §1. A sketch of our problem 1
 §2. Some notation 3
 Exercises 5
Chapter 1. The \sqrt{n} theory 7
 §1. Erdős’ original argument 7
 §2. Higher dimensions 9
 §3. Arbitrary metrics 11
 Exercises 13
Chapter 2. The $n^{2/3}$ theory 15
 §1. The Erdős integer distance principle 15
 §2. Moser’s construction 16
 Exercises 20
Chapter 3. The Cauchy-Schwarz inequality 23
 §1. Proof of the Cauchy-Schwarz inequality 23
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Application: Projections</td>
<td>25</td>
</tr>
<tr>
<td>4.</td>
<td>Graph theory and incidences</td>
<td>29</td>
</tr>
<tr>
<td>§1.</td>
<td>Basic graph theory</td>
<td>29</td>
</tr>
<tr>
<td>§2.</td>
<td>Crossing numbers</td>
<td>33</td>
</tr>
<tr>
<td>§3.</td>
<td>Incidence matrices and Cauchy-Schwarz</td>
<td>36</td>
</tr>
<tr>
<td>§4.</td>
<td>The Szemerédi-Trotter incidence theorem</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>The $n^{4/5}$ theory</td>
<td>45</td>
</tr>
<tr>
<td>§1.</td>
<td>The Euclidean case: Straight line bisectors</td>
<td>45</td>
</tr>
<tr>
<td>§2.</td>
<td>Convexity and potatoes</td>
<td>51</td>
</tr>
<tr>
<td>§3.</td>
<td>Székely’s method for potato metrics</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>61</td>
</tr>
<tr>
<td>6.</td>
<td>The $n^{6/7}$ theory</td>
<td>65</td>
</tr>
<tr>
<td>§1.</td>
<td>The setup</td>
<td>65</td>
</tr>
<tr>
<td>§2.</td>
<td>Arithmetic enters the picture</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>69</td>
</tr>
<tr>
<td>7.</td>
<td>Beyond $n^{6/7}$</td>
<td>71</td>
</tr>
<tr>
<td>§1.</td>
<td>Sums and entries</td>
<td>71</td>
</tr>
<tr>
<td>§2.</td>
<td>Tardos’ elementary argument</td>
<td>72</td>
</tr>
<tr>
<td>§3.</td>
<td>Katz-Tardos method</td>
<td>74</td>
</tr>
<tr>
<td>§4.</td>
<td>Ruzsa’s construction</td>
<td>77</td>
</tr>
<tr>
<td>8.</td>
<td>Information theory</td>
<td>81</td>
</tr>
<tr>
<td>§1.</td>
<td>What is this information of which you speak?</td>
<td>81</td>
</tr>
<tr>
<td>§2.</td>
<td>More information never hurts</td>
<td>83</td>
</tr>
<tr>
<td>§3.</td>
<td>Application to the sums and entries problem</td>
<td>88</td>
</tr>
<tr>
<td>9.</td>
<td>Dot products</td>
<td>91</td>
</tr>
<tr>
<td>§1.</td>
<td>Transferring ideas</td>
<td>91</td>
</tr>
<tr>
<td>§2.</td>
<td>Székely’s method</td>
<td>93</td>
</tr>
<tr>
<td>§3.</td>
<td>Special cases</td>
<td>95</td>
</tr>
</tbody>
</table>
Foreword

There are several goals for this book. As the title indicates, we certainly hope to familiarize you with some of the major results in the study of the Erdős distance problem. This goal should be easily attainable for most experienced mathematicians. However, if you are not an experienced mathematician, we hope to guide you through many advanced mathematical concepts along the way.

The book is based on the notes that were written for the summer program on the problem, held at the University of Missouri, August 1–5, 2005. This was the second year of the program, and our plan continued to be an introduction for motivated high school students to accessible concepts of higher mathematics.

This book is designed to be enjoyed by readers at different levels of mathematical experience. Keep in mind that some of the notes and remarks are directed at graduate students and professionals in the field. So, if you are relatively inexperienced, and a particular comment or observation uses terminology\(^1\) that you are not familiar with, you may want to skip past it or look up the definitions later. On the other hand, if you are a more experienced mathematician, feel free to skim the introductory portions to glean the necessary notation, and move on to the more specific subject matter.

\(^1\)One example of this is the mention of curvature in the first section of the Introduction.
Our book is heavily problem oriented. Most of the learning is meant to be done by working through the exercises. Many of these exercises are recently published results by mathematicians working in the area. In several places, steps are intentionally left out of proofs and, in the process of working on the exercises, the reader is then asked to fill them in. On a number of occasions, solutions to exercises are used in the book in an essential way. Sometimes the exercises are left till the end of the chapter, but a few times, we intersperse them throughout the chapter to illustrate concepts or to get the reader’s hands dirty, so the ideas really sink in right at that point in the exposition. Also, some exercises are much more complicated than others, and will probably require several hours of concentrated effort for even an advanced student. So please do not get discouraged. Having said that, let us add that you should not rely solely on exercises in these notes. Create your own problems and questions! Modify the lemmas and theorems below, and, whenever possible, improve them! Mathematics is a highly personal experience, and you will find true fulfillment only when you make the concepts in these notes your own in some way. Read this book with a pad of paper handy to really explore these ideas as they come along. Good luck!
Acknowledgements

This book would not have been possible without significant assistance of many people. Any list we write down is guaranteed to be incomplete, but we will give it a try. First, the authors wish to thank Nets Katz for contributing much of the material in Chapters 7 and 8. He also explained to us the importance of this material within the context of the Erdős distance problem and its relatives. We also wish to thank Misha Rudnev, whose collaboration with the second listed author on the finite field variant of the Erdős-Falconer distance problem ultimately led to the last three chapters of the book.

Numerous people have contributed important remarks on various aspects of the book. We are particularly indebted to Bill Banks, Pete Casazza, Jeremy Chapman, David Covert, Lacy Hardcastle, Derrick Hart, Tyler Salisbury-Jones, Doowon Koh, Mihalis Mourgoglou, Laura Poe, Shannon Reed, Krystal Taylor, Ignacio Uriarte-Tuero, Lee Anh Vinh, and Chandra Vaidyanathan.

The authors of the book were profoundly influenced in writing of this book by their conversations with many brilliant mathematicians who contributed to the study of the Erdős distance conjecture and related problems in the past 20 years. We have not had the honor of interacting with nearly all of them, but we did learn much from discussions with Michael Christ, Steve Hofmann, Philippe Jaming, Nets Katz, Mihalis Kolountzakis, Sergei Konyagin, Izabella
Laba, Michael Lacey, Pertti Mattila, Janos Pach, Steen Pedersen, Eric Sawyer, Andreas Seeger, Jozsef Solymosi, Stefan Steinerberger, Endres Szemerédi, Terry Tao, Gabor Tardos, Christoph Thiele, Csaba Tóth, William Trotter, Van Vu, and Yang Wang.

We thank Nancy Brown for the remarkable cover, which captures the central theme of book absolutely beautifully.

Last, but not least, we thank our families. Without their patience and support, nothing truly worthwhile is possible.
Bibliography

Biographical information

The first listed author was born on October 2, 1976 in Seattle and was raised across the water on Bainbridge Island. She graduated from NYU in 1999 and went on to UCLA to get her Ph.D. in December 2004. She spent two years at Georgia Tech as a postdoctoral fellow and has held lecturing positions at Emory University since.

The second listed author was born in Lvov, USSR, on December 14, 1967, emigrated to the United States of America at the age of eleven with his immediate family, and grew up in Chicago, Illinois. He graduated from the University of Chicago in 1989 with a B.S. in Pure Mathematics, and a Ph.D. from UCLA in 1993 under the direction of Christopher Sogge. After appointments at McMaster University, Wright State University, and Georgetown University, the author spent ten years at the University of Missouri, where this book was written. In July of 2010, he moved to the University of Rochester.

The third listed author was born in North Kansas City, Missouri, on May 19, 1982. He graduated from the University of Missouri in 2005 with degrees in Computer Engineering, Electrical Engineering, and Mathematics. Between musical performances and rock climbing excursions, he is working on a Ph.D. in Mathematics under the direction of the second listed author.
Index

K-circles, 54
K-distances, 54
k-rich, 66
r-iterated well-distributed, 97

additive character, 111
asymmetric metric, 11
asymptotes, 132
asymptotic, 2

base case, 139
bisector, 47
bit, 82
boundary, 51

canonical basis, 79
Cartesian product, 4
Cauchy-Schwarz inequality, 24
centrally symmetric, 6
characteristic function, 114
collinear, 15
complex conjugate, 117
congruent, 102
convex, 28
 body, 6
 combination, 51
 function, 25, 139
 hull, 52
 strictly, 51
covering, 7
crossing number, 31
degenerate hyperbola, 131
discrete Fourier transform, 115
dot product, 91
drawing of a graph, 30

e, 29
entropy, 82
 joint, 84
expected value, 136
 linearity, 137

face, 31
field, 103
Fourier inversion, 116
Fourier transform, 115
French Railroad, 14

graph, 29
 complete, 30
 connected, 30
 planar, 30
 simple, 29

heavy
 number, 72
 row, 72
homogeneity, 12

identities, 102
 additive, 102
 multiplicative, 102
incidence, 36
inclusion-exclusion, 49
independent, 136
indicator function, 114
induction, 139
inhomogeneous, 14
inverses, 102
 additive, 102
 multiplicative, 102
Lenz construction, 14
level set, 7
light row, 72
linear programming, 89
locus, 12
Manhattan metric, 11
metric, 11
Minkowski functional, 6
mod, modulo, 102
multigraph, 29
multiplicity, 30
order, 101
ordering, 106
orthogonality, 110
path, 30
pigeonhole principle, 5
 dyadic, 77
potato metric, 51
probability, 135
 conditional, 138
projections, 25
radial, 92
random variable, 135
 collapsing, 81
 determination, 86
representations, 72
strength, 71
subgraph, 34
submodularity principle, 86
sums and entries problem, 72
taxicab metric, 11
tensor product, 75
translate, 54
unit distance, 14
unit distance problem, 14
vertex, 29
weight, 72
well-distributed, 96
Titles in This Series

56 Julia Garibaldi, Alex Iosevich, and Steven Senger, The Erdős distance problem, 2010
55 Gregory F. Lawler, Random walk and the heat equation, 2010
54 Alex Kasman, Glimpses of soliton theory: The algebra and geometry of nonlinear PDEs, 2010
53 Jiří Matoušek, Thirty-three miniatures: Mathematical and algorithmic applications of linear algebra, 2010
52 Yakov Pesin and Vaughn Climenhaga, Lectures on fractal geometry and dynamical systems, 2009
51 Richard S. Palais and Robert A. Palais, Differential equations, mechanics, and computation, 2009
50 Mike Mesterton-Gibbons, A primer on the calculus of variations and optimal control theory, 2009
49 Francis Bonahon, Low-dimensional geometry: From euclidean surfaces to hyperbolic knots, 2009
48 John Franks, A (terse) introduction to Lebesgue integration, 2009
47 L. D. Faddeev and O. A. Yakubovskii, Lectures on quantum mechanics for mathematics students, 2009
46 Anatole Katok and Vaughn Climenhaga, Lectures on surfaces: (Almost) everything you wanted to know about them, 2008
45 Harold M. Edwards, Higher arithmetic: An algorithmic introduction to number theory, 2008
44 Yitzhak Katznelson and Yonatan R. Katznelson, A (terse) introduction to linear algebra, 2008
43 Ilka Agricola and Thomas Friedrich, Elementary geometry, 2008
42 C. E. Silva, Invitation to ergodic theory, 2007
41 Gary L. Mullen and Carl Mummert, Finite fields and applications, 2007
40 Deguang Han, Keri Kornelson, David Larson, and Eric Weber, Frames for undergraduates, 2007
39 Alex Iosevich, A view from the top: Analysis, combinatorics and number theory, 2007
38 B. Fristedt, N. Jain, and N. Krylov, Filtering and prediction: A primer, 2007
37 Svetlana Katok, p-adic analysis compared with real, 2007
36 Mara D. Neusel, Invariant theory, 2007
35 Jörg Bewersdorff, Galois theory for beginners: A historical perspective, 2006
34 Bruce C. Berndt, Number theory in the spirit of Ramanujan, 2006
33 Rekha R. Thomas, Lectures in geometric combinatorics, 2006
32 Sheldon Katz, Enumerative geometry and string theory, 2006
TITLES IN THIS SERIES

31 John McCleary, A first course in topology: Continuity and dimension, 2006
30 Serge Tabachnikov, Geometry and billiards, 2005
29 Kristopher Tapp, Matrix groups for undergraduates, 2005
28 Emmanuel Lesigne, Heads or tails: An introduction to limit theorems in probability, 2005
27 Reinhard Illner, C. Sean Bohun, Samantha McCollum, and Thea van Roode, Mathematical modelling: A case studies approach, 2005
26 Robert Hardt, Editor, Six themes on variation, 2004
25 S. V. Duzhin and B. D. Chebotarevsky, Transformation groups for beginners, 2004
24 Bruce M. Landman and Aaron Robertson, Ramsey theory on the integers, 2004
23 S. K. Lando, Lectures on generating functions, 2003
22 Andreas Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, 2003
21 W. J. Kaczor and M. T. Nowak, Problems in mathematical analysis III: Integration, 2003
20 Klaus Hulek, Elementary algebraic geometry, 2003
19 A. Shen and N. K. Vereshchagin, Computable functions, 2003
18 V. V. Yaschenko, Editor, Cryptography: An introduction, 2002
17 A. Shen and N. K. Vereshchagin, Basic set theory, 2002
15 Gerd Fischer, Plane algebraic curves, 2001
14 V. A. Vassiliev, Introduction to topology, 2001
13 Frederick J. Almgren, Jr., Plateau’s problem: An invitation to varifold geometry, 2001
12 W. J. Kaczor and M. T. Nowak, Problems in mathematical analysis II: Continuity and differentiation, 2001
11 Mike Mesterton-Gibbons, An introduction to game-theoretic modelling, 2000
10 John Oprea, The mathematics of soap films: Explorations with Maple®, 2000
9 David E. Blair, Inversion theory and conformal mapping, 2000
8 Edward B. Burger, Exploring the number jungle: A journey into diophantine analysis, 2000
7 Judy L. Walker, Codes and curves, 2000

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The Erdős problem asks, What is the smallest possible number of distinct distances between points of a large finite subset of the Euclidean space in dimensions two and higher? The main goal of this book is to introduce the reader to the techniques, ideas, and consequences related to the Erdős problem. The authors introduce these concepts in a concrete and elementary way that allows a wide audience—from motivated high school students interested in mathematics to graduate students specializing in combinatorics and geometry—to absorb the content and appreciate its far-reaching implications. In the process, the reader is familiarized with a wide range of techniques from several areas of mathematics and can appreciate the power of the resulting symbiosis.

The book is heavily problem oriented, following the authors’ firm belief that most of the learning in mathematics is done by working through the exercises. Many of these problems are recently published results by mathematicians working in the area. The order of the exercises is designed both to reinforce the material presented in the text and, equally importantly, to entice the reader to leave all worldly concerns behind and launch head first into the multifaceted and rewarding world of Erdős combinatorics.