AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Geometries
About this Title
A. B. Sossinsky, Independent University of Moscow, Moscow, Russia
Publication: The Student Mathematical Library
Publication Year
2012: Volume 64
ISBNs: 978-0-8218-7571-1 (print); 978-0-8218-8788-2 (online)
DOI: http://dx.doi.org/10.1090/stml/064
MathSciNet review: MR2951761
MSC: Primary 51-01; Secondary 01A20, 01A55, 51-02, 51M10, 51N99
Table of Contents
Front/Back Matter
Chapters
- Chapter 0. About Euclidean geometry
- Chapter 1. Toy geometries and main definitions
- Chapter 2. Abstract groups and group presentations
- Chapter 3. Finite subgroups of $SO(3)$ and the platonic bodies
- Chapter 4. Discrete subgroups of the isometry group of the plane and tilings
- Chapter 5. Reflection groups and Coxeter geometries
- Chapter 6. Spherical geometry
- Chapter 7. The Poincaré disk model of hyperbolic geometry
- Chapter 8. The Poincaré half-plane model
- Chapter 9. The Cayley–Klein model
- Chapter 10. Hyperbolic trigonometry and absolute constants
- Chapter 11. History of non-Euclidean geometry
- Chapter 12. Projective geometry
- Chapter 13. “Projective geometry is all geometry”
- Chapter 14. Finite geometries
- Chapter 15. The hierarchy of geometries
- Chapter 16. Morphisms of geometries
- Appendix A. Excerpts from Euclid’s “Elements”
- Appendix B. Hilbert’s axioms for plane geometry
- Answers & hints