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To all of the students I’ve had. Thanks for teaching me. Most of all ,

thanks to my parents, the best teachers I have had.
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Preface

When I first had the chance to teach a second course in real analysis

I did the usual thing; I searched for a textbook that would fit the

course as I envisioned it. I wanted to show my students that real

analysis was more than just ε-δ proofs. I also hoped this course would

provide a bit of a head start to those students heading off to graduate

school. However, I could not find any text that suited the needs of

my target audience, undergraduate students who had seen the basics

of sequences and series up through and including the introduction to

Riemann integration. So I started teaching the course from scratch,

creating my own notes as the course progressed. The feedback from

my students was that, while they liked the course in general, they

missed having a textbook. Based on this feedback, each of the next

couple of times I taught the course, part of the work assigned to the

students was to “write” their book. The students took turns carefully

rewriting their notes which were then collected in a binder in a central

location. The resulting “textbooks” generated in this fashion formed

the skeleton of this book.

The prerequisite for this course is a standard undergraduate first

course in real analysis. Students need to be familiar with basic limit

definitions, and how these definitions are used in sequences and in

defining continuity and differentiation. The properties of a supre-

mum (or least upper bound) and infimum (or greatest lower bound)

vii



viii Preface

are used repeatedly. The definition of compactness via open coverings

is used in this text, but primarily for Rn. I also assume students have

seen sequences and series of functions and understand pointwise and

uniform convergence. Since a major focus of this text is Lebesgue

integration, it is also assumed that students have studied Riemann

integration in their first real analysis course. Chapter 0 briefly cov-

ers Riemann integration with the approach that is later mimicked in

defining the Lebesgue integral, that is, the use of upper and lower

sums. (I do realize there are other approaches to the Riemann in-

tegral. The approach which uses step functions is the one used in

Chapter 4 when the subjects of general measure and integration are

introduced.) However, Chapter 0 exists primarily as a source of re-

view and can be omitted.

One of the standard topics in the first analysis course that I teach

is the completeness of the set of real numbers. The students often see

this first in terms of every nonempty bounded set having a least upper

bound. Later they are introduced to the Cauchy criterion and shown

that in the real number system all Cauchy sequences converge. My

experience has been that this Cauchy criterion is not fully appreciated

by my students. In this second course in real analysis completeness

via Cauchy sequences is a recurring theme; we first revisit the com-

pleteness of R, then L1; and more generally Lp.

I want to keep my course as “real” as possible. Instead of intro-

ducing measure via the Carathéodory definition, I opt to introduce

Lebesgue measure through the more “concrete” definition using outer

measure. In this way, Lebesgue measure is a natural extension of the

concept of length, or area, or volume, depending on dimension.

So, here is my course. I start with a review of Riemann inte-

gration. I tend to keep this review to a minimum since most of the

main theorems have their Lebesgue counterparts later in Chapter 2.

As soon as possible, we move into Chapter 1 which covers Lebesgue

outer measure and Lebesgue measure. It should be noted that Section

1.3 contains the classic construction of a nonmeasurable set which as-

sumes knowledge of countability and familiarity with the Axiom of

Choice. This section is not needed for the later chapters and can

be omitted, although it justifies the difference between measure and
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outer measure and is referenced in Remark 4.1.14. The Lebesgue inte-

gral is defined in Chapter 2. Chapter 3 is where I introduce Lp spaces

and use these as examples of Banach spaces. Later in the chapter L2

is shown to be an example of a Hilbert space. My goal for a one-

semester course is to end somewhere in Chapter 4, usually around

Section 4.3. Sections 4.4 and 4.5 are independent of each other and

at various time I have ended with one or the other.

I have also included an appendix entitled “Ideas for Projects”.

Most of these are topics that I had at one time considered including as

part of my course. Instead, I reserved them for student presentations.

My students typically work on these in pairs. In the past I just

assigned the topic with a pointer to a possible source. However, here

I have included sketches of how one might proceed.

Thanks to the members of the Carleton College mathematics de-

partment for their support. I also owe a large debt to all of the stu-

dents who have been a part of this ongoing project. Without them,

this book would never have been created.

Please direct comments and corrections to:

gnelson@carleton.edu

Enjoy exploring the wide world of real analysis!

Gail S. Nelson

Northfield, Minnesota
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A User-Friendly Introduction to Lebesgue 
Measure and Integration provides a bridge 
between an undergraduate course in Real 
Analysis and a first graduate-level course in 
Measure Theory and Integration. The main 
goal of this book is to prepare students for 
what they may encounter in graduate school, 
but will be useful for many beginning grad-
uate students as well. The book starts with the fundamentals 
of measure theory that are gently approached through the 
very concrete example of Lebesgue measure. With this 
approach, Lebesgue integration becomes a natural extension 
of Riemann integration.
Next, Lp -spaces are defined. Then the book turns to a 
discussion of limits, the basic idea covered in a first analysis 
course. The book also discusses in detail such questions as: 
When does a sequence of Lebesgue integrable functions 
converge to a Lebesgue integrable function? What does that 
say about the sequence of integrals? Another core idea from 
a first analysis course is completeness. Are these Lp -spaces 
complete? What exactly does that mean in this setting?
This book concludes with a brief overview of General 
Measures. An appendix contains suggested projects suitable 
for end-of-course papers or presentations.
The book is written in a very reader-friendly manner, which 
makes it appropriate for students of varying degrees of 
preparation, and the only prerequisite is an undergraduate 
course in Real Analysis.

For additional information 
and updates on this book, visit

www.ams.org/bookpages/stml-78
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