A User-Friendly Introduction to Lebesgue Measure and Integration

Gail S. Nelson
A User-Friendly Introduction to Lebesgue Measure and Integration

Gail S. Nelson
To all of the students I’ve had. Thanks for teaching me. Most of all, thanks to my parents, the best teachers I have had.
Contents

Preface vii

Chapter 0. Review of Riemann Integration 1
 §0.1. Basic Definitions 1
 §0.2. Criteria for Riemann Integrability 5
 §0.3. Properties of the Riemann Integral 10
 §0.4. Exercises 11

Chapter 1. Lebesgue Measure 15
 §1.1. Lebesgue Outer Measure 15
 §1.2. Lebesgue Measure 29
 §1.3. A Nonmeasurable Set 46
 §1.4. Exercises 52

Chapter 2. Lebesgue Integration 57
 §2.1. Measurable Functions 57
 §2.2. The Lebesgue Integral 67
 §2.3. Properties of the Lebesgue Integral 80
 §2.4. The Lebesgue Dominated Convergence Theorem 88
 §2.5. Further Notes on Integration 99
 §2.6. Exercises 102
Chapter 3. \(L^p \) spaces

§3.1. \(L^1[a,b] \) \hspace{1cm} 107

§3.2. \(L^p \) Spaces \hspace{1cm} 120

§3.3. Approximations in \(L^p[a,b] \) \hspace{1cm} 131

§3.4. \(L^2[a,b] \) \hspace{1cm} 134

§3.5. \(L^2 \) Theory of Fourier Series \hspace{1cm} 139

§3.6. Exercises \hspace{1cm} 149

Chapter 4. General Measure Theory \hspace{1cm} 153

§4.1. Measure Spaces \hspace{1cm} 153

§4.2. Measurable Functions \hspace{1cm} 165

§4.3. Integration \hspace{1cm} 173

§4.4. Measures from Outer Measures \hspace{1cm} 185

§4.5. Signed Measures \hspace{1cm} 196

§4.6. Exercises \hspace{1cm} 203

Ideas for Projects \hspace{1cm} 209

References \hspace{1cm} 217

Index \hspace{1cm} 219
Preface

When I first had the chance to teach a second course in real analysis I did the usual thing; I searched for a textbook that would fit the course as I envisioned it. I wanted to show my students that real analysis was more than just ϵ-δ proofs. I also hoped this course would provide a bit of a head start to those students heading off to graduate school. However, I could not find any text that suited the needs of my target audience, undergraduate students who had seen the basics of sequences and series up through and including the introduction to Riemann integration. So I started teaching the course from scratch, creating my own notes as the course progressed. The feedback from my students was that, while they liked the course in general, they missed having a textbook. Based on this feedback, each of the next couple of times I taught the course, part of the work assigned to the students was to “write” their book. The students took turns carefully rewriting their notes which were then collected in a binder in a central location. The resulting “textbooks” generated in this fashion formed the skeleton of this book.

The prerequisite for this course is a standard undergraduate first course in real analysis. Students need to be familiar with basic limit definitions, and how these definitions are used in sequences and in defining continuity and differentiation. The properties of a supremum (or least upper bound) and infimum (or greatest lower bound)
are used repeatedly. The definition of compactness via open coverings is used in this text, but primarily for \mathbb{R}^n. I also assume students have seen sequences and series of functions and understand pointwise and uniform convergence. Since a major focus of this text is Lebesgue integration, it is also assumed that students have studied Riemann integration in their first real analysis course. Chapter 0 briefly covers Riemann integration with the approach that is later mimicked in defining the Lebesgue integral, that is, the use of upper and lower sums. (I do realize there are other approaches to the Riemann integral. The approach which uses step functions is the one used in Chapter 4 when the subjects of general measure and integration are introduced.) However, Chapter 0 exists primarily as a source of review and can be omitted.

One of the standard topics in the first analysis course that I teach is the completeness of the set of real numbers. The students often see this first in terms of every nonempty bounded set having a least upper bound. Later they are introduced to the Cauchy criterion and shown that in the real number system all Cauchy sequences converge. My experience has been that this Cauchy criterion is not fully appreciated by my students. In this second course in real analysis completeness via Cauchy sequences is a recurring theme; we first revisit the completeness of \mathbb{R}, then L^1; and more generally L^p.

I want to keep my course as “real” as possible. Instead of introducing measure via the Carathéodory definition, I opt to introduce Lebesgue measure through the more “concrete” definition using outer measure. In this way, Lebesgue measure is a natural extension of the concept of length, or area, or volume, depending on dimension.

So, here is my course. I start with a review of Riemann integration. I tend to keep this review to a minimum since most of the main theorems have their Lebesgue counterparts later in Chapter 2. As soon as possible, we move into Chapter 1 which covers Lebesgue outer measure and Lebesgue measure. It should be noted that Section 1.3 contains the classic construction of a nonmeasurable set which assumes knowledge of countability and familiarity with the Axiom of Choice. This section is not needed for the later chapters and can be omitted, although it justifies the difference between measure and
outer measure and is referenced in Remark 4.1.14. The Lebesgue integral is defined in Chapter 2. Chapter 3 is where I introduce L^p spaces and use these as examples of Banach spaces. Later in the chapter L^2 is shown to be an example of a Hilbert space. My goal for a one-semester course is to end somewhere in Chapter 4, usually around Section 4.3. Sections 4.4 and 4.5 are independent of each other and at various time I have ended with one or the other.

I have also included an appendix entitled “Ideas for Projects”. Most of these are topics that I had at one time considered including as part of my course. Instead, I reserved them for student presentations. My students typically work on these in pairs. In the past I just assigned the topic with a pointer to a possible source. However, here I have included sketches of how one might proceed.

Thanks to the members of the Carleton College mathematics department for their support. I also owe a large debt to all of the students who have been a part of this ongoing project. Without them, this book would never have been created.

Please direct comments and corrections to:

gnelson@carleton.edu

Enjoy exploring the wide world of real analysis!

Gail S. Nelson

Northfield, Minnesota
References

Index

\(B[a,b], \quad 1\)
\(C[a,b], \quad 149\)
\(F_\alpha \text{ set}, \quad 43, 157\)
\(G_\delta \text{ set}, \quad 43, 157\)
\(L^1\)-norm, \(109\)
\(L^1[a,b], \quad 109\)
\(L^\infty[a,b], \quad 130\)
\(L^p\)-norm, \(121\)
\(L^p[a,b], \quad 120\)
\(R[a,b], \quad 4\)
\(L[a,b], \quad 81\)
\(\mu\)-almost everywhere, \(169\)
\(\mu\)-measurable function, \(166\)
\(\mu^*\)-measurable, \(186\)
\(\sigma\)-algebra, \(42, 155\)
\(\|f\|_\infty, \quad 130\)
\(\|f\|_\infty, \quad 130\)
\(\|f\|_1, \quad 109\)
\(\|f\|_p, \quad 121\)

a.e., \(63\)
algebra
\(\sigma\)-algebra, \(155\)
of sets, \(154\)
almost everywhere, \(63\)
arithmetic differences, \(40\)
Banach space, \(110, 127\)
Beppo Levi Theorem, \(114\)
Bessel’s inequality, \(142\)

Borel sets, \(157\)
Hausdorff measurable, \(194\)
Borel-Cantelli Lemma, \(54\)

Cantor function, \(21\)
Cantor set, \(19, 67\)
Carathéodory condition, \(186\)
Cauchy-Schwarz Inequality, \(136\)
characteristic function, \(58\)
common refinement, \(3, 71\)
complete
measure space, \(162\)
vector space, \(110\)
convergence in measure, \(210\)
convex, \(213\)
covering by intervals, \(16\)

Dirichlet function, \(2, 57, 62, 63\)
Dirichlet kernel, \(144\)
distance
between sets, \(37\)
Egorov’s Theorem, \(209\)
ess inf, \(130\)
ess sup, \(129\)
essential infimum, \(130\)
essential supremum, \(129\)

Fatou’s Lemma, \(96, 97, 177, 181\)
preliminary version, \(96\)
Fejér kernel, \(144\)
Index

Fourier coefficients, 141
Fourier series, 141
Fubini’s Theorem, 101, 214
function
 bounded, 1
 Cantor, 21
 characteristic, 58
 Dirichlet, 2
 Lebesgue measurable, 58, 59
 measurable, 59, 100
 simple, 62, 132
Hahn Decomposition Theorem, 201
Hausdorff dimension, 195
Hausdorff measurable, 194
Hausdorff outer measure, 193
Hilbert space, 138
Hölder’s Inequality, 122, 125
hyperplane, 31, 34, 52
induced norm, 136
inner product, 135
inner product space, 135
integrable
 Lebesgue, 69, 80, 81
 Riemann, 4
integral
 Lebesgue, 69, 80, 81
 lower, 8, 69
 Riemann, 4
 upper, 8, 69
interval, 15
 nonoverlapping, 82
 volume, 16
Jensen’s Inequality, 213
Lebesgue
 integrable, 69, 80, 81
 integral, 69, 80, 81
 measurable function, 58
 measurable set, 29
 measure, 29
 outer measure, 17
Lebesgue Dominated Convergence
 Theorem, 92, 177, 184
lim inf, 64, 168
lim sup, 64, 168
lower integral, 8, 69
measurable function
 general, 166
 Lebesgue, 58, 59, 100
measurable partition, 67
measurable set
 general, 157
 Lebesgue, 29
measurable space, 157
measure
 general, 158
 Hausdorff, 194
 Hausdorff outer, 193
 Lebesgue, 29
 point-mass, 175
 signed, 196
measure space, 158
 complete, 162
Minkowski’s Inequality, 126
Monotone Convergence Theorem, 96, 98, 177, 181
negative set, 197
nonoverlapping intervals, 32
norm, 107
 \(L^p \), 121
 induced, 136
 \(L^1 \), 109
null, 197
open set
 union of intervals, 34
 outer measure, 17, 185
 closed interval, 25
 general, 185
 Lebesgue, 17
parallelogram law, 139
Parseval’s equation, 148
partition, 2
 common refinement, 71
measurable, 67
refinement, 71
positive set, 197
Rapidly Cauchy sequence, 211
refinement, 51, 71
 common, 51, 71
Index

Riemann integrable, 4
Riesz’s Theorem, 210

set of arithmetic differences, 46
signed measure, 196
simple function, 62 132
 general, 171
space
 measurable, 153

Tchebychev’s Inequality, 150
trigonometric polynomial, 142
type F_σ set, 43 157
type G_δ set, 43 157

upper integral, 3 69
upper sum, 3 68

Vitali, 48
A User-Friendly Introduction to Lebesgue Measure and Integration provides a bridge between an undergraduate course in Real Analysis and a first graduate-level course in Measure Theory and Integration. The main goal of this book is to prepare students for what they may encounter in graduate school, but will be useful for many beginning graduate students as well. The book starts with the fundamentals of measure theory that are gently approached through the very concrete example of Lebesgue measure. With this approach, Lebesgue integration becomes a natural extension of Riemann integration.

Next, L^p-spaces are defined. Then the book turns to a discussion of limits, the basic idea covered in a first analysis course. The book also discusses in detail such questions as: When does a sequence of Lebesgue integrable functions converge to a Lebesgue integrable function? What does that say about the sequence of integrals? Another core idea from a first analysis course is completeness. Are these L^p-spaces complete? What exactly does that mean in this setting?

This book concludes with a brief overview of General Measures. An appendix contains suggested projects suitable for end-of-course papers or presentations.

The book is written in a very reader-friendly manner, which makes it appropriate for students of varying degrees of preparation, and the only prerequisite is an undergraduate course in Real Analysis.