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Foreword: MASS at
Penn State University

This book is part of a collection published jointly by the American

Mathematical Society and the MASS (Mathematics Advanced Study

Semesters) program as a part of the Student Mathematical Library

series. The books in the collection are based on lecture notes for

advanced undergraduate topics courses taught at the MASS (Math-

ematics Advanced Study Semesters) program at Penn State. Each

book presents a self-contained exposition of a non-standard mathe-

matical topic, often related to current research areas, which is acces-

sible to undergraduate students familiar with an equivalent of two

years of standard college mathematics, and is suitable as a text for

an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced

undergraduate students from across the USA. The program’s curricu-

lum amounts to sixteen credit hours. It includes three core courses

from the general areas of algebra/number theory, geometry/topol-

ogy, and analysis/dynamical systems, custom designed every year; an

interdisciplinary seminar; and a special colloquium. In addition, ev-

ery participant completes three research projects, one for each core

course. The participants are fully immersed into mathematics, and

this, as well as intensive interaction among the students, usually leads

vii



viii Foreword: MASS at Penn State University

to a dramatic increase in their mathematical enthusiasm and achieve-

ment. The program is unique for its kind in the United States.

Detailed information about the MASS program at Penn State can

be found on the website www.math.psu.edu/mass.



Preface

If we split a set into two parts, will at least one of the parts behave like

the whole? Certainly not in every aspect. But if we are interested only

in the persistence of certain small regular substructures, the answer

turns out to be “yes”.

A famous example is the persistence of arithmetic progressions.

The numbers 1, 2, . . . ,N form the most simple arithmetic progres-

sion imaginable: The next number differs from the previous one by

exactly 1. But the numbers 4, 7, 10, 13, . . . also form an arithmetic

progression, where each number differs from its predecessor by 3.

So, if we split the set {1, . . . ,N} into two parts, will one of them

contain an arithmetic progression, say of length 7? Van der Waerden’s

theorem, one of the central results of Ramsey theory, tells us precisely

that: For every k there exists a number N such that if we split the

set {1, . . . ,N} into two parts, one of the parts contains an arithmetic

progression of length k.

Van der Waerden’s theorem exhibits the two phenomena, the

interplay of which is at the heart of Ramsey theory:

● Principle 1: If we split a large enough object with a certain

regularity property (such as a set containing a long arith-

metic progression) into two parts, one of the parts will also

exhibit this property (to a certain degree).

ix



x Preface

● Principle 2: When proving Principle 1, “large enough”

often means very, very, very large.

The largeness of the numbers encountered seems intrinsic to Ram-

sey theory and is one of its most peculiar and challenging features.

Many great results in Ramsey theory are actually new proofs of known

results, but the new proofs yield much better bounds on how large an

object has to be in order for a Ramsey-type persistence under parti-

tions to take place. Sometimes, “large enough” is even so large that

the numbers become difficult to describe using axiomatic arithmetic—

so large that they venture into the realm of metamathematics.

One of the central issues of metamathematics is provability. Sup-

pose we have a set of axioms, such as the group axioms or the ax-

ioms for a vector space. When you open a textbook on group theory

or linear algebra, you will find results (theorems) that follow from

these axioms by means of logical deduction. But how does one know

whether a certain statement about groups is provable (or refutable)

from the axioms at all? A famous instance of this problem is Euclid’s

fifth postulate (axiom), also known as the parallel postulate. For more

than two thousand years, mathematicians tried to derive the parallel

postulate from the first four postulates. In the 19th century it was fi-

nally discovered that the parallel postulate is independent of the first

four axioms, that is, neither the postulate nor its negation is entailed

by the first four postulates.

Toward the end of the 19th century, mathematicians became in-

creasingly disturbed as more and more strange and paradoxical re-

sults appeared. There were different sizes of infinity, one-dimensional

curves that completely fill two-dimensional regions, and subsets of the

real number line that have no reasonable measure of length, or there

was the paradox of a set containing all sets not containing them-

selves. It seemed increasingly important to lay a solid foundation

for mathematics. David Hilbert was one of the foremost leaders of

this movement. He suggested finding axiom systems from which all

of mathematics could be formally derived and in which it would be

impossible to derive any logical inconsistencies.

An important part of any such foundation would be axioms which

describe the natural numbers and the basic operations we perform on
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them, addition and multiplication. In 1931, Kurt Gödel published

his famous incompleteness theorems, which dealt a severe blow to

Hilbert’s program: For any reasonable, consistent axiomatization of

arithmetic, there are independent statements—statements which can

be neither proved nor refuted from the axioms.

The independent statements that Gödel’s proof produces, how-

ever, are of a rather artificial nature. In 1977, Paris and Harrington

found a result in Ramsey theory that is independent of arithmetic.

In fact, their theorem is a seemingly small variation of the original

Ramsey theorem. It is precisely the very rapid growth of the Ram-

sey numbers (recall Principle 2 above) associated with this variation

of Ramsey’s theorem that makes the theorem unprovable in Peano

arithmetic.

But if the Paris-Harrington principle is unprovable in arithmetic,

how do we convince ourselves that it is true? We have to pass from

the finite to the infinite. Van der Waerden’s theorem above is of a

finitary nature: All sets, objects, and numbers involved are finite.

However, basic Ramsey phenomena also manifest themselves when

we look at infinite sets, graphs, and so on. Infinite Ramsey theo-

rems in turn can be used (and, as the result by Paris and Harrington

shows, sometimes have to be used) to deduce finite versions using

the compactness principle, a special instance of topological compact-

ness. If we are considering only the infinite as opposed to the finite,

Principle 2 in many cases no longer applies.

● Principle 1 (infinite version): If we split an infinite ob-

ject with a certain regularity property (such as a set contain-

ing arbitrarily long arithmetic progressions) into two parts,

one infinite part will exhibit this property, too.

If we take into account, on the other hand, that there are differ-

ent sizes of infinity, as reflected by Cantor’s theory of ordinals and

cardinals, Principle 2 reappears in a very interesting way. Moreover,

as with the Paris-Harrington theorem, it leads to metamathematical

issues, this time in set theory.
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It is the main goal of this book to introduce the reader to the

interplay between Principles 1 and 2, from finite combinatorics to set

theory to metamathematics. The book is structured as follows.

In Chapter 1, we prove Ramsey’s theorem and study Ramsey

numbers and how large they can be. We will make use of the proba-

bilistic methods of Paul Erdős to give lower bounds for the Ramsey

numbers and a result in extremal graph theory.

In Chapter 2, we prove an infinite version of Ramsey’s theorem

and describe how theorems about infinite sets can be used to prove

theorems about finite sets via compactness arguments. We will use

such a strategy to give a new proof of Ramsey’s theorem. We also

connect these arguments to topological compactness. We introduce

ordinal and cardinal numbers and consider generalizations of Ram-

sey’s theorem to uncountable cardinals.

Chapter 3 investigates other classical Ramsey-type problems and

the large numbers involved. We will encounter fast-growing functions

and make an analysis of these in the context of primitive recursive

functions and the Grzegorczyk hierarchy. Shelah’s elegant proof of

the Hales-Jewett theorem, and a Ramsey-type theorem with truly

explosive bounds due to Paris and Harrington, close out the chapter.

Chapter 4 deals with metamathematical aspects. We introduce

basic concepts of mathematical logic such as proof and truth, and we

discuss Gödel’s completeness and incompleteness theorems. A large

part of the chapter is dedicated to formulating and proving the Paris-

Harrington theorem.

The results covered in this book are all cornerstones of Ramsey

theory, but they represent only a small fraction of this fast-growing

field. Many important results are only briefly mentioned or not ad-

dressed at all. The same applies to important developments such as

ultrafilters, structural Ramsey theory, and the connection with dy-

namical systems. This is done in favor of providing a more complete

narrative explaining and connecting the results.

The unsurpassed classic on Ramsey theory by Graham, Roth-

schild, and Spencer [24] covers a tremendous variety of results. For

those especially interested in Ramsey theory on the integers, the book
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by Landman and Robertson [43] is a rich source. Other reading sug-

gestions are given throughout the text.

The text should be accessible to anyone who has completed a

first set of proof-based math courses, such as abstract algebra and

analysis. In particular, no prior knowledge of mathematical logic

is required. The material is therefore presented rather informally

at times, especially in Chapters 2 and 4. The reader may wish to

consult a textbook on logic, such as the books by Enderton [13] and

Rautenberg [54], from time to time for more details.

This book grew out of a series of lecture notes for a course on

Ramsey theory taught in the MASS program of the Pennsylvania

State University. It was an intense and rewarding experience, and the

authors hope this book conveys some of the spirit of that semester

back in the fall of 2011.

It seems appropriate to close this introduction with a few words

on the namesake of Ramsey theory. Frank Plumpton Ramsey (1903–

1930) was a British mathematician, economist, and philosopher. A

prodigy in many fields, Ramsey went to study at Trinity College

Cambridge when he was 17 as a student of economist John May-

nard Keynes. There, philosopher Ludwig Wittgenstein also served as

a mentor. Ramsey was largely responsible for Wittgenstein’s Tracta-

tus Logico-Philosophicus being translated into English, and the two

became friends.

Ramsey was drawn to mathematical logic. In 1928, at the age

of 25, Ramsey wrote a paper regarding consistency and decidability.

His paper, On a problem in formal logic, primarily focused on solv-

ing certain problems of axiomatic systems, but in it can be found a

theorem that would become one of the crown jewels of combinatorics.

Given any r, n, and μ we can find an m0 such that, if m ≥ m0

and the r-combinations of any Γm are divided in any manner

into μ mutually exclusive classes Ci (i = 1, 2, . . . , μ), then Γm

must contain a sub-class Δn such that all the r-combinations

of members of Δn belong to the same Ci. [53, Theorem B,

p. 267]
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Ramsey died young, at the age of 26, of complications from

surgery and sadly did not get to see the impact and legacy of his

work.

Acknowledgment. The authors would like to thank Jennifer Chubb

for help with the manuscript and for many suggestions on how to

improve the book.

State College, Pennsylvania Matthew Katz

April 2018 Jan Reimann
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Notation

Symbol Meaning Page

[n] the set of integers from 1 to n 1

∣S∣ cardinality of a set S 2

[S]p the set of p-element subsets of S 2

[n]p the set of p-element subsets of [n] 2

N → (k)pr every r-coloring of [S]p with ∣S∣ ≥ N has

a k-element monochromatic subset

2

Kn complete graph on n vertices 9

Kn,m complete bipartite graph of order n,m 11

R(n) nth Ramsey number 21

R(m,n) generalized Ramsey number 22

ω first infinite ordinal 56

Ord class of all ordinal numbers 57

ε0 least ordinal such that ωε0 = ε0 59

P(S) power set of S, P(S) = {A∶A ⊆ S} 68
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Symbol Meaning Page

κ+ the least cardinal greater than κ 68

2κ the cardinality of the power set of a set

of cardinality κ

69

ℵ0 the first infinite cardinal, ℵ0 = ∣N∣ 69

W (k, r) van der Waerden number for k-APs and

r-coloriing

86

U(k, r) upper bound for W (k, r), extracted

from the proof

96

ϕ(x, y, z) Ackermann function 102

ϕn(x, y) nth level Ackermann function 103

Cn
t combinatorial cube of dimension n with

side length t

113

HJ (t, r) Hales-Jewett number for side length t

symbols and r colors

115

PH (m,p, r) Paris-Harrington number 123

LA language of arithmetic, {S,+, ⋅, 0} 133

PA Peano arithmetic 135

A ⊧ σ σ holds in structure A 138

A ⊢ σ A proves σ 141

Th(N) theory of the natural numbers 160
⌜ϕ⌝ Gödel number of formula ϕ 164

ZFC Zermelo-Fraenkel set theory with the ax-

iom of choice

196



Index

Ackermann function, 102, 105, 106,

108, 110

alephs, 69

arithmetic progression, 85

arrow notation, 2

axiom of choice, 63, 67

Banach-Tarksi paradox, 64

binary string, 46

bounded μ-operator, 107

Burali-Forti paradox, 57

cardinal, 67

inaccessible, 83, 197

limit, 81

Ramsey, 83, 197

regular, 82

singular, 82

strong limit, 81

cardinal arithmetic, 68

cardinality (of a set), 67

Church-Turing thesis, 163

closed, 51

cofinality, 82, 111

coloring, 2

edge, 14

combinatorial

s-space, 118

combinatorial line, 114

compactness, xi, 49, 86, 123, 144

sequentially compact, 52

topological, 52

complete (proof system), 142, 160

complete (theory), 159

computable, 162

continuum hypothesis, 69

generalized, 70, 81

cut, 149

definable, 149, 155

degree (graphs), 6

dominating function, 99

eventually, 99

equivalence relation, 8, 66

free variable, 134

fundamental sequence, 111

Gödel β-function, 155, 190

Gödel number, 164

Goldbach conjecture, 129

graph, 5

k-partite, 11

bipartite, 10, 31

clique, 10

complement, 6

complete, 9

complete bipartite, 11

connected, 9

cycle, 8
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hypergraph, 34
independent, 10
induced subgraph, 7

isomorphic, 5
order, 5
Paley graph, 26

path, 8
subgraph, 7
tree, 12

Turán, 32
Grzegorczyk hierarchy, 109, 123,

124

Hales-Jewett numbers, 115
halting problem, 166

homogeneous, 41
min-homogeneous, 182, 192

inconsistent, 143

indiscernibles, 171
diagonal, 173
order, 172

induction scheme (axiom), 135

Knuth arrow notation, 101, 103

least number principle (LNP), 136,
181

metric, 50

discrete, 51
Euclidean, 51
path, 53

neighborhood, 51
non-standard number, 147

open, 51
order

linear, 45
order type, 62
partial, 13, 45

well-ordering, 59
ordinal, 55

addition, 57

exponentiation, 59
limit, 57
multiplication, 58

successor, 56
overspill, 151

pairing function, 65
Peano arithmetic, 135, 139, 145,

152, 161, 168, 171, 188
non-standard model, 145, 171,

189
standard model, 139

pigeonhole principle, 17, 18, 34, 39,
90, 118, 186

infinite, 41, 42, 72
power set, 34

primitive recursive, 106, 126, 156,
163

principle (∗), 185, 187, 188
probabilistic method, 29
proof, 136

system, 137
provably total, 193

Ramsey number, 21
generalized, 22

regressive, 185

relatively large, 123
reverse mathematics, 195

satisfiable, 143
sentence (formula), 134
Shelah

s-space, 119
line, 117
point, 118

soundness (proof system), 142

star word, 115
structure, 138

tetration, 100
theorem

Bolzano-Weierstrass, 52

Cantor cardinality theorem, 68
Cantor normal form, 111
Cantor-Schröder-Bernstein, 65
Chinese remainder theorem, 154

compactness (logic), 144
Erdős-Rado, 76
fast Ramsey, 170, 185, 187, 189,

195

finite Ramsey, 34, 43, 48, 123,
152, 183, 192

first Gödel incompleteness, 168
Gödel incompleteness, xi
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Gödel completeness, 142
Greenwood and Gleason bound,

22
Hales-Jewett, 113
Heine-Borel, 52
infinite Ramsey, 41, 52, 71, 124,

172
König’s lemma, 48, 49, 54, 124
Paris-Harrington, xi, 170, 193
Ramsey (for graphs), 16, 37
Schur, 21
second Gödel incompleteness,

195, 197
Szemerédi, 98
Turán, 31, 98
unsolvability

Entscheidungsproblem, 167
unsolvability of halting problem,

166
van der Waerden, ix, 86, 115, 159

tree, 12, 46
binary, 46

finitely branching, 47
infinite path, 47

Turing machine, 162

van der Waerden number, 86

Wainer hierarchy, 113
well-ordering principle, 63

Zermelo-Fraenkel set theory with

choice (ZF), 69
Zermelo-Fraenkel set theory with

choice (ZFC), 196
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This book takes the reader on a journey through Ramsey theory, from 
graph theory and combinatorics to set theory to logic and metamath-
ematics. Written in an informal style with few requisites, it develops two 
basic principles of Ramsey theory: many combinatorial properties persist 
under partitions, but to witness this persistence, one has to start with 
very large objects. The interplay between those two principles not only 
produces beautiful theorems but also touches the very foundations of 
mathematics. In the course of this book, the reader will learn about both 
aspects. Among the topics explored are Ramsey’s theorem for graphs and 
hypergraphs, van der Waerden’s theorem on arithmetic progressions, infi-
nite ordinals and cardinals, fast growing functions, logic and provability, 
Gödel incompleteness, and the Paris-Harrington theorem.

Quoting from the book, “There seems to be a murky abyss lurking at the 
bottom of mathematics. While in many ways we cannot hope to reach 
solid ground, mathematicians have built impressive ladders that let us 
explore the depths of this abyss and marvel at the limits and at the power 
of mathematical reasoning at the same time. Ramsey theory is one of 
those ladders.”
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