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An algebra of mind, a scheme of sense,

A symbol language without depth or wings,

A power to handle deftly outward things

Are our scant earnings of intelligence.

The Truth is greater and asks deeper ways.

- Sri Aurobindo, “Discoveries of Science II” in Collected Poems
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Preface

In 1980, the senior author (MRM) had the grand privilege of meeting

Sarvadaman Chowla at the Institute for Advanced Study in Prince-

ton, New Jersey. Chowla had written a small book titled The Rie-

mann Hypothesis and Hilbert’s Tenth Problem in 1965 and so this

was an opportunity to ask him about the seemingly strange title and

how it came to be. Was there a connection between the two? Chowla

replied, “I don’t know. These two problems have always fascinated

me and so I chose that as the title.” He went on to say that the book

was largely an inspired work, written in a single night, and it repre-

sents his selection of beautiful pearls from number theory. It was not

meant to be a textbook but more of an invitation for further study

and “to stimulate the reader”.

But the fact of the matter is that the two problems are related

as we discovered only much later in the work of Martin Davis, Hilary

Putnam, Julia Robinson and Yuri Matiyasevic̆. In fact, many of the

famous Hilbert problems are interconnected. This interconnectedness

can be used as the focus for mathematical instruction. And it can

be done with very few prerequisites. This is the raison d’être of this

book.

Some of the Hilbert problems such as the Riemann hypothesis

(the eighth problem) are still open. The others that have been solved

required formidable background and preparation. Hilbert’s tenth

xi



xii Preface

problem is different in that a basic introduction to elementary num-

ber theory and mathematical logic suffices to understand the proof,

and this can be done in a relatively short time. In addition to the

grand arrangement of mathematical ideas, Hilbert’s tenth problem

has a colourful cast of characters, many of them tragic heroes, who

pondered deeply regarding the enigma of the human being and the

nature of mathematical truth.

Hilbert’s tenth problem and its solution represent in microcosm

the riddle of human life itself and its meaning. This mélange of philo-

sophical and mathematical conundrums are the mysteries that con-

front us. In many ways, this book is not meant to be a textbook,

but rather an invitation to explore further. As Chowla would say, we

hope “to stimulate the reader”.

M. Ram Murty and Brandon Fodden

Kingston and Ottawa, Ontario

July 2018
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Gödel’s β function, 129, 130, 156

Gödel’s completeness theorems, 100
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Sierpiński, W., 37

singular cardinals, 196

Skolem’s paradox, 102

Skolem, T., 101

soundness theorem, 97

standard parabolic subgroup, 213

strongly inaccessible cardinal, 196

successor cardinal, 35

successor function, 77, 82

successor ordinal, 30

Sunzi Suanjing, 68

syntactic concept, 91

Taniyama–Shimura conjecture, 216

Tao, T., 164

Tarski, A., 28, 94

Tate’s thesis, 210



Index 237

term, 92
ternary Goldbach problem, 181
theorem listing algorithm, 194
total function, 77, 155
total ordering, 29
totally real field, 207
totient function, 68
transcendental number, 12, 201
transitive set, 29
trichotomy law for cardinals, 35
trivial valuation, 209
truth in an interpretation, 95
Turing machine, 73, 75, 120
Turing’s thesis, 73
Turing, A., 73, 81, 171
twin prime conjecture, 198
twin primes, 198

uncountable, 6
union set axiom, 25
unipotent radical, 213
unique factorization theorem, 45,

205
universal Turing machine, 171
universality theorem, 162

valuation, 208, 211
Vinogradov, I. M., 181
von Mangoldt function, 186
von Neumann assignment, 34
von Neumann, J., 30

weakly inaccessible cardinals, 196
Weil, A., 216
well-ordering, 29
Wiles, A., 216
Wilson’s theorem, 48, 147, 166, 172

Zermelo, E., 27





Selected Published Titles in This Series

88 M. Ram Murty and Brandon Fodden, Hilbert’s Tenth Problem, 2019

87 Matthew Katz and Jan Reimann, An Introduction to Ramsey Theory,
2018

86 Peter Frankl and Norihide Tokushige, Extremal Problems for Finite
Sets, 2018

85 Joel H. Shapiro, Volterra Adventures, 2018

84 Paul Pollack, A Conversational Introduction to Algebraic Number
Theory, 2017

83 Thomas R. Shemanske, Modern Cryptography and Elliptic Curves, 2017

82 A. R. Wadsworth, Problems in Abstract Algebra, 2017

81 Vaughn Climenhaga and Anatole Katok, From Groups to Geometry
and Back, 2017

80 Matt DeVos and Deborah A. Kent, Game Theory, 2016

79 Kristopher Tapp, Matrix Groups for Undergraduates, Second Edition,
2016

78 Gail S. Nelson, A User-Friendly Introduction to Lebesgue Measure and
Integration, 2015

77 Wolfgang Kühnel, Differential Geometry: Curves — Surfaces —
Manifolds, Third Edition, 2015

76 John Roe, Winding Around, 2015
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Hilbert’s tenth problem is one of 23 problems proposed by David Hilbert in 
1900 at the International Congress of Mathematicians in Paris. These problems 
gave focus for the exponential development of mathematical thought over 
the following century. The tenth problem asked for a general algorithm to 
determine if a given Diophantine equation has a solution in integers. It was 
finally resolved in a series of papers written by Julia Robinson, Martin Davis,  
Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such 
algorithm exists.

This book is an exposition of this remarkable achievement. Often, the solution 
to a famous problem involves formidable background. Surprisingly, the solution 
of Hilbert’s tenth problem does not. What is needed is only some elementary 
number theory and rudimentary logic. In this book, the authors present the 
complete proof along with the romantic history that goes with it. Along the way, 
the reader is introduced to Cantor’s transfinite numbers, axiomatic set theory, 
Turing machines, and Gödel’s incompleteness theorems.

Copious exercises are included at the end of each chapter to guide the student 
gently on this ascent. For the advanced student, the final chapter highlights 
recent developments and suggests future directions. The book is suitable for 
undergraduates and graduate students. It is essentially self-contained.
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