

Hilbert's
 Tenth Problem

An Introduction
to Logic, Number Theory, and Computability

Hilbert's
 Tenth Problem

An Introduction
to Logic, Number Theory, and Computability

M. Ram Murty
Brandon Fodden

Editorial Board

Satyan L. Devadoss
Rosa Orellana

John Stillwell (Chair)
Serge Tabachnikov
2010 Mathematics Subject Classification. Primary 11U05, 12L05.
Front cover image by Jesse Jacobs.

For additional information and updates on this book, visit
www.ams.org/bookpages/stml-88

Library of Congress Cataloging-in-Publication Data

Names: Murty, Maruti Ram, author. | Fodden, Brandon, 1979- author.
Title: Hilbert's tenth problem : an introduction to logic, number theory, and computability / M. Ram Murty, Brandon Fodden.
Description: Providence, Rhode Island : American Mathematical Society, [2019] | Series: Student mathematical library ; volume 88 | Includes bibliographical references and index.
Identifiers: LCCN 2018061472 | ISBN 9781470443993 (alk. paper)
Subjects: LCSH: Hilbert's tenth problem. | Number theory-Problems, exercises, etc. | Mathematical recreations-Problems, exercises, etc. | Hilbert, David, 1862-1943. | AMS: Number theory - Connections with logic - Decidability. $\mathrm{msc} \mid$ Field theory and polynomials - Connections with logic - Decidability. msc
Classification: LCC QA242 .M8945 2019 | DDC 512.7/4-dc23
LC record available at https://lccn.loc.gov/2018061472

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/ publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission @ams.org.
(c) 2019 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government. Printed in the United States of America.The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

$$
10987654321 \quad 242322212019
$$

An algebra of mind, a scheme of sense,
A symbol language without depth or wings,
A power to handle deftly outward things
Are our scant earnings of intelligence.
The Truth is greater and asks deeper ways.

- Sri Aurobindo, "Discoveries of Science II" in Collected Poems

Contents

Preface xi
Acknowledgments xiii
Introduction 1
Chapter 1. Cantor and Infinity 5
§1.1. Countable Sets 5
§1.2. Uncountable Sets 10
§1.3. The Schröder-Bernstein Theorem 14
Exercises 18
Chapter 2. Axiomatic Set Theory 23
§2.1. The Axioms 23
§2.2. Ordinal Numbers and Well Orderings 28
§2.3. Cardinal Numbers and Cardinal Arithmetic 33
Further Reading 37
Exercises 37
Chapter 3. Elementary Number Theory 41
§3.1. Divisibility 41
§3.2. The Sum of Two Squares 50
$\S 3.3$. The Sum of Four Squares 53
§3.4. The Brahmagupta-Pell Equation 55
Further Reading 67
Exercises 67
Chapter 4. Computability and Provability 71
§4.1. Turing Machines 71
§4.2. Recursive Functions 82
§4.3. Gödel's Completeness Theorems 90
§4.4. Gödel's Incompleteness Theorems 104
§4.5. Goodstein's Theorem 114
Further Reading 119
Exercises 120
Chapter 5. Hilbert's Tenth Problem 123
§5.1. Diophantine Sets and Functions 123
§5.2. The Brahmagupta-Pell Equation Revisited 131
§5.3. The Exponential Function Is Diophantine 137
§5.4. More Diophantine Functions 144
§5.5. The Bounded Universal Quantifier 149
§5.6. Recursive Functions Revisited 155
§5.7. Solution of Hilbert's Tenth Problem 159
Further Reading 164
Exercises 165
Chapter 6. Applications of Hilbert's Tenth Problem 167
§6.1. Related Problems 167
§6.2. A Prime Representing Polynomial 171
§6.3. Goldbach's Conjecture and the Riemann Hypothesis 180
§6.4. The Consistency of Axiomatized Theories 194
Exercises 198
Chapter 7. Hilbert's Tenth Problem over Number Fields 201
§7.1. Background on Algebraic Number Theory 201
§7.2. Introduction to Zeta Functions and L-functions 212
§7.3. A Brief Overview of Elliptic Curves and Their L- functions 215
§7.4. Nonvanishing of L-functions and Hilbert's Problem 218
Exercises 220
Appendix A. Background Material 223
Bibliography 229
Index 233

Preface

In 1980, the senior author (MRM) had the grand privilege of meeting Sarvadaman Chowla at the Institute for Advanced Study in Princeton, New Jersey. Chowla had written a small book titled The Riemann Hypothesis and Hilbert's Tenth Problem in 1965 and so this was an opportunity to ask him about the seemingly strange title and how it came to be. Was there a connection between the two? Chowla replied, "I don't know. These two problems have always fascinated me and so I chose that as the title." He went on to say that the book was largely an inspired work, written in a single night, and it represents his selection of beautiful pearls from number theory. It was not meant to be a textbook but more of an invitation for further study and "to stimulate the reader".

But the fact of the matter is that the two problems are related as we discovered only much later in the work of Martin Davis, Hilary Putnam, Julia Robinson and Yuri Matiyasevič. In fact, many of the famous Hilbert problems are interconnected. This interconnectedness can be used as the focus for mathematical instruction. And it can be done with very few prerequisites. This is the raison d'être of this book.

Some of the Hilbert problems such as the Riemann hypothesis (the eighth problem) are still open. The others that have been solved required formidable background and preparation. Hilbert's tenth
problem is different in that a basic introduction to elementary number theory and mathematical logic suffices to understand the proof, and this can be done in a relatively short time. In addition to the grand arrangement of mathematical ideas, Hilbert's tenth problem has a colourful cast of characters, many of them tragic heroes, who pondered deeply regarding the enigma of the human being and the nature of mathematical truth.

Hilbert's tenth problem and its solution represent in microcosm the riddle of human life itself and its meaning. This mélange of philosophical and mathematical conundrums are the mysteries that confront us. In many ways, this book is not meant to be a textbook, but rather an invitation to explore further. As Chowla would say, we hope "to stimulate the reader".
M. Ram Murty and Brandon Fodden

Kingston and Ottawa, Ontario
July 2018

Acknowledgments

This book is based on an upper-level undergraduate course given at Queen's University in Ontario in the winter semester of 2007 by the senior author (MRM). The class consisted of primarily undergraduates, several graduate students, and a few post-doctoral fellows. There were also students from the philosophy department. Given the diverse backgrounds of the students, the mathematical prerequisites were kept to a bare minimum requiring only familiarity with basic calculus and linear algebra. The course covered the contents of the first five chapters by first introducing students to logical notation, then elementary number theory, and gradually to notions of computability and decidability and, finally, the proof of Hilbert's tenth problem. The last two chapters were added later and were culled from graduate seminars conducted since the time the course was first given. They require more advanced background, especially the last chapter. If the student is willing to take some of the background material in those chapters on faith, they will acquire a panoramic view of some recent discoveries and new directions. We feel that this assemblage of subject matter can make an excellent introduction to this fascinating topic and can take the student to the frontiers of current research. We thank Kumar Murty, Hector Pasten, and the referees for their comments on an earlier version of this book. We are grateful to Ina Mette and the American Mathematical Society for taking interest in publishing this book, and to Marcia Almeida at the AMS for much help with preparing the manuscript.

Bibliography

[AMS] F. E. Browder (ed.), Mathematical developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics, Vol. XXVIII, American Mathematical Society, Providence, R. I., 1976. MR0419125
[Ba1] A. Baker, A concise introduction to the theory of numbers, Cambridge University Press, Cambridge, 1984. MR 781734
[Ba2] A. Baker, A comprehensive course in number theory, Cambridge University Press, Cambridge, 2012. MR 2954465
[BFH] D. Bump, S. Friedberg, and J. Hoffstein, On some applications of automorphic forms to number theory, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 2, 157-175, DOI 10.1090/S0273-0979-96-00654-4. MR1359575
[CPZ] G. Cornelissen, T. Pheidas, and K. Zahidi, Division-ample sets and the Diophantine problem for rings of integers (English, with English and French summaries), J. Théor. Nombres Bordeaux 17 (2005), no. 3, 727-735. MR 2212121
[Cr] J. N. Crossley, C. J. Ash, C. J. Brickhill, J. C. Stillwell, and N. H. Williams, What is mathematical logic?, Oxford University Press, London-New York, 1972. Oxford Paperbacks University Series, No. 60. MR0414308
[Dav] H. Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931
[Da1] M. Davis, Computability and unsolvability, McGraw-Hill Series in Information Processing and Computers, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958. MR 0124208
[Da2] M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269, DOI 10.2307/2318447. MR0317916
[Da3] M. Davis, On the number of solutions of Diophantine equations, Proc. Amer. Math. Soc. 35 (1972), 552-554, DOI 10.2307/2037646. MR0304347
[DMR] M. Davis, Y. Matijasevič, and J. Robinson, Hilbert's tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), Amer. Math. Soc., Providence, R. I., 1976, pp. 323-378. MR 0432534
[Daw] J. W. Dawson Jr., Logical dilemmas: The life and work of Kurt Gödel, A K Peters, Ltd., Wellesley, MA, 1997. MR1429389
[De] R. Dedekind, Theory of algebraic integers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. Translated from the 1877 French original and with an introduction by John Stillwell. MR. 1417492
[D] J. Denef, Hilbert's tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214-220, DOI 10.2307/2040720. MR0360513
[D1] J. Denef, Diophantine sets over algebraic integer rings. II, Trans. Amer. Math. Soc. 257 (1980), no. 1, 227-236, DOI 10.2307/1998133. MR549163
[DL] J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), no. 3, 385-391, DOI $10.1112 / \mathrm{jlms} / \mathrm{s} 2-18.3 .385$. MR518221
[DPR] M. Davis, H. Putnam, and J. Robinson, The decision problem for exponential diophantine equations, Ann. of Math. (2) 74 (1961), 425-436, DOI 10.2307/1970289. MR0133227
[Du] A. K. Dutta, Kutṭaka, bhāvanā and cakravāla, Studies in the history of Indian mathematics, Cult. Hist. Math., vol. 5, Hindustan Book Agency, New Delhi, 2010, pp. 145-199. MR2648498
[En] H. B. Enderton, A mathematical introduction to logic, 2nd ed., Harcourt/Academic Press, Burlington, MA, 2001. MR1801397
[Fo] B. Fodden, Diophantine equations and the generalized Riemann hypothesis, J. Number Theory 131 (2011), no. 9, 1672-1690, DOI 10.1016/j.jnt.2011.01.017. MR 2802141
[Fr] E. Frenkel, Love and math: The heart of hidden reality, Basic Books, New York, 2013. MR3155773
[Ge] S. Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 177-219, DOI 10.1090/S0273-0979-1984-15237-6. MR733692
[Go] D.C. Goldrei, Classic set theory for guided independent study, CRC Press, Boca Raton, FL, 1998.
[Gra] J. J. Gray, The Hilbert challenge, Oxford University Press, Oxford, 2000. MR 1828558
[GT] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481-547, DOI 10.4007/annals.2008.167.481. MR2415379
[Ha] P. R. Halmos, Naive set theory, Springer-Verlag, New York-Heidelberg, 1974. Reprint of the 1960 edition; Undergraduate Texts in Mathematics. MR0453532
[HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR2445243
[Haw] S. Hawking (ed.), God created the integers: The mathematical breakthroughs that changed history, Running Press, Philadelphia, PA, 2007. Edited, with commentary, by Stephen Hawking. MR 2382242
[Hil02] D. Hilbert, Mathematical Problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437-479. MR1557926
[Ho] R. Hodel, An Introduction to Mathematical Logic, Dover Publications, New York, 2013.
[Hod] A. Hodges, Alan Turing: the enigma, The centenary edition, Princeton University Press, Princeton, NJ, 2012. With a foreword by Douglas Hofstadter and a new preface by the author. MR 2963548
[HR] P. Howard and J. E. Rubin, Consequences of the axiom of choice, Mathematical Surveys and Monographs, vol. 59, American Mathematical Society, Providence, RI, 1998. With 1 IBM-PC floppy disk (3.5 inch; WD). MR1637107
[IR] K. F. Ireland and M. I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New YorkBerlin, 1982. Revised edition of Elements of number theory. MR 661047
[Je] T. Jech, Set theory: The third millennium edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. revised and expanded. MR 1940513
[Jo1] J. P. Jones, Three universal representations of recursively enumerable sets, J. Symbolic Logic 43 (1978), no. 2, 335-351, DOI 10.2307/2272832. MR0498049
[Jo2] J. P. Jones, Universal Diophantine equation, J. Symbolic Logic 47 (1982), no. 3, 549-571, DOI 10.2307/2273588. MR666816
[JSWW] J. P. Jones, D. Sato, H. Wada, and D. Wiens, Diophantine representation of the set of prime numbers, Amer. Math. Monthly 83 (1976), no. 6, 449-464, DOI 10.2307/2318339. MR 0414514
[KP] L. Kirby and J. Paris, Accessible independence results for Peano arithmetic, Bull. London Math. Soc. 14 (1982), no. 4, 285-293, DOI $10.1112 / \mathrm{blms} / 14.4 .285$. MR 663480
[Ku] K. Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications, London, 2011. MR2905394
[LK] C. Leary, and L. Kristiansen, A friendly introduction to mathematical logic, Second edition, Milne Library, Genesco, NY, 2015.
[Ma] Y. V. Matiyasevič, Hilbert's tenth problem, Foundations of Computing Series, MIT Press, Cambridge, MA, 1993. Translated from the 1993 Russian original by the author; With a foreword by Martin Davis. MR 1244324
[Maz] B. Mazur, On the passage from local to global in number theory, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 14-50, DOI 10.1090/S0273-0979-1993-00414-2. MR 1202293
[MR] B. Mazur and K. Rubin, Ranks of twists of elliptic curves and Hilbert's tenth problem, Invent. Math. 181 (2010), no. 3, 541-575, DOI 10.1007/s00222-010-0252-0. MR 2660452
[Mu] M. R. Murty, Problems in analytic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 206, Springer, New York, 2008. Readings in Mathematics. MR 2376618
[ME] M. R. Murty and J. Esmonde, Problems in algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 190, Springer-Verlag, New York, 2005. MR2090972
[MM1] M. R. Murty and V. K. Murty, Mean values of derivatives of modular Lseries, Ann. of Math. (2) 133 (1991), no. 3, 447-475, DOI 10.2307/2944316. MR 1109350
[MM2] M. R. Murty and V. K. Murty, Non-vanishing of L-functions and applications, Progress in Mathematics, vol. 157, Birkhäuser Verlag, Basel, 1997. MR 1482805
[MP] M. R. Murty and H. Pasten, Elliptic curves, L-functions, and Hilbert's tenth problem, J. Number Theory 182 (2018), 1-18, DOI 10.1016/j.jnt.2017.07.008. MR3703929
[MR] M. R. Murty and P. Rath, Transcendental numbers, Springer, New York, 2014. MR 3134556
[Ph] T. Pheidas, Hilbert's tenth problem for a class of rings of algebraic integers, Proc. Amer. Math. Soc. 104 (1988), no. 2, 611-620, DOI 10.2307/2047021. MR 962837
[Po] B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert's tenth problem over rings of algebraic integers, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 33-42, DOI 10.1007/3-540-45455-1_4. MR 2041072
[SS] H. N. Shapiro and A. Shlapentokh, Diophantine relationships between algebraic number fields, Comm. Pure Appl. Math. 42 (1989), no. 8, 1113-1122, DOI 10.1002/cpa.3160420805. MR1029120
[Sh1] A. Shlapentokh, Extension of Hilbert's tenth problem to some algebraic number fields, Comm. Pure Appl. Math. 42 (1989), no. 7, 939-962, DOI 10.1002/cpa. 3160420703 . MR 1008797
[Sh2] A. Shlapentokh, Elliptic curves retaining their rank in finite extensions and Hilbert's tenth problem for rings of algebraic numbers, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3541-3555, DOI 10.1090/S0002-9947-08-04302X. MR 2386235
[Sh3] A. Shlapentokh, Hilbert's tenth problem: Diophantine classes and extensions to global fields, New Mathematical Monographs, vol. 7, Cambridge University Press, Cambridge, 2007. MR2297245
[Sie] C. L. Siegel, Zur Theorie der quadratischen Formen (German), Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 21-46. MR0311578
[Sil] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR817210
[ST] J. H. Silverman and J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. MR 1171452
[Sm] C. Smoryński, Logical number theory I, Springer-Verlag, Berlin, 1991.
[Vi] C. Videla, On Hilbert's tenth problem. Atas da Xa Escola de Algebra, Vitoria, ES, Brasil Colecao Atas 16 Sociedade Brasileira de Matematica (1989), 95108.
[We] A. Weil, Number theory: An approach through history; From Hammurapi to Legendre, Birkhäuser Boston, Inc., Boston, MA, 1984. MR734177
[Yan] B. H. Yandell, The honors class: Hilbert's problems and their solvers, A K Peters, Ltd., Natick, MA, 2002. MR 1880187

Index

$L_{\text {PA }}, 92$
$L_{\mathrm{ZFC}}, 92$
ϵ_{0}, 32113
$\omega, 26$
ω-consistency, 110
Ackermann function, 8588
Ackermann, W., 85
adele ring, 211
adequacy theorem, 99
admissible, 213
algebraic integer, 201
algebraic number, 10, 201
algebraic number field, 202
algorithm, 71
Archimedean valuation, 209
Aryabhata, 43
automorphic representation, 213
axiom of choice, 27, 29 100
axiom of existence, 24
axiom of extensionality, 24
axiom of infinity, 26
axiom of regularity, 26]
axiomatized, 106

Banach, S., 28
Banach-Tarski paradox, 28
Bernstein, F., 14
Bhaskaracharya, 56
binomial coefficient, 144

Birch and Swinnerton-Dyer conjecture, 217
Borel subgroup, 214
bounded universal quantifier, 149 153
Brahmagupta, 56
Brahmagupta's identity, 5152 57
Brahmagupta-Pell equation, 55 66131
canonical interpretation, 99
Cantor normal form, 33117
Cantor's diagonalization method, 82161
Cantor's pairing function, 7128 156 168
Cantor, G., 582
cardinal, 35
cardinal addition, 36
cardinal exponentiation, 36
cardinal multiplication, 36
cardinal number, 34
cardinality, 13
cartesian product, 73
Cassels, J. W. S., 220
Cauchy, A.-L., 204
chakravala method, 56
characteristic function, 84109
Chen, J., 181

Chinese remainder theorem, 4968 129
Church's thesis, 73
Church, A., 73
Church-Turing thesis, 73
Church-Turing thesis, 159
Cohen, P., 28 37 101
compactness theorem, 102
complete arithmetic, 107
completeness of $\Gamma, 99$
complex numbers, 51
comprehension schema, 24
computable function, $73,77,159$
computable set, 88
computably enumerable set, 88,159
conductor, 216
congruence, 46
conjugate field, 203
conjunction, 126
consistency of $\Gamma, 98$
consistency theorem, 98
constructible universe, 101
continued fraction algorithm, 56
continuum hypothesis, 1637100
coprime, 44
countable, 6
countably infinite, 6
cusp forms, 213
cuspidal automorphic
representation, 213
Davis, M., 72123167
de la Vallée Poussin, C., 184
decidable property, 182
decidable set, 88
decimal expansion, 10
Dedekind cut, 29, 204, 221
Dedekind zeta function, 206
Dedekind, R., 14203,205
degree, 202
Diophantine m-tuple, 69
Diophantine equation, 72123
Diophantine function, 128
Diophantine relation, 125
Diophantine set, 124218
Dirichlet approximation theorem, 63
Dirichlet, P. G. L., 63, 203, 207
discriminant, 208
disjunction, 126
division algorithm, 41
divisor, 42
effectively computable, 71
Einstein, A., 104
elliptic curves, 170, 215
empty set, 24
Entscheidungsproblem, 74
equivalent valuations, 209
Euclid-Mullin sequence, 89
Euclidean algorithm,43
Euler product, 185,206
Euler's theorem, 68
Euler's totient function, 68
Euler, L., 56181
Euler-Mascheroni constant, 189
exponential function, 137
expressible relation in PA, 109
extension of Peano arithmetic, 106
extension theorem, 99
factorial function, 83145
Fermat's last theorem, 205
Fermat's little theorem, 48
Fermat, P., 56
Fibonacci numbers, 67
first order language, 91
first order logic, 93
floor function, 7 165
formula, 92
Fraenkel, A.,27
Frege, G., 1634
Frenkel, E., 215
Fueter, R., 8
Fueter-Pólya theorem, 8
function-like formula, 26
functional equation, 184
fundamental theorem of arithmetic, 45186205

Galois extension, 203
Gauss, C. F., 45203
Gelfond, A., 13
general recursive function, 86
generalized continuum hypothesis, 37
generalized ideal class groups, 210
generalized Riemann hypothesis, 206
Gentzen, G., 113
Gödel number, 108
Gödel sentence, 111
Gödel's β function, 129130156
Gödel's completeness theorems, 100
Gödel's first incompleteness theorem, 106
Gödel's second incompleteness
theorem, 112, 195197
Gödel, K, 378
Gödel, K., 28, 73, $99,100,106,109$

129

Godement, R., 215
Goldbach's conjecture, 180
Goldbach, C., 180
good reduction, 216
Goodstein sequence, 114
Goodstein, R., 115
greatest common divisor, 42
Green, B., 164
grossencharacter, 212
Hadamard, J., 184
halting problem, 81 90160
Hardy, G. H., 181
Harish-Chandra, 214
Harrington, L., 119
Hawking, S., 5,204
Hecke L-series, 211
Hecke, E., 206, 211
Helfgott, H., 181
Henkin, L., 99
hereditary expansion, 114
Hermite, C., 13
Hilbert problems, 16
Hilbert's hotel, 17
Hilbert's tenth problem, 72,123 159
Hilbert's twenty-three problems, 1 13
Hilbert, D., 113100123
ideal class groups, 210
ideal theory, 204
idele group, 211
inaccessible cardinal, 196
incompleteness of $\Gamma, 106$
indicator function, 84
integral basis, 208
integrally Diophantine, 219
interpretation of a first order language, 94
irrational numbers, 912
Jacquet, H., 215
Jayadeva, 56
Jones, J. P., 163 170-172
Kirby, L., 118
Kleene, S., 86
Kolyvagin, V., 218
Kronecker, L., 203, 205
Kronecker-Weber theorem, 219
Löwenheim, L., 101
Löwenheim-Skolem theorem, 101
Lagrange's four square theorem, 53
Lagrange, J.-L., 5356
lambda calculus, 73
Langlands classification theorem, 214
Langlands, R., 212
language of $\mathrm{PA}, 92$
language of ZFC, 92
Levi decomposition, 213
limit ordinal, 30
Lindemann, F., 813
Liouville, J., 13202
listable set, 88
Littlewood, J. E., 181
logically valid, 96
Matiyasevič, Y., 72123171
Mazur, B., 217
minimal polynomial, 202
minimalization, 86
Minkowski, H., 208
model existence theorem, 99
model of $\Gamma, 96$
modular arithmetic, 46
modularity conjecture, 216
modus ponens, 93194
Mordell, L. J., 216
Mordell-Weil theorem, 216
non-Archimedean valuation, 209
nonstandard model, 102
norm, 206
normal extension, 203
order isomorphic, 30
ordinal, 30117
ordinal addition, 31
ordinal exponentiation, 32
ordinal multiplication, 31
Ostrowski's theorem, 209
Ostrowski, A., 209
pairing axiom, 25
parabolic subgroup, 213
Paris, J., 118
parity conjecture, 217
partial function, 77
partial recursive function, 86
partially computable function, 77
Pasten, H., 220
Peano axioms, 104
Pell, J., 56
Péter, R., 85
pigeonhole principle, 6465
place, 209
Pólya, G., 8
Poonen, B., 219
power set, 13
power set axiom, 25
predecessor function, 84
prime number, 45
prime number theorem, 184
prime representing polynomial, 179
primitive element, 202
primitive recursive function, 82
primitive recursive relation, 85
projection function, 82
proof using $\Gamma, 94$
Putnam, H., 72 123127147
Pythagorean triples, 47
Ramanujan conjecture, 215
Ramanujan, S., 181
Ramaré, O., 181
ramification, 208
rank, 217
recursive function, 73,8287155
recursive relation, 85, 109
recursive set, 88
recursively enumerable set, 88
regular cardinals, 196
relatively prime, 44
replacement schema, 27
residue classes, 46
Ribet, K., 216
Riemann hypothesis, 184
Riemann zeta function, 184
Riemann, B., 184
Riemann, G. F. B., 203
right regular representation, 213
ring of integers, 203
Robinson, J., 72123171
Robinson, R., 85
Rosser, J. B., 106110112
Rubin, K., 217
Russell's paradox, 179396
Russell, B., 17
Schneider, T., 13
Schröder, E., 14
Schröder-Bernstein theorem, 1535
Selmer, E., 217
semantic concept, 91
semidecidable set, 88
sentence, 92
Shafarevich-Tate group, 217
Shapiro, H. N., 183
Shlapentokh, A.,220
Siegel, C. L., 170
Sierpiński, W., 37
singular cardinals, 196
Skolem's paradox, 102
Skolem, T., 101
soundness theorem, 97
standard parabolic subgroup, 213
strongly inaccessible cardinal, 196
successor cardinal, 35
successor function, 77, 82
successor ordinal, 30
Sunzi Suanjing, 68
syntactic concept, 91
Taniyama-Shimura conjecture, 216
Tao, T., 164
Tarski, A., 28 , 94
Tate's thesis, 210
term, 92
ternary Goldbach problem, 181
theorem listing algorithm, 194
total function, 77155
total ordering, 29
totally real field, 207
totient function, 68
transcendental number, 12201
transitive set, 29
trichotomy law for cardinals, 35
trivial valuation, 209
truth in an interpretation, 95
Turing machine, 73,75120
Turing's thesis, 73
Turing, A., 73, 81,171
twin prime conjecture, 198
twin primes, 198
uncountable, 6
union set axiom, 25
unipotent radical, 213
unique factorization theorem, 45
205
universal Turing machine, 171
universality theorem, 162
valuation, 208, 211
Vinogradov, I. M., 181
von Mangoldt function, 186
von Neumann assignment, 34
von Neumann, J., 30
weakly inaccessible cardinals, 196
Weil, A., 216
well-ordering, 29
Wiles, A., 216
Wilson's theorem, 48 147 166 172
Zermelo, E., 27

Selected Published Titles in This Series

88 M. Ram Murty and Brandon Fodden, Hilbert's Tenth Problem, 2019
87 Matthew Katz and Jan Reimann, An Introduction to Ramsey Theory, 2018
86 Peter Frankl and Norihide Tokushige, Extremal Problems for Finite Sets, 2018
85 Joel H. Shapiro, Volterra Adventures, 2018
84 Paul Pollack, A Conversational Introduction to Algebraic Number Theory, 2017
83 Thomas R. Shemanske, Modern Cryptography and Elliptic Curves, 2017
82 A. R. Wadsworth, Problems in Abstract Algebra, 2017
81 Vaughn Climenhaga and Anatole Katok, From Groups to Geometry and Back, 2017
80 Matt DeVos and Deborah A. Kent, Game Theory, 2016
79 Kristopher Tapp, Matrix Groups for Undergraduates, Second Edition, 2016
78 Gail S. Nelson, A User-Friendly Introduction to Lebesgue Measure and Integration, 2015
77 Wolfgang Kühnel, Differential Geometry: Curves - Surfaces Manifolds, Third Edition, 2015
76 John Roe, Winding Around, 2015
75 Ida Kantor, Jiří Matoušek, and Robert Šámal, Mathematics++, 2015
74 Mohamed Elhamdadi and Sam Nelson, Quandles, 2015
73 Bruce M. Landman and Aaron Robertson, Ramsey Theory on the Integers, Second Edition, 2014
72 Mark Kot, A First Course in the Calculus of Variations, 2014
71 Joel Spencer, Asymptopia, 2014
70 Lasse Rempe-Gillen and Rebecca Waldecker, Primality Testing for Beginners, 2014
69 Mark Levi, Classical Mechanics with Calculus of Variations and Optimal Control, 2014
68 Samuel S. Wagstaff, Jr., The Joy of Factoring, 2013
67 Emily H. Moore and Harriet S. Pollatsek, Difference Sets, 2013
66 Thomas Garrity, Richard Belshoff, Lynette Boos, Ryan Brown, Carl Lienert, David Murphy, Junalyn Navarra-Madsen, Pedro Poitevin, Shawn Robinson, Brian Snyder, and Caryn Werner, Algebraic Geometry, 2013

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/stmlseries/.

Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists.

This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems.

Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.

www.ams.org/bookpages/stml-88

