STUDENT MATHEMATICAL LIBRARY Volume 89

A First Journey through Logic

Martin Hils

François Loeser

A First Journey through Logic

STUDENT MATHEMATICAL LIBRARY

A First Journey through Logic

Martin Hils
François Loeser

Providence, Rhode Island

Editorial Board

Satyan L. Devadoss
Rosa Orellana
John Stillwell (Chair)
Serge Tabachnikov

2010 Mathematics Subject Classification. Primary 03-01.

For additional information and updates on this book, visit www.ams.org/bookpages/stml-89

Library of Congress Cataloging-in-Publication Data

Names: Hils, Martin, 1973- author. | Loeser, François, author.
Title: A first journey through logic / Martin Hils, François Loeser.
Description: Providence, Rhode Island: American Mathematical Society, [2019]| Series: Student mathematical library ; volume 89 | Includes bibliographical references and index.
Identifiers: LCCN 2019014487 | ISBN 9781470452728 (alk. paper)
Subjects: LCSH: Logic, Symbolic and mathematical-Textbooks. | Mathematics-Textbooks. | AMS: Mathematical logic and foundations - Instructional exposition (textbooks, tutorial papers, etc.). msc Classification:
LCC QA9 .H52445 2019 | DDC 511.3-dc23
LC record available at https://lcen.loc.gov/2019014487

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www. ams.org/publications/pubpermissions.

Requests for translation rights and licensed reprints should be sent to reprintpermission@ams.org.
© 2019 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

Contents

Introduction -
Chapter 1. Counting to Infinity 1
Introduction 1
§1.1. Naive Set Theory 1
§1.2. The Cantor and Cantor-Bernstein Theorems 2
§1.3. Orders 3
§1.4. Operations on Orders 5
§1.5. Ordinal Numbers 7
§1.6. Ordinal Arithmetic 11
§1.7. The Axiom of Choice 14
§1.8. Cardinal Numbers 14
§1.9. Operations on Cardinals 16
§1.10. Cofinality 19
§1.11. Exercises 22
§1.12. Appendix: Hindman's Theorem 28
Chapter 2. First-order Logic 33
Introduction 33
§2.1. Languages and Structures 34
§2.2. Terms and Formulas 36
§2.3. Semantics 39
§2.4. Substitution 41
§2.5. Universally Valid Formulas 45
§2.6. Formal Proofs and Gödel's Completeness Theorem 48
§2.7. Exercises 58
Chapter 3. First Steps in Model Theory 65
Introduction 65
§3.1. Some Fundamental Theorems 66
§3.2. The Diagram Method 70
§3.3. Expansions by Definition 72
§3.4. Quantifier Elimination 75
§3.5. Algebraically Closed Fields 78
§3.6. Ax's Theorem 81
§3.7. Exercises 83
Chapter 4. Recursive Functions 89
Introduction 89
§4.1. Primitive Recursive Functions 90
§4.2. The Ackermann Function 94
§4.3. Partial Recursive Functions 96
§4.4. Turing Computable Functions 98
§4.5. Universal Functions 107
§4.6. Recursively Enumerable Sets 109
§4.7. Elimination of Recursion 113
§4.8. Exercises 115
Chapter 5. Models of Arithmetic and Limitation Theorems 119
Introduction 119
§5.1. Coding Formulas and Proofs 120
§5.2. Decidable Theories 122
§5.3. Peano Arithmetic 125
§5.4. The Theorems of Tarski and Church 131
§5.5. Gödel's First Incompleteness Theorem 133
§5.6. Definability of Satisfiability for Σ_{1}-formulas 134
§5.7. Gödel's Second Incompleteness Theorem 137
§5.8. Exercises 141
Chapter 6. Axiomatic Set Theory 147
Introduction 147
§6.1. The Framework 147
§6.2. The Zermelo-Fraenkel Axioms 148
§6.3. The Axiom of Choice 155
§6.4. The von Neumann Hierarchy and the Axiom of Foundation 157
§6.5. Some Results on Incompleteness, Independence and Relative Consistency 161
§6.6. A Glimpse of Further Independence and Relative Consistency Results 169
§6.7. Exercises 173
Bibliography 179
Index 181

Introduction

The aim of this book, which originates from a course that we taught successively at École Normale Supérieure (FL in 2007-2010 and MH in 20102013), is to present a broad panorama of Mathematical Logic to students who feel curious about this field but have no intent to specialize in it. As a consequence we have deliberately chosen not to write another comprehensive textbook, of which there already exist quite a few excellent ones, but instead to deliver a slim text which provides direct routes to some significant results of general interest.

Our point of view is to treat Logic on an equal footing to any other topic in the mathematical curriculum. Since one does not have to define natural numbers when teaching Number Theory, or sets when teaching Analysis, why should we in a Logic course? For this reason we start the book with a presentation of naive Set Theory, that is, the theory of sets that mathematicians use on a daily basis. It is only in the last chapter that we discuss the Zermelo-Fraenkel axioms, which in fact most mathematicians who are not Set Theorists or teaching a logic course are not so familiar with.

In each chapter we have tried to present at least a few juicy highlights, outside Logic whenever possible, either in the main text, or as exercises or appendices. We consider exercises as an essential component of the book, and we encourage the reader to work them out thoroughly;
they should be seen not only as a tool to check that the course is correctly assimilated, but also as a way to provide an opening to additional topics of interest.

The book is organized as follows. In the first chapter, in addition to the basic theory of ordinal and cardinal numbers, we cover more exotic topics like Goodstein sequences, infinite combinatorics (clubs and Solovay's Theorem) and Hindman's Theorem (a striking result in additive combinatorics). In Chapter 2 we introduce First-order Logic and formal proofs. We prove Gödel Completeness via Henkin witnesses. Craig Interpolation and Beth Definability are treated in exercises. The next chapter delves deeper inside Model Theory, with detailed coverage of Quantifier Elimination. In particular we prove Quantifier Elimination for algebraically closed fields, which allows one to state and prove the Lefschetz Principle in Algebraic Geometry and Ax's Theorem on surjectivity of injective polynomial mappings. Chapter 4 is devoted to basic Recursion Theory and culminates with the existence of universal recursive functions, undecidability of the Halting Problem and Rice's Theorem. In Chapter 5 we prove the classical undecidability and incompleteness results of Tarski and Church and provide a complete proof of Gödel's Second Incompleteness Theorem which we found in Martin Ziegler's book [13]. We also present, as an exercise, a theorem of Tennenbaum about the inexistence of non-standard countable recursive models of Peano. Finally in Chapter 6 we develop Axiomatic Set Theory, including the Reflection Principle and some proofs of independence and relative consistency.

This book is intended towards advanced undergraduate students, graduate students at any stage, or working mathematicians, who seek a first exposure to core material of mathematical logic and some of its applications. Prerequisites are minimal: besides familiarity with abstract reasoning and basic mathematical concepts, some acquaintance with General Topology and Algebra, especially Field Theory, is required at various places.

For the interested reader, here are a few suggestions for further reading, providing more comprehensive and advanced material, ordered by increasing difficulty:
Model Theory: The books by Marker [8], Poizat [9] and Tent-Ziegler [12].

Set Theory: The books by Krivine [6], Kunen [7] and Jech [5].
Recursion Theory: The books by Cooper [1], Rogers [10] and Soare [11].

Acknowledgements

We heartfully thank the following colleagues and friends who encouraged us in the project of transforming our notes into a book and/or helped us immensely in improving the text: Martin Bays, Antoine ChambertLoir, Zoé Chatzidakis, Artem Chernikov, Raf Cluckers, Arthur Forey, Franziska Jahnke, Silvain Rideau, Pierre Simon. Moreover, we thank Christian Maurer who provided the drawing for the book cover.

During the preparation of this book the first author was partially supported by ANR through ValCoMo (ANR-13-BS01-0006) and by DFG through SFB 878 and the second author was partially supported by ANR through Défigéo (ANR-15-CE40-0008) and by the Institut Universitaire de France.

Bibliography

[1] S. Barry Cooper, Computability theory, Chapman \& Hall/CRC, Boca Raton, FL, 2004. MR2017461
[2] René Cori and Daniel Lascar, Mathematical logic, Part 1, Oxford University Press, 2010.
[3] René Cori and Daniel Lascar, Mathematical logic, Oxford University Press, Oxford, 2001. A course with exercises. Part II; Recursion theory, Gödel's theorems, set theory, model theory; Translated from the 1993 French original by Donald H. Pelletier; With a foreword to the original French edition by Jean-Louis Krivine and a foreword to the English edition by Wilfrid Hodges. MR1830848
[4] H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical logic, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1994. Translated from the German by Margit Meßmer. MR1278260
[5] Thomas Jech, Set theory: The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR1940513
[6] Jean-Louis Krivine, Théorie des ensembles, Nouvelle bibliothèque mathématique, Cassini, 1998.
[7] Kenneth Kunen, Set theory: An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. MR597342
[8] David Marker, Model theory: An introduction, Graduate Texts in Mathematics, vol. 217, SpringerVerlag, New York, 2002. MR1924282
[9] Bruno Poizat, A course in model theory: An introduction to contemporary mathematical logic, Universitext, Springer-Verlag, New York, 2000. Translated from the French by Moses Klein and revised by the author. MR1757487
[10] Hartley Rogers Jr., Theory of recursive functions and effective computability, 2nd ed., MIT Press, Cambridge, MA, 1987. MR886890
[11] Robert I. Soare, Recursively enumerable sets and degrees: A study of computable functions and computably generated sets, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987. MR882921
[12] Katrin Tent and Martin Ziegler, A course in model theory, Lecture Notes in Logic, vol. 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR2908005
[13] Martin Ziegler, Mathematische Logik (German), Mathematik Kompakt. [Compact Mathematics], Birkhäuser Verlag, Basel, 2010. MR2683672

Index

ᄀ,34	$\langle X\rangle_{\mathfrak{Q}}, 41$
$\wedge, 34$	$\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$, 93
$\checkmark, 38$	$\langle\varphi\rangle, 66$
\rightarrow, 38	$(x)_{i}, 93$
$\leftrightarrow, 38$	$x-y, 91$
$\exists x, 34$	(A1)-(A8), 125
$\forall x, 38$	(AC), 14, 155
3! \times, 72	(AF), 153
$\cong, 35$	(AI), 152
\#,66	(CC), 172
$A \subseteq B$, ,	(CH), 19
$\mathfrak{B} \subseteq \mathfrak{A}, 41$	(DC), 172
$\leqslant, 66$	(E1)-(E5),47
$\mathfrak{A} \vDash \varphi[\alpha]$, 39	(GCH), 19
$\mathfrak{A} \vDash \varphi\left[a_{1}, \ldots, a_{n}\right]$, 40	(L1)-(L3), 139
F φ, 45	(Q1)-(Q3), 47
$\delta \vDash F, 46$	(R0)*-(R3)*, 97
\mathfrak{A} \& T,48	(R0)-(R2), 90
$T \vDash \varphi, 48$	(R3), 98
$T \vdash_{\mathcal{L}} \varphi$, 49	${ }^{1} \times 20$
$\vdash_{\mathcal{L}} \varphi$, 49	\aleph_{0}, 14
$T \vdash \varphi, 53$	$\aleph_{\alpha}, 16$
\sim_{T}, 77	7_{α}, 166
$\square \square_{T} \varphi, 138$	$\underline{\text { n, } 9}$
$\ulcorner\mathcal{M}\urcorner, 103$	$t\left(s_{1}, \ldots, s_{n}\right), 45$
\# $\varphi, 120$	$t^{2}[\alpha], 39$
\#\#d, 122	N, ${ }^{2}$

$C_{m}^{n}, 90$
$D(\mathfrak{M}), 70$
$E^{*}, 36$
$F[a], 151$
$I_{p}, 104$
L, 170
$L_{\alpha}, 170$
$P_{i}^{n}, 90$
S, 90
$T_{\text {Pres }}, 141$
V, 158
$V_{\alpha}, 155$
$Z^{24}, 35$
$\mathfrak{A} \upharpoonright_{\mathcal{L}}, 45$
氏, 35
凡, 35
$\Re_{\text {st }}, 125$
$\mathfrak{R}, 35,68$
$\mathcal{C}^{\mathcal{L}}, 34$
$\mathcal{F}, 90$
$\mathcal{F}^{*}, 97$
\mathcal{F}_{n}^{*}, 97
$\mathcal{F}_{n}, 90$
$\mathcal{F}_{n}^{\mathcal{L}}, 34$
$\mathcal{L}_{\text {ring }}, 35$
$\mathcal{L}_{\text {OAG }}, 86$
$\mathcal{L}_{\text {Pres }}, 141$
$\mathcal{L}_{a r}, 35$
$\mathcal{L}_{\text {ord }}, 35$
$\mathcal{L}_{\text {o.ring }}, 35$
$\mathcal{L}_{\text {set }}, 35$
$\mathcal{P}(A)$,
$\mathcal{R}_{n}^{\mathcal{L}}, 34$
$\mathcal{T}^{\mathcal{L}}, \sqrt{36}$
u, 147
ACF, 50, 78
$\mathrm{ACF}_{p}, 80$
Ax, 122
$\operatorname{Card}(x), 152$
$\mathrm{Con}_{T}, 140$
DLO, 85
DOAG, 86
$\operatorname{Dom}(F), 151$
Form, 120
$\mathrm{Fml}^{2}, 37$
$\mathrm{Fml}_{\mathcal{P}}, 46$

Free (φ), 38
HOAD, 178
HOD, 176
IC, 168
$\operatorname{Im}(F), 151$
$\operatorname{Lim}(x), 153$
MP, 49
Neg, 133
OAD, 178
OD, 176
$\operatorname{Ord}(x), 152$
PA, 125
$\mathrm{PA}_{0}, 125$
Prf, 122
$\operatorname{Sat}_{\Sigma_{1}}(v), 134$
Taut, 121
Term, 120
$\operatorname{Thm}(T), 122$
$\mathrm{Th}(\mathfrak{A}), 50$
ZFC, 148
$\mathrm{ZFC}^{-}, 153$
ZF, 148
ZF^{-}, 153
Z, 175
$\operatorname{card}(\mathcal{L}), 67$
$\operatorname{card}(X), 14$
$\operatorname{cof}(\alpha), 20$
$\operatorname{dom}(R), 150$
$\operatorname{dom}(f), 97$
$\mathrm{ht}(t), 36$
$h t(\varphi), 37$
$\operatorname{im}(R), 150$
$\lg (n), 94$
rk (a), 158
$\mathrm{rk}_{L}(a), 170$
$\mathrm{rk}_{R}($ a), 173
subst, 131
sup,
$\operatorname{tcl}(a), 157$
$\alpha+\beta$, 11
α^{+}, \square
$\alpha^{\beta}, 11$
α_{p}, 93
$\alpha_{a / x}, 40$
$\alpha \beta$, 11
$\beta_{i}^{p}, 93$
$\Delta(\mathfrak{M}), 71$
$\Delta_{\varphi}, 131$
$\kappa+\lambda, 16$
$\kappa^{+}, 15$
$\kappa^{\lambda}, 16$
$\kappa \lambda, 16$
$\lambda x_{1} \cdots x_{n} \cdot f\left(x_{1}, \ldots, x_{n}\right), 90$
$\mu y, 97$
$\mu t \leq z, 92$
$\omega, 9$
$\varphi\left(x_{1}, \ldots, x_{n}\right), 40$
$\varphi\left(s_{1}, \ldots, s_{n}\right), 45$
$\varphi[\mathfrak{A}, \bar{b}], 41$
$\varphi[\mathfrak{H}], 40$
$\varphi^{F}, 163$
$\varphi^{X}, 163$
$\varphi^{p}, 107$
$\varphi_{i}^{p}, 107$
$\varphi_{\bar{S} / \bar{x}}, 42$
$\sigma^{\mathcal{L}}, 34$
absolute functional class, 164
absoluteness, 163
Ackermann function, 94
Aronszajn tree, 27
Aronszajn's Theorem, 27
assignment, 39
atomic formula, 36
Ax's Theorem, 82
axiom of choice, 14, 155
axiom of countable choice, 172
axiom of dependent choice, 172
axiomatizable property, 69
base set, 35
Beth Definability Theorem, 61
bound occurrence, 38
bounded μ-operator, 92
branch, 27
Cantor normal form, 22
Cantor's Theorem, 2
Cantor-Bernstein Theorem, 3
cardinal, 14
cardinal addition, 16
cardinal exponentiation, 16
cardinal multiplication, 16
Chevalley-Tarski Theorem, 79
choice function, 155
Church's Theorem, 132
Church's Thesis, 107
class, 148
clause, 59
CLUB, 174
club, 24
cofinal subset, 20
cofinality, 20
compactness Theorem, 66
complete diagram, 70
complete theory, 50
comprehension axiom scheme, 149
configuration of a Turing machine, 104
conservative expansion, 73
consistent theory, 50
constant symbol, 34
Continuum Hypothesis, 19
countable set, 15
Craig's Interpolation Theorem, 60
decidable theory, 122
deduction Lemma, 51
deduction rules, 48
deductively closed, 54
Definability of satisfiability for Σ_{1}-formulas, 134
definition by transfinite recursion, 154
deterministic Turing machine, 99
diagonal argument, 131
Downward Löwenheim-Skolem Theorem, 67
effectively axiomatizable theory, 122
elementary equivalent structures, 66
elementary extension, 66
elementary substructure, 66
equality axioms,47
equinumerous, 3
equivalent formulas, 62, 73
expansion by definition, 73
expansion of a structure, 45
extensionality axiom, 148
filter, 25
filter basis, 25
finite ordinal, 9
finitely axiomatizable property, 69
first-order language, 34
fixed point Theorem, 131
Fodor's Lemma, 24
formal proof, 49
formula, 37
Δ_{0}-formula, 144, 163
Σ_{1}-formula, 127
$\forall \exists$-formula, 82
strict Σ_{1}-formula, 127
foundation axiom, 153
Fraenkel-Mostowski models, 177
free occurrence, 37
free variable, 38
function represented by a formula, 128
function symbol, 34
generalization,49
Generalized Continuum Hypothesis, 19
Gödel number, 120
Gödel's β-function, 113
Gödel's Completeness Theorem, 53
Gödel's First Incompleteness Theorem, 133
Gödel's Second Incompleteness
Theorem, 140
Goodstein sequence, 22
Halting Problem, 111
Hausdorff's Theorem, 26
height of a formula, 37
height of a term, 36
Henkin witnesses, 54
Herbrand normal form, 62
hereditarily definable set, 176
Hessenberg's Theorem, 17
\aleph-hierarchy, 16, 154
Hilbert's Nullstellensatz, 81
Hindman's Theorem, 28
idempotent ultrafilter, 29
inaccessible cardinal, 166
inconsistent theory, 50
indiscernible sequence, 88
inductive set, 14
infimum, 3
infinity axiom, 152
interpretation of a symbol, 35
isomorphism of ordered sets, 5
isomorphism of structures, 35
König's Lemma, 27
König's Theorem, 19
Kalmár elementary functions, 115
Kleene normal form, 106
Kleene's Fixed Point Theorem, 108
language, 34
largest element, 3
Lefschetz Principle, 80
length of a word, 36
limit ordinal,
literal, 59
Loeb's axioms, 139
logical axioms,48
logical consequence of a theory, 48
logical symbols, 34
logically equivalent formulas, 62,73
Łos's Theorem, 84
lower bound, 3
maximal element, 3
minimal element, 3
model of a theory, 48
modus ponens, 49
Mostowski collapse, 173
non-principal ultrafilter, 25
Omitting Types Theorem, 63
order topology, [23
ordered sum, 5
ordinal, 7
ordinal addition, 11
ordinal definable set, 176
ordinal exponentiation, 13
ordinal multiplication, 12
overspill Lemma, 130
pairing axiom, 149
partial function, 97
partial order, 3
partial recursive function, 97
Peano axioms, 125
power set axiom, 150
prenex normal form, 62
Presburger arithmetic, 141
primitive recursive function, 90
primitive recursive set, 91
principal ultrafilter, 25
quantifier axioms, 47
quantifier elimination, 77
Ramsey's Theorem, 58
rank of a set, 158
recursive function, 97
\#-recursive function, 113
recursive theory, 122
recursively axiomatizable theory, 122
recursively enumerable set, 109
reduct of a structure, 15
reflection principle, 174
refutable, 59
regular cardinal, 21
relation symbol, 34
relative consistency, 162
relativization, 163
replacement axiom scheme, 151
representability Theorem, 128
reverse lexicographic product, 5
Rice's Theorem, 112
root, 27
satisfaction of a formula, 39
sentence, 38
set represented by a formula, 128
signature, 34
simple diagram, 71
situation of a Turing machine, 104
Skolem's Paradox, 157
smallest element, 3
Solovay's Theorem, 24
strong limit cardinal, 166
structure, 35
subformula, 62
subnumerous, 3
substitution, 41
successor ordinal,
supremum, 3
Tarski's Theorem on the
Non-definability of Truth, 132
Tarski-Vaught Test, 67
tautology, 46
Tenenbaum's Theorem, 143
term, 36
Theorem of the Complement, 111
theory, 48
total order, 3
transfinite induction, 10, 153
transitive set, $]^{\square}$
tree, 27
Turing computable partial function, 100
Turing machine, 98
Ulam matrix, 23
Ulam's Theorem, 23
ultrafilter, 25
undecidability of the predicate calculus, 132
union axiom, 150
unique reading of formulas, 37
unique reading of terms, 36
universal partial recursive function, 108
universally valid, 45
universe, 147
upper bound, 3
Upward Löwenheim-Skolem Theorem, 71

Vaught's Criterion, 83
von Neumann hierarchy, 155
well-founded, 4
well-order, 4
word, 36
Zermelo axioms, 175
Zermelo's Theorem, 14
Zermelo-Fraenkel axioms, 148
Zorn's Lemma, 14

Selected Published Titles in This Series

89 Martin Hils and François Loeser, A First Journey through Logic, 2019
88 M. Ram Murty and Brandon Fodden, Hilbert's Tenth Problem, 2019
87 Matthew Katz and Jan Reimann, An Introduction to Ramsey Theory, 2018
86 Peter Frankl and Norihide Tokushige, Extremal Problems for Finite Sets, 2018
85 Joel H. Shapiro, Volterra Adventures, 2018
84 Paul Pollack, A Conversational Introduction to Algebraic Number Theory, 2017
83 Thomas R. Shemanske, Modern Cryptography and Elliptic Curves, 2017
82 A. R. Wadsworth, Problems in Abstract Algebra, 2017
81 Vaughn Climenhaga and Anatole Katok, From Groups to Geometry and Back, 2017
80 Matt DeVos and Deborah A. Kent, Game Theory, 2016
79 Kristopher Tapp, Matrix Groups for Undergraduates, Second Edition, 2016
78 Gail S. Nelson, A User-Friendly Introduction to Lebesgue Measure and Integration, 2015
77 Wolfgang Kühnel, Differential Geometry: Curves - Surfaces Manifolds, Third Edition, 2015
76 John Roe, Winding Around, 2015
75 Ida Kantor, Jiří Matoušek, and Robert Šámal, Mathematics++, 2015
74 Mohamed Elhamdadi and Sam Nelson, Quandles, 2015
73 Bruce M. Landman and Aaron Robertson, Ramsey Theory on the Integers, Second Edition, 2014
72 Mark Kot, A First Course in the Calculus of Variations, 2014
71 Joel Spencer, Asymptopia, 2014
70 Lasse Rempe-Gillen and Rebecca Waldecker, Primality Testing for Beginners, 2014
69 Mark Levi, Classical Mechanics with Calculus of Variations and Optimal Control, 2014
68 Samuel S. Wagstaff, Jr., The Joy of Factoring, 2013
67 Emily H. Moore and Harriet S. Pollatsek, Difference Sets, 2013

The aim of this book is to present mathematical logic to students who are interested in what this field is but have no intention of specializing in it. The point of view is to treat logic on an equal footing to any other topic in the mathematical curriculum. The book starts with a presentation of naive set theory, the theory of sets that mathematicians use on a daily basis. Each subsequent chapter presents one of the main areas of mathematical logic: first order logic and formal proofs, model theory, recursion theory, Gödel's incompleteness theorem, and, finally, the axiomatic set theory. Each chapter includes several interesting highlights - outside of logic when possibleeither in the main text, or as exercises or appendices. Exercises are an essential component of the book, and a good number of them are designed to provide an opening to additional topics of interest.

For additional information and updates on this book, visit www.ams.org/bookpages/stml-89

