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Introduction

The aim of this book, which originates from a course that we taught suc-
cessively at ÉcoleNormale Supérieure (FL in 2007-2010 andMH in 2010-
2013), is to present a broad panorama of Mathematical Logic to students
who feel curious about this field but have no intent to specialize in it. As
a consequence we have deliberately chosen not to write another com-
prehensive textbook, of which there already exist quite a few excellent
ones, but instead to deliver a slim text which provides direct routes to
some significant results of general interest.

Our point of view is to treat Logic on an equal footing to any other
topic in themathematical curriculum. Since one does not have to define
natural numbers when teaching Number Theory, or sets when teaching
Analysis, why should we in a Logic course? For this reason we start the
book with a presentation of naive Set Theory, that is, the theory of sets
that mathematicians use on a daily basis. It is only in the last chapter
that we discuss the Zermelo-Fraenkel axioms, which in fact most math-
ematicians who are not Set Theorists or teaching a logic course are not
so familiar with.

In each chapter we have tried to present at least a few juicy high-
lights, outside Logic whenever possible, either in the main text, or as ex-
ercises or appendices. We consider exercises as an essential component
of the book, and we encourage the reader to work them out thoroughly;
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x Introduction

they should be seen not only as a tool to check that the course is correctly
assimilated, but also as a way to provide an opening to additional topics
of interest.

The book is organized as follows. In the first chapter, in addition to
the basic theory of ordinal and cardinal numbers, we cover more exotic
topics like Goodstein sequences, infinite combinatorics (clubs and Solo-
vay’s Theorem) and Hindman’s Theorem (a striking result in additive
combinatorics). In Chapter 2 we introduce First-order Logic and for-
mal proofs. We prove Gödel Completeness via Henkin witnesses. Craig
Interpolation and Beth Definability are treated in exercises. The next
chapter delves deeper inside Model Theory, with detailed coverage of
Quantifier Elimination. In particular we prove Quantifier Elimination
for algebraically closed fields, which allows one to state and prove the
Lefschetz Principle in Algebraic Geometry and Ax’s Theorem on surjec-
tivity of injective polynomialmappings. Chapter 4 is devoted to basic Re-
cursion Theory and culminates with the existence of universal recursive
functions, undecidability of the Halting Problem and Rice’s Theorem.
In Chapter 5 we prove the classical undecidability and incompleteness
results of Tarski andChurch andprovide a complete proof ofGödel’s Sec-
ond Incompleteness Theorem which we found in Martin Ziegler’s book
[13]. We also present, as an exercise, a theorem of Tennenbaum about
the inexistence of non-standard countable recursive models of Peano.
Finally in Chapter 6 we develop Axiomatic Set Theory, including the
Reflection Principle and some proofs of independence and relative con-
sistency.

This book is intended towards advanced undergraduate students,
graduate students at any stage, or working mathematicians, who seek a
first exposure to core material of mathematical logic and some of its ap-
plications. Prerequisites are minimal: besides familiarity with abstract
reasoning and basic mathematical concepts, some acquaintance with
General Topology and Algebra, especially Field Theory, is required at
various places.

For the interested reader, here are a few suggestions for further read-
ing, providing more comprehensive and advanced material, ordered by
increasing difficulty:
Model Theory: The books byMarker [8], Poizat [9] and Tent-Ziegler [12].
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Set Theory: The books by Krivine [6], Kunen [7] and Jech [5].
Recursion Theory: The books by Cooper [1], Rogers [10] and Soare [11].
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