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Preface

This book serves as both an introduction to discrete Morse theory and
a general introduction to concepts in topology. I have tried to present
the material in a way accessible to undergraduates with no more than
a course in mathematical proof writing. Although some books such as
[102, 132] include a single chapter on discrete Morse theory, and one
[99] treats both smooth and discrete Morse theory together, no book-
length treatment is dedicated solely to discrete Morse theory. Discrete
Morse theory deserves better: It serves as a tool in applications as varied
as combinatorics [16, 41, 106, 108], probability [57], and biology [136].
More than that, it is fascinating and beautiful in its own right. Discrete
Morse theory is a discrete analogue of the “smooth” Morse theory de-
veloped in Marston Morse’s 1925 paper [124], but it is most popularly
known via John Milnor [116]. Fields medalist Stephen Smale went so
far as to call smooth Morse theory “the single greatest contribution of
American mathematics” [144]. This beauty and utility carries over to
the discrete setting, as many of the results, such as the Morse inequali-
ties, have discrete analogues. Discrete Morse theory not only is topolog-
ical but also involves ideas from combinatorics and linear algebra. Yet it
is easy to understand, requiring no more than familiarity with basic set
theory and mathematical proof techniques. Thus we find several online
introductions to discrete Morse theory written by undergraduates. For

ix
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example, see the notes of Alex Zorn for his REU project at the University
of Chicago [158], Dominic Weiller’s bachelor’s thesis [150], and Rachel
Zax’s bachelor’s thesis [156].

From a certain point of view, discrete Morse theory has its founda-
tions in the work of J. H. C. Whitehead [151,152] from the early to mid-
20th century, whomade the deep connection between simple homotopy
and homotopy type. Building upon this work, Robin Forman published
the original paper introducing andnaming discreteMorse theory in 1998
[65]. His extremely readableA user’s guide to discrete Morse theory is still
the gold standard in the field [70]. Forman published several subsequent
papers [66, 68–71] further developing discrete Morse theory. The field
has burgeoned andmatured since Forman’s seminal work; it is certainly
established enough to warrant a book-length treatment.

This book further serves as an introduction, or more precisely a first
exposure, to topology, one with a different feel and flavor from other
introductory topology books, as it avoids both the point-set approach
and the surfaces approach. In this text, discrete Morse theory is applied
to simplicial complexes. While restriction to only simplicial complexes
does not expose the full generality of discrete Morse theory (it can be de-
fined on regular CW complexes), simplicial complexes are easy enough
for any mathematically mature student to understand. A restriction to
simplicial complexes is indeed necessary for this book to act as an expo-
sure to topology, as knowledge of point-set topology is required to un-
derstand CW complexes. The required background is only a course in
mathematical proofs or an equivalent course teaching proof techniques
such as mathematical induction and equivalence relations. This is not a
book about smooth Morse theory either. For smooth Morse theory, one
can consult Milnor’s classic work [116] or a more modern exposition in
[129]. A discussion of the relations between the smooth and discrete
versions may be found in [27,29,99].

One of the main lenses through which the text views topology is ho-
mology. A foundational result in discrete Morse theory consists of the
(weak) discrete Morse inequalities; it says that if 𝐾 is a simplicial com-
plex and 𝑓∶ 𝐾 → ℝ a discrete Morse function with𝑚𝑖 critical simplices
of dimension 𝑖, then 𝑏𝑖 ≤ 𝑚𝑖 where 𝑏𝑖 is the 𝑖th Betti number. To prove
this theorem and do calculations, we use 𝔽2-simplicial homology and
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build a brief working understanding of the necessary linear algebra in
Chapter 3. Chapter 1 introduces simplicial complexes, collapses, and
simple homotopy type, all of which are standard topics in topology.

Any book reflects the interests and point of view of the author. Com-
bining this with space considerations, I have regrettably had to leave
much more out than I included. Several exclusions are worth mention-
ing here. Discrete Morse theory features many interesting computa-
tional aspects, only a few of which are touched upon in this book. These
include homology and persistent homology computations [53, 80, 82],
matrix factorization [86], and cellular sheaf cohomology computations
[48]. Mathematicians have generalized and adapted discrete Morse the-
ory to various settings. Heeding a call from Forman at the end ofAuser’s
guide to discreteMorse theory [70], several authors have extended discrete
Morse theory to certain kinds of infinite objects [8, 10, 12, 15, 105]. Dis-
creteMorse theory has been shown to be a special case [155] of Bestvina-
Brady discrete Morse theory [34,35] which has extensive applications in
geometric group theory. There is an algebraic version of discrete Morse
theory [87, 102, 142] involving chain complexes, as well as a version for
random complexes [130]. E. Minian extended discrete Morse theory to
include certain collections of posets [118], and B. Benedetti developed
discrete Morse theory for manifolds with boundary [28]. There is also
a version of discrete Morse theory suitable for reconstructing homotopy
type via a certain classifying space [128]. K. Knudson and B. Wang have
recently developed a stratified version of discrete Morse theory [100].
The use of discrete Morse theory as a tool to study other kinds of mathe-
matics has proved invaluable. It has been applied to study certain prob-
lems in combinatorics and graph theory [16, 41, 49, 88, 106, 108] as well
as configuration spaces and subspace arrangements [60, 122, 123, 139].
It is also worth noting that before Forman, T. Banchoff also developed
a discretized version of Morse theory [17–19]. This, however, seemed
to have limited utility. E. Bloch found a relationship between Forman’s
discrete Morse theory and Banchoff’s [36].

I originally developed these ideas for a course in discrete Morse the-
ory taught at Ursinus College for students whose only prerequisite was
a proof-writing course. An introductory course might cover Chapters 1–
5 and Chapter 8. For additional material, Chapters 6 and 9 are good
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choices for a course with students who have an interest in computer
science, while Chapters 7 and 10 are better for students interested in
pure math. Some of the more technical proofs in these chapters may
be skipped. Amore advanced course could begin at Chapter 2 and cover
the rest of the book, referring back to Chapter 1 when needed. This book
could also be used as a supplemental text for a course in algebraic topol-
ogy or topological combinatorics, an independent study, or a directed
study, or as the basis for an undergraduate research project. It is also in-
tended for research mathematicians who need a primer in or reference
for discreteMorse theory. This includes researchers in not only topology
but also combinatorics who would like to utilize the tools that discrete
Morse theory provides.

Exercises and Problems
The structure of the text reflectsmy philosophy that “mathematics is

not a spectator sport” and that the best way to learnmathematics is to ac-
tively do mathematics. Scattered throughout each chapter are tasks for
the reader to work on, labeled “Exercise” or “Problem.” The distinction
between the two is somewhat artificial. The intent is that an Exercise is
a straightforward application of a definition or a computation of a sim-
ple example. A Problem is either integral to understanding, necessary
for other parts of the book, or more challenging. The level of difficulty
of the Problems can vary substantially.

A note on the words “easy,” “obvious,” etc.
In today’s culture, we often avoid using words such as “easily,”

“clearly,” “obviously,” and the like. It is thought that these words can
be stumbling blocks for readers who do not find it clear, causing them
to become discouraged. For that reason, I have attempted to avoid using
these words in the text. However, the text is not completely purged of
such words, and I would like to convey what I mean when I use them.
I often tell my students that a particular mathematical fact is “easy but
it is very difficult to see that it is easy.” By this I mean that one may
need to spend a significant amount of time struggling to understand the
meaning of the claim before it “clicks.” So when the reader sees words
like “obviously,” she should not despair if it is not immediately obvious
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to her. Rather, the word is an indication that should alert the reader to
write down an example, rewrite the argument in her ownwords, or stare
at the definition until she gets it.

Erratum
A list of typos, errors, and corrections for the book will be kept at

http://webpages.ursinus.edu/nscoville/DMTerratum.html.
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Notation and symbol
index

(𝕜∗, 𝜕∗), 89
(𝑓𝑖)∗, 197
∗, 22
𝐵𝑆(𝑣, 𝑒), 242
𝐵𝑓𝑖 (𝑘), 118
𝐶𝐾, 23
𝐷, 25
𝐷𝑓, 145
𝐹𝑒, 242
𝐺 = (𝑀,𝐶), 228
𝐻𝜍,𝜏
𝑝 , 144

𝐻𝑖(𝐾), 92
𝐾(𝑐), 112
𝐾 ∗ 𝐿, 35
𝐾 − {𝑣}, 236
𝐾 ≈ 𝐿, 240
𝐾 ∼ 𝐿, 31
𝐾 𝑖, 19
𝐾0, 240
𝐾𝑖, 87
𝐿𝑖,𝑗(𝐺), 183
𝑃2, 24

𝑃𝑛𝑖 , 150
𝑆𝑛, 22
𝑇2, 23
𝑇𝑛
𝑖 , 152
𝑉(𝐾), 17
𝑉 ≅ 𝑊 , 199
𝑉𝑓, 57
𝑉𝑝(𝜎), 188
[𝛼, 𝛽], 70
[𝑣𝑛], 17
⟨⋅⟩, 21
𝕜𝑛, 84
𝕜Φ∗ (𝐾), 195
𝕜Φ𝑝 (𝐾), 195
Δ𝑛, 22
𝔽2, 83
Γ𝑓, 153
ℋ𝑉 , 66
ℳ 𝑖

𝑝, 201
Φ∞(𝑐), 196
Φ𝑝, 190
Σ𝐾, 36
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̄𝑓, 143
𝛽𝜍,𝜏𝑝 , 144
𝜎, 19
𝜒(𝐾), 30
dim(𝐾), 19
Im(𝐴), 85
ker(𝐴), 85
←𝑉 , 138
link𝐾(𝑉), 166
ℋ(𝑖), 64
ℋ𝐾 , 64
𝒦, 25
ℳ, 26
ℳ(𝐾), 171
ℳ𝑃(𝐾), 179
𝒫([𝑣𝑛]), 22
ℛ(𝜎), 178
𝒮(ℛ), 179
low(𝑗), 126
maxf0(𝜎), 210
↗, 31
↗↗, 237
null(𝐴), 85
⊕, 96
ℝ, 145
𝜕𝐾(𝜎) (of a simplex), 21
𝜕𝑖 (linear transformation), 89
≺, 138
≺𝑉 , 138
≺𝑓, 139
rank(𝐴), 85

𝑔||𝐾 , 74
scat(𝐾), 250
scat(𝑓), 249
scrit(ℳ), 244
scrit(𝑓), 245
↘, 31
↘↘, 237
𝜎_, 144
𝜎(𝑖), 20
𝜎0 → 𝜎1 →⋯→ 𝜎𝑛, 60
star𝐾(𝑣), 166
𝜏 < 𝜎, 19
0⃗, 83
⃗𝑐𝐾 , 19
⃗𝑓, 74

𝑏𝑖(𝐾), 92
𝑐(𝑀), 157
𝑐𝑖, 19
𝑑(𝑓, 𝑔), 134
𝑑𝐵(𝑋, 𝑌), 146
𝑒𝑝(𝐴), 158
𝑓 ∼ 𝑔, 239
𝑓 ∼𝑐 𝑔, 238
𝑔 ≤ 𝑓, 175
ℎ𝑡, 107
𝑖𝜍,𝜏, 144
𝑚𝑓
𝑖 , 74

(𝑛
𝑘
), 27

𝑣0𝑣1⋯𝑣𝑛, 20
2–1, 44
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𝑉 -path, 60, 109–111, 159, 217
closed, 61, 65
extending, 110
maximal, 61
non-trivial, 60

𝑛-simplex, 22, 31, 34, 159, 164,
181

generalized discrete Morse
function, 72

is collapsible, 37
not a Morse complex, 176
perfect discrete Morse
function, 105

𝑛-sphere, 22, 31, 34
Betti numbers, 98
perfect discrete Morse
function, 105

two critical simplices, 55

algorithm
B-L algorithm
detects collapsibility, 78

B-L algorithm, 76
Cancel, 217

ExtractCancel, 218
ExtractRaw, 216
for discrete Morse matching,
228

Hasse diagram, 224
Argentinean complex, 238,

246, 250, 255

Betti number, 92, 98, 118, 158,
205, 221

bounded by evaders, 166
is an invariant, 96
of 𝑆2, 95
of collapsible complex, 97
of punctured spheres, 99
of spheres, 98
relation to critical simplices,
101

relation to Euler
characteristic, 95

binomial coefficient, 27, 28
Björner’s example, 26
homology, 208

Boolean function, 149
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constant, 152
evasive, 151, 152
hider, 149
induced simplicial complex,
154

monotone, 152, 154
projection, 150, 154, 159
seeker, 149
threshold, 152, 153, 155, 156

boundary
of a simplex, 21, 87, 89

boundary operator, 89, 90, 95,
190, 195, 197

commutes with flow, 193
twice is 0, 91

canceling critical simplices,
106, 110, 217

categorical cover, 249, 251
chain, 88, 197
chain complex, 88, 195, 197,

202
split, 96, 97
subchain complex, 96, 97

chain map, 197, 198
collapse, 31, 32, 37, 42, 76, 96,

115, 116, 159, 160, 164,
234, 240

strong, 236, 237
collapse theorem, 115, 121, 141
generalized, 116
strong, 247, 254

collapsible, 74, 78, 105, 181
Betti numbers, 97
does not imply nonevasive,
167

one critical simplex, 55

strongly, 237, 241, 254
one critical simplex, 248

commutative diagram, 197, 252
consistent, see also gradient

vector field, consistent
with discrete Morse
function

contiguity, 252
contiguity class, 239
of a point, 239
of the identity, 239

contiguous, 238
with the identity, 240

critical complex, 188, 201, 204,
220, 223

homology, 203
CW complex, 103

decision tree algorithm, 155,
158

complexity, 157
evader, 157, 164
induced gradient vector
field, 159

discrete Morse function
pseudo-discrete Morse
function
linear combination, 137

discrete Morse function, 48, 77,
108

excellent
homological sequence,
121

all simplices critical, 52
basic, 44, 47, 50, 52, 55, 106,
123
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consistent with a gradient
vector field, 137

consistent with a gradient
vector field, 135, 137, 141

critical simplex, 46, 51, 53,
62, 112, 189
at least one, 53

critical value, 46, 51
excellent, 55, 55, 120
flat, 106, 120, 137, 245
flat pseudo-discrete Morse
function, 141

flattening, 106, 120, 142, 143
generalized, 71, 116, 247
sum of, 73

Hasse equivalent, 171
level subcomplex, 112, 118
optimal, 74, 76, 78, 104, 204,
220
not unique, 76

perfect, 104, 105, 119, 182
non-existence of, 105

primitive, 174
compatible, 175

pseudo-discrete Morse
function, 135, 137

pure, 143
regular simplex, 46, 51
regular value, 46, 51
strong, 245, 254
critical object, 254
sum of, 247

weakly increasing, 44
discrete Morse graph, 228, 229
discrete Morse inequalities
strong, 103, 104, 205
weak, 101, 104, 165, 187

discrete Morse matching, 170,
171, 213, 222, 228

critical object, 244
critical pair, 242
index, 244

critical simplex, 244
strong, 244
trivial, 228

discrete Morse spectrum, 77
discrete Morse vector, 74, 77,

104
of collapsible complex, 74

discrete vector field, 58, 68, 159
generalized, 71, 116
induced partial order, 138
not a gradient vector field, 59
relation to gradient vector
field, 61, 69

relation to Hasse diagram, 68
distance, 134
between discrete Morse
functions, 134, 143, 147

Dunce cap, 25, 38, 105
Betti number, 95
not collapsible, 38

Euler characteristic, 28, 30, 38,
251

invariance of, 33
of Δ𝑛, 31
of 𝑛-sphere, 31
of a graph, 182
of a point, 35
of suspension, 37
relation to Betti numbers, 95
relation to critical simplices,
101
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exclusion lemma, 49, 52, 58,
115, 178, 213

expansion, 31, 32, 96, 164
strong, 237

filtration, 123
flow, 190
commutes with boundary,
193

stabilize, 191, 192, 193, 195,
199

flow complex, 195, 198
homology of, 199

Forman equivalence, 53, 69,
108, 171

relation to gradient vector
field, 62

with a 1–1 discrete Morse
function, 55, 102

with a flat discrete Morse
function, 106

free pair, 31, 42

gradient vector field, 43, 56, 57,
62, 107–109, 111, 135, 170,
188

consistent with discrete
Morse function, 137

arrow, 57, 58
consistent with discrete
Morse function, 135, 137,
141

counting maximum, 184
critical simplex, 58
gradient path, 60, 217
head, 42, 57, 57, 58, 189, 213

induced by decision tree
algorithm, 159

matching, 57
maximum, 182, 183, 184
minimal, 141, 141, 142
tail, 42, 57, 57, 58, 189, 213

graph, 23, 30, 49, 56, 69
adjacent, 183
complete graph, 251
connected, 177
counting spanning trees, 184
degree, 183
edge, 177
forest, 178, 251
root, 178

Laplacian, 183, 185
Morse complex, 176
perfect discrete Morse
function, 105

rooted forest, 178, 178
spanning tree, 182
subgraph, 251
tree, 45, 177, 181
leaf, 159, 181

vertex, 177

Hasse diagram, 64, 71, 139,
170, 223, 228, 242

algorithm to construct, 224
directed, 66, 69, 170, 171,
214, 221

directed cycle, 67, 68
downward, 66, 228
Forman vector, 242
is poset, 64
level, 64, 68
matching, 169, 171
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acyclic, 169, 171, 228
node, 64, 228
strong vector, 242, 244
upward, 66, 223, 228

Hasse equivalent, 171
heresy, 157
homological sequence
of excellent discrete Morse
function, 121

homological equivalence, 119,
123, 143

homological sequence, 118, 129
does not imply Forman
equivalence, 120

homology, 197, 199
critical complex, 203, 205
removing a facet, 98
simplicial, 81, 92

homotopy
between flat pseudo-discrete
Morse functions, 147

of discrete Morse functions,
107, 109, 135

straight-line, 107, 147

identity map, 198, 198, 240
inclusion, see also linear

transformation/simplicial
map, inclusion

index of a pair, 157, 244
interval, 70, 247
singular, 71, 116

invariant, 33, 33, 97
of strong homotopy type, 254

iterated discrete Morse
decomposition, 230

join, see also simplicial
complex, join

Kirchoff’s theorem, 184
Klein bottle, 25
homology, 205

linear extension, 139
linear transformation, 84, 88,

124, 197, 198
image, 95, 197
inclusion, 144, 198
kernel, 85, 95, 197
nullity, 85, 92, 197
rank, 85, 92, 197
invariant under row
operations, 85

well-defined, 198
lower star filtration, 210

Möbius band, 26, 35, 48, 108
matrix
eigenvalue, 184
leading coefficient, 85
row echelon form, 85

maximizer, 195, 196, 202
Morse complex, 171, 175
bijection with rooted forest,
178

of a tree is collapsible, 181
of rooted forest, 177
pure, 179, 181, 183
counting facets, 184
counting facets, 183

Morse matching, see also
discrete Morse matching

multiset, 145
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individual elements, 146
multiplicity, 145

partially ordered set, see also
poset

Pascal’s rule, 28
persistence, 213
persistent homology, 124, 144
birth, 127
bar code, 128
Betti number, 144
birth, 144
bottleneck distance, 146, 147
death, 127, 144
persistence diagram, 132,
145
well-defined, 145

persistence pair, 144
point at infinity, 132, 144

poset, 63, 63, 64, 138, 139
consistent, 139, 142

projective plane, 24
homology, 207

rank-nullity theorem, 85, 95, 98
restriction of a function, 74,

102, 195, 201, 249

simple homotopy type, 34
simple homotopy type, 31,

32–34, 37, 95, 97, 176
of Δ𝑛, 37
of a point, 31, 35
of cone, 37
of spheres, 98

simplex
codimension, 21

boundary, 21, 22, 89, 228
codimension, 22, 125
coface, 19, 31, 49
critical, 55, 62, 71, 101, 115,
193

face, 19, 31
facet, 21, 21, 181, 223, 239
join, 212
regular, 52

simplicial category
of a complex, 250, 254
of a map, 249, 252
of Argentinean complex, 255
of suspension, 251
of union, 254

simplicial complex, 17
𝑐-vector, 19, 20, 30, 74
collapsible, 35, 36, 37, 116,
166

cone, 23, 36
is collapsible, 36

core, 240, 241
is unique, 241

covering, 249
dimension, 19, 20, 33
evasive, 157, 167
facet, 21, 77, 98, 183, 184, 235
generated by simplex, 19, 22,
250

generated by simplices, 22,
22

induced by Boolean
function, 153, 154

isomorphic, 241
isomorphism, 240, 241
join, 35
minimal, 239, 240
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nonevasive, 157, 166
implies collapsible, 166

pure, 179
simplex, 19
skeleton, 19
subcomplex, 19, 22, 123
maximal, 210

suspension, 36, 37, 251
vertex, 17
dominate, 235, 236, 239,
240, 255

link, 166, 210
lower link, 210
star, 166, 210

vertex set, 17, 19, 33
simplicial map, 234, 235–237,

239
inclusion, 234, 240
null-homotopic, 239, 250
retraction, 236
strong homotopy
equivalence, 240, 241, 254

stability theorem, 147

strong homotopy type, 237,
240, 241

of a point, 237, 241
strongly homotopic, 239, 252

topological sorting, 229
torus, 23, 30, 47, 58
total ordering, 124, 160, 229
strict, 138, 140

triangle inequality, 135, 148

uniform norm, 134

vector space, 81, 83, 188, 197
basis element, 84
chain, 88, 89
dimension, 84
direct sum, 96
generated by set, 84, 88
isomorphic, 199
isomorphism, 198, 201, 203
linear combination, 84, 193,
195

vertex refinement, 116



Discrete Morse theory is a powerful tool combining 
ideas in both topology and combinatorics. Invented 
by Robin Forman in the mid 1990s, discrete Morse 
theory is a combinatorial analogue of Marston 
Morse’s classical Morse theory. Its applications are 
vast, including applications to topological data 
analysis, combinatorics, and computer science.

This book, the first one devoted solely to discrete Morse theory, serves 
as an introduction to the subject. Since the book restricts the study 
of discrete Morse theory to abstract simplicial complexes, a course in 
mathematical proof writing is the only prerequisite needed. Topics 
covered include simplicial complexes, simple homotopy, collapsibility, 
gradient vector fields, Hasse diagrams, simplicial homology, persistent 
homology, discrete Morse inequalities, the Morse complex, discrete 
Morse homology, and strong discrete Morse functions. Students of 
computer science will also find the book beneficial as it includes topics 
such as Boolean functions, evasiveness, and has a chapter devoted to 
some computational aspects of discrete Morse theory. The book is 
appropriate for a course in discrete Morse theory, a supplemental text 
to a course in algebraic topology or topological combinatorics, or an 
independent study.
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