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Preface

Many excellent books are devoted entirely or in part to the founda-

tions of the theory of symmetric functions, including the books of

Loehr [Loe17], Macdonald [Mac15], Mendes and Remmel [MR15],

Sagan [Sag01], and Stanley [Sta99]. These books approach symmet-

ric functions from several different directions, assume various amounts

of preparation on the parts of their readers, and are written for a va-

riety of audiences. This book’s primary aim is to make the theory

of symmetric functions more accessible to undergraduates, taking a

combinatorial approach to the subject wherever feasible, and to show

the reader both the core of the subject and some of the areas that are

active today.

We assume students reading this book have taken an introduc-

tory course in linear algebra, where they will have seen bases of vector

spaces, transition matrices between bases, linear transformations, and

determinants. We also assume readers have taken an introductory

course in combinatorics, where they will have seen (integer) parti-

tions and their Ferrers diagrams, binomial coefficients, and ordinary

generating functions. For those who would like to refresh their mem-

ories of some of these ideas or who think there might be gaps in

their linear algebraic or combinatorial background, we have included

summaries of the ideas from these areas we will use most often in

the appendices. In particular, we have included explanations of dual

ix
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bases and the relationship between determinants and permutations,

since these will play important roles at key moments in our study of

symmetric functions, and they may not appear in a first course in

linear algebra.

Symmetric functions have deep connections with abstract alge-

bra and, in particular, with the representation theory of the sym-

metric group, so it is notable that we do not assume the reader

has any familiarity with groups. Indeed, we develop the one alge-

braic fact we need—that each permutation is a product of adjacent

transpositions—from scratch in Appendix C. Leaving out the re-

lationship between symmetric functions and representations of the

symmetric group makes the book accessible to a broader audience.

But to see the subject whole, one must also explore the relationship

between symmetric functions and representation theory. So we en-

courage interested students, after reading this book, to learn about

representations of the symmetric group, and how they are related to

symmetric functions. Two sources for this material are the books of

James [Jam09] and Sagan [Sag01].

As in other areas of mathematics, over the past several decades

the study of symmetric functions has benefited from the use of com-

puters and from the dramatic increase in the amount of available

computing power. Indeed, many contemporary symmetric functions

researchers use software, such as Maple, Mathematica, and SageMath,

for large symmetric functions computations. These computations, in

turn, often lead to new conjectures, new ideas, and new directions for

exploration.

We take a dual approach to the use of technology in the study of

symmetric functions. On the one hand, we do not assume the reader

has any computer technology available at all as they read: a patient

reader will be able to work out all of the examples, solve all of the

problems, and follow all of the proofs without computer assistance.

On the other hand, we encourage readers to become proficient with

some kind of symmetric functions software. Specific programs and

platforms come and go, so we do not recommend any platform or

software in particular. But we do recommend that you find a way to

have your computer do your symmetric functions computations for

you and to use it to explore the subject.
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Many of the main results in the theory of symmetric functions

can be understood in several ways, and they have a variety of proofs.

Whenever possible, we have given a proof using combinatorial ideas.

In particular, we use families of lattice paths and a tail-swapping

involution to prove the Jacobi–Trudi identities, we use the Robinson–

Schensted–Knuth (RSK) correspondence to prove Cauchy’s formula,

and we use RSK insertion, jeu de taquin, and Knuth equivalence

to prove the Littlewood–Richardson rule. The study of symmetric

functions can motivate these ideas and constructions, but we find

(and we think the reader will find) they are rich and elegant, and

they will reward study for its own sake.

The study of symmetric functions is old, dating back at least

to the study of certain determinants in the mid- to late-nineteenth

century, but it remains an active area of research today. While our

primary goal is to introduce readers to the core results in the field,

we also want to convey a sense of some of the more recent activity

in the area. To do this, we spend Chapter 5 looking at three areas

of contemporary research interest. In Section 5.1 we introduce skew

Schur functions, and we discuss the problem of finding pairs of skew

tableaux with the same skew Schur function. In Sections 5.2 and

5.3 we introduce the stable and dual stable Grothendieck functions,

which are analogues of the Schur functions. Finding analogues of re-

sults about Schur functions for these symmetric functions is a broad

and lively area of current research. Finally, in Section 5.4 we discuss

Stanley’s chromatic symmetric functions. These symmetric functions,

which are defined for graphs, are the subject of at least two longstand-

ing open questions first raised by Stanley. We introduce one of these

questions, which is whether there are two nonisomorphic trees with

the same chromatic symmetric function.

One of the best ways to learn mathematics is to do mathematics,

so in many cases we have tried to describe not only what a result says

and how we prove it, but also how we might find it. In particular,

we introduce several topics by raising a natural question, looking at

some small examples, and then using the results of those examples

to formulate a conjecture. This process often starts with questions

arising from linear algebra, which we then use combinatorial ideas

to answer, highlighting the way the two subjects interact to produce

new mathematics. We could use a different expository approach to
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cover the material more efficiently, but we hope this approach brings

the subject to life in a way a more concise treatment might not.

To get the most out of this book, we suggest reading actively, with

a pen and paper at hand. When we generate data to answer a ques-

tion, try to guess the answer yourself before reading ours. Generate

additional data of your own to support (or refute) your conjecture,

and to verify patterns you’ve observed. Similarly, we intend the ex-

amples to be practice problems. Trying to solve them yourself before

reading our solutions will strengthen your grasp of the core ideas, and

prepare you for the ideas to come.

Speaking of doing mathematics, we have also included a variety

of problems at the end of each chapter. Some of these problems are

designed to test and deepen the reader’s understanding of the ideas,

objects, and methods introduced in the chapter. Others give the

reader a chance to explore subjects related to those in the chapter,

that we didn’t have enough space to cover in detail. A few of the

problems of these types ask the reader to prove results which will be

used later in the book. Finally, some of the problems are there to

tell the reader about bigger results and ideas related to those in the

chapter. A creative and persistent reader will be able to solve many

of the problems, but those of this last type might require inventing

or reproducing entirely new methods and approaches.

This book has benefitted throughout its development from the

thoughtful and careful attention, ideas, and suggestions of a variety

of readers. First among these are the Carleton students who have

used versions of this book as part of a course or a senior capstone

project. The first of these students were Amy Becker ’11, Lilly Betke-

Brunswick ’11, Mary Bushman ’11, Gabe Davis ’11, Alex Evangelides

’11, Nate King ’11, Aaron Maurer ’11, Julie Michelman ’11, Sam

Tucker ’11, and Anna Zink ’11, who used this book as part of a senior

capstone project in 2010–11. Back then it wasn’t really a book; it

was just a skeletal set of lecture notes. Based on their feedback I

wrote an updated and more detailed version, which I used as a text

for a seminar in the combinatorics of symmetric functions in the fall

of 2013. The students in this seminar were Leo Betthauser ’14, Ben

Breen ’14, Cora Brown ’14, Greg Michel ’14, Dylan Peifer ’14, Kailee

Rubin ’14, Alissa Severson ’14, Aaron Suiter ’15, Jon Ver Steegh
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’14, and Tessa Whalen-Wagner ’15. Their interest and enthusiasm

encouraged me to add even more material and detail, which led to a

nearly complete version of the book in late 2018. In the winter and

spring of early 2019, Patty Commins ’19, Josh Gerstein ’19, Kiran

Tomlinson ’19, and Nick Vetterli ’19 used this version as the basis

for a senior capstone project. All three groups of students pointed

out various typographical errors, generously shared their comments,

criticisms, corrections, and suggestions, and suggested several ways

in which the material could be presented more clearly and efficiently.

I am grateful to all of them for their care, interest, and enthusiasm.

Also crucial in the development of this book were several other

readers who shared their ideas, corrections, and suggestions. Jeff

Remmel showed me the combinatorial approach I use to prove the

Murnaghan–Nakayama rule. Becky Patrias suggested including the

results involving stable and dual stable Grothendieck polynomials and

elegant tableaux. And several anonymous reviewers provided very

thorough and detailed comments, corrections, and suggestions. I am

grateful for the time and effort all of these people put in to improve

this book.

Finally, Eko Hironaka, senior editor of the AMS book program,

has been patiently but persistently encouraging me to finish this book

for longer than I care to admit. Thank you, Eko, for not giving up

on it.

In spite of everyone’s best efforts, it is likely some errors remain.

These are all mine. There are also undoubtedly still many ways this

book could be improved. You can find more information related to

the book, along with a list of known errors, at www.ericegge.net/cofsf.

I would very much like to hear from you: if you have comments or

suggestions, or find an error which does not already appear on the

list, please email me at eegge@carleton.edu. And thanks for reading!

Eric S. Egge

July 2019
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This book is a reader-friendly introduction 
to the theory of symmetric functions, and 
it includes fundamental topics, such as the 
monomial, elementary, homogeneous, and 
Schur function bases; the skew Schur functions; 
the Jacobi–Trudi identities; the involution Ω; 
the Hall inner product; Cauchy’s formula; the 
RSK correspondence and how to implement 

it with both insertion and growth diagrams; the Pieri rules; the 
Murnaghan–Nakayama rule; Knuth equivalence; jeu de taquin; and 
the Littlewood–Richardson rule. The book also includes glimpses 
of recent developments and active areas of research, including 
Grothendieck polynomials, dual stable Grothendieck polyno-
mials, Stanley’s chromatic symmetric function, and Stanley’s 
chromatic tree conjecture.  Written in a conversational style, 
the book contains many motivating and illustrative examples.  
Whenever possible it takes a combinatorial approach, using bijec-
tions, involutions, and combinatorial ideas to prove algebraic 
results. 

The prerequisites for this book are minimal—familiarity with 
linear algebra, partitions, and generating functions is all one needs 
to get started.  This makes the book accessible to a wide array of 
undergraduates interested in combinatorics.
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