
This book provides an elementary analytically 
inclined journey to a fundamental result of linear 
algebra: the Singular Value Decomposition (SVD). 
SVD is a workhorse in many applications of linear 
algebra to data science. Four important applications 
relevant to data science are considered throughout 
the book: determining the subspace that “best” 

approximates a given set (dimension reduction of a data set); � nding 
the “best” lower rank approximation of a given matrix (compression 
and general approximation problems); the Moore-Penrose pseudo-
inverse (relevant to solving least squares problems); and the orthogonal 
Procrustes problem (� nding the orthogonal transformation that most 
closely transforms a given collection to a given con� guration), as well as 
its orientation-preserving version.

The point of view throughout is analytic. Readers are assumed to have 
had a rigorous introduction to sequences and continuity. These are 
generalized and applied to linear algebraic ideas. Along the way to 
the SVD, several important results relevant to a wide variety of � elds 
(including random matrices and spectral graph theory) are explored: 
the Spectral Theorem; minimax characterizations of eigenvalues; and 
eigenvalue inequalities. By combining analytic and linear algebraic 
ideas, readers see seemingly disparate areas interacting in beautiful and 
applicable ways.
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Preface

A reasonable question for any author is the seemingly innocuous “Why
did you write it?” This is especially relevant for a mathematical text. Af-
ter all, there aren’t any new ground-breaking results here — the results
in this book are all “well-known.” (See for example Lax [24], Meckes and
Meckes [28], or Garcia and Horn’s [12].) Why did I write it? The simple
answer is, that it is a book that I wished I had hadwhen I finishedmy un-
dergraduate degree. I knew that I liked analysis and analytic methods,
but I didn’t know about the wide range of useful applications of analy-
sis. It was only after I began to teach analysis that I learned about many
of the useful results that can be proved by analytic methods. What do I
mean by “analytic methods”? To me, an analytic method is any method
that uses tools from analysis: convergence, inequalities, and compact-
ness being very common ones. That means that, from my perspective,
using the triangle inequality or the Cauchy-Schwarz-Bunyakovsky in-
equality means applying analytic methods. (As an aside, in grad school,
my advisor referred to himself as a “card-carrying analyst”, and so I too
am an analyst.)

A much harder question to address is: what does “useful” mean?
This is somewhat related to the following: when you hear a new result,
what is your first reaction? Is it “Why is it true?” or “What can I do with
it?” I definitely have the first thought, but many will have the second
thought. For example, I think the Banach Fixed Point Theorem is use-
ful, since it can be used to prove lots of other results (an existence and

xi



xii Preface

uniqueness theorem for initial value problems and the inverse function
theorem). But many of those results require yet more machinery, and so
students have to wait to see why the Banach Fixed Point Theorem is use-
ful until we have that machinery. On the other hand, after having been
told thatmath is useful for several years, students can be understandably
dubious when being told that what they’re learning is useful.

For the student: What should you get out of this book? First, a
better appreciation of the “applicability” of the analytic tools you have,
as well as a sense of how many of the basic ideas you know can be gen-
eralized. On a more itemized level, you will see how linear algebra and
analysis can be used in several “data science” type problems: determin-
ing how close a given set of data is to a given subspace (the “best” sub-
space problem), how to solve least squares problems (theMoore-Penrose
pseudo-inverse), how to best approximate ahigh rankobjectwith a lower
rank one (low rank approximation and the Eckart-Young-Mirsky Theo-
rem), and how to find the best transformation that preserves angles and
distances to compare a given data set to a reference one (the orthogonal
Procrustes problem). As you read the text, you will find exercises— you
should do them as you come to them, since they are intended to help
strengthen and reinforce your understanding, and many of them will be
helpful later on!

For the student and instructor: What is the topic here? The ex-
traordinary utility of linear algebra and analysis. And there are many,
many examples of that usefulness. One of the most “obvious” exam-
ples of the utility of linear algebra comes from Google’s PageRank Algo-
rithm, which has been covered extremely well by Langville and Meyer,
in [22] (see also [3]). Our main topic is the Singular Value Decomposi-
tion (SVD). To quote from Golub and Van Loan [13], Section 2.4, “[t]he
practical and theoretical importance of the SVD is hard to overestimate.”
There is a colossal number of examples of SVD’s usefulness. (See for
example the Netflix Challenge, which offered a million dollar prize for
improving Netflix’s recommendations by 10% and was won by a team
which used the SVD.) What then justifies (at least in this author’s mind)
another book? Most of the application oriented books do not provide
proofs (see my interest in “why is that true?”) of the foundational parts,
commonly saying “. . . as is well known . . . ” Books that go deeply into the
proofs tend more to the numerical linear algebra side of things, which
are usually oriented to the (incredibly important) questions of how
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to efficiently and accurately calculate the SVD of a given matrix. Here,
the emphasis is on the proof of the existence of the SVD, inequalities
for singular values, and a few applications. For applications, I have cho-
sen four: determining the “best” approximating subspace to a given col-
lection of points, compression/approximation by low-rank matrices (for
the operator and Frobenius norms), the Moore-Penrose pseudo-inverse,
and a Procrustes-type problem asking for the orthogonal transformation
that most closely transforms a given configuration to a reference con-
figuration (as well as the closely related problem that adds the require-
ment of preserving orientation). Proofs are provided for the solutions of
these problems, and each one uses analytic ideas (broadly construed).
So, what is this book? A showcase of the utility of analytic methods in
linear algebra, with an emphasis on the SVD.

What is it not? You will not find algorithms for calculating the SVD
of a given matrix, nor any discussion of efficiency of such algorithms.
Those questions are very difficult, and beyond the scope of this book.
A standard reference for those questions is Golub and Van Loan’s book
[13]. Another reference which discusses the history of and the current
(as of 2020) state of the art for algorithms computing the SVD is [9]. Dan
Kalman’s article [20] provides an excellent overview of the general idea
of the SVD, as well as references to applications. For a deeper look into
the history of the SVD, we suggest G. W. Stewart’s article [36]. In addi-
tion, while we do consider four applications, we do not go into tremen-
dous depth and cover all of the possible applications of the SVD. One
major application that we do not discuss is Principal Component Anal-
ysis (PCA). PCA is a standard tool in statistics and is covered in [15]
(among many other places, see also the references in [16]). SVD is also
useful in actuarial science, where it is used in the Lee - Carter method
[25] to make forecasts of life expectancy. One entertaining application
is in analyzing cryptograms, see Moler and Morrison’s article [30]. A
few more fascinating applications (as well as references to many, many
more) may be found in Martin and Porter’s article [26]. My first expo-
sure to the SVD was in Browder’s analysis text [6]. There, the SVD was
used to give a particularly slick proof that if 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is linear,
then 𝑚(𝑇(Ω)) = | det 𝑇|𝑚(Ω), where 𝑚 is Lebesgue measure and Ω is
any measurable set. The SVD can also be used for information retrieval,
see for example [3] or [42]. For more applications of linear algebra (not
“just” the SVD), we suggest Elden’s book [11], or Gil Strang’s book [37].
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Another book that shows some clever applications of linear algebra to
a variety of mathematical topics is Matousek’s book [27]. Finally, note
that I make no claim that the list of references is in any way complete,
and I apologize to the many experts whose works I have missed. I have
tried to reference surveys whose references will hopefully be useful for
those who wish to dig deeper.

What is in this book? Chapter 1 starts with a quick review of the
linear algebra pre-requisites (vectors, vector spaces, bases, dimension,
and subspaces). We then move on to a discussion of some applications
of linear algebra that may not be familiar to a student with only a sin-
gle linear algebra course. Here we discuss how matrices can be used to
encode information, and how the structure provided by matrices allows
us to find information with some simple matrix operations. We then
discuss the four applications mentioned above: the approximating sub-
space problem, compression/approximation by low-rank matrices (for
the operator and Frobenius norms), the Moore-Penrose pseudo-inverse,
and a Procrustes-type problem asking for the orthogonal transformation
that most closely transforms a given configuration to a reference config-
uration, as well as the orientation preserving orthogonal transformation
that most closely transforms a given configuration to a given reference
configuration.

Chapter 2 covers the background material necessary for the subse-
quent chapters. We begin with a discussion of the sum of subspaces, the
formula dim(𝒰1 + 𝒰2) = dim𝒰1 + dim𝒰2 − dim(𝒰1 ∩ 𝒰2), as well
as the Fundamental Theorem of Linear Algebra. We then turn to ana-
lytic tools: norms and inner products. We give important examples of
norms and inner products on matrices. We then turn to associated an-
alytic and topological concepts: continuity, open, closed, completeness,
the Bolzano-Weierstrass Theorem, and sequential compactness.

Chapter 3 uses the tools from Chapter 2 to cover some of the funda-
mental ideas (orthonormality, projections, adjoints, orthogonal comple-
ments, etc.) involved in the four applications. We also cover the separa-
tion by a linear functional of two disjoint closed convex sets when one
is also assumed to be bounded (in an inner-product space). We finish
Chapter 3 with a short discussion of the Singular Value Decomposition
and how it can be used to solve the four basic problems. The proofs that
the solutions are what we claim are postponed to Chapter 6.
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Chapter 4 is devoted to a proof of the Spectral Theorem, as well as
theminimax andmaximin characterizations of the eigenvalues. We also
proveWeyl’s inequalities about eigenvalues and an interlacing theorem.
These are the basic tools of spectral graph theory, see for example [7] and
[8].

Chapter 5 provides a proof of the Singular Value Decomposition,
and gives two additional characterizations of the singular values. Then,
we prove Weyl’s inequalities for singular values.

Chapter 6 is devoted to proving the statements made at the end of
Chapter 3 about the solutions to the four fundamental problems.

Finally, Chapter 7 takes a short glimpse towards changes in infinite
dimensions, and provides examples where the infinite-dimensional be-
havior is different.

Pre-Requisites

It is assumed that readers have had a standard course in linear alge-
bra and are familiar with the ideas of vector spaces (over ℝ), subspaces,
bases, dimension, linear independence, matrices as linear transforma-
tions, rank of a linear transformation, and nullity of a linear transforma-
tion. We also assume that students are familiar with determinants, as
well as eigenvalues and how to calculate them. Some familiarity with
linear algebra software is useful, but not essential.

In addition, it is assumed that readers have had a course in basic
analysis. (There is some debate as to what such a course should be
called, with two common titles being “advanced calculus” or “real anal-
ysis.”) To be more specific, students should know the definition of infi-
mumand supremum for a non-empty set of real numbers, the basic facts
about convergence of sequences, the Bolzano-Weierstrass Theorem (in
the form that a bounded sequence of real numbers has a convergent sub-
sequence), and the basic facts about continuous functions. (For a much
more specific background, the first three chapters of [31] are sufficient.)
Any reader familiar with metric spaces at the level of Rudin [32] is defi-
nitely prepared, although exposure tometric space topology is not neces-
sary. We will work with a very particular type of metric space: normed
vector spaces, and Chapter 2 provides a background for students who
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may not have seen it. (Even students familiar with metric spaces may
benefit by reading the sections in Chapter 2 about convexity and coer-
civity.)

Notation

If 𝐴 is an 𝑚 × 𝑛 real matrix, a common way to write the Singular Value
Decomposition is 𝐴 = 𝑈Σ𝑉𝑇 , where 𝑈 and 𝑉 are orthogonal (so their
columns form orthonormal bases), and the only non-zero entries in Σ
are on the main diagonal. (And 𝑉𝑇 is the transpose of 𝑉 .) With this
notation, if 𝑢𝑖 are the columns of 𝑈, 𝑣𝑗 are the columns of 𝑉 , and the
diagonal entries of Σ are 𝜎𝑘, we will have 𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖 and 𝐴𝑇𝑢𝑖 = 𝜎𝑖𝑣𝑖.
Thus,𝐴maps the 𝑣 to the 𝑢, whichmeans that𝐴 ismapping vector space
𝒱 into a vector space𝒰. However, I prefer to preserve alphabetical order
when writing domain and co-domain, which means 𝐴 ∶ 𝒱 → 𝒰 feels
awkward to me. One solution would be to simply reverse the role of 𝑢
and 𝑣 andwrite the Singular Value Decomposition as𝐴 = 𝑉Σ𝑈𝑇 , which
would be at odds with just about every single reference and software out
there and make it extraordinarily difficult to compare to other sources
(or software). On the other hand, it is very common to think of 𝑥 as the
inputs and 𝑦 as outputs for a function (and indeed it is common to write
𝑓(𝑥) = 𝑦 or 𝐴𝑥 = 𝑦 in linear algebra), and so I have chosen to write the
Singular Value Decomposition as 𝐴 = 𝑌Σ𝑋𝑇 . From this point of view,
the columns of 𝑋 will form an orthonormal basis for the domain of 𝐴,
which makes 𝐴𝑥𝑖 fairly natural. Similarly, the columns of 𝑌 will form
an orthonormal basis for the codomain of 𝐴, which hopefully makes
𝐴𝑥𝑖 = 𝜎𝑖𝑦𝑖 feel natural.

Elements of ℝ𝑛 will be written as [𝑥1 𝑥2 . . . 𝑥𝑛]
𝑇
, where the

superscript 𝑇 indicates the transpose. Recall that if 𝐴 is an𝑚×𝑛matrix
with 𝑖𝑗th entry given by 𝑎𝑖𝑗 , then 𝐴𝑇 is the transpose of 𝐴, which means
𝐴𝑇 is 𝑛 ×𝑚 and the 𝑖𝑗th entry of 𝐴𝑇 is 𝑎𝑗𝑖. In particular, this means that
elements ofℝ𝑛 should be thought of as column vectors. This means that
𝑥 = [𝑥1 𝑥2 . . . 𝑥𝑛]𝑇 is equivalent to

𝑥 =
⎡⎢⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤⎥⎥⎥
⎦

.
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Functions may be referred to without an explicit name by writing
“the function 𝑥 ↦ [appropriate formula]”. Thus, the identity function
would be 𝑥 ↦ 𝑥, and the exponential function would be 𝑥 ↦ 𝑒𝑥. Simi-
larly, a function may be defined by

𝑓 ∶ 𝑥 ↦ [appropriate formula].
For example, given amatrix𝐴, the linear operator defined bymultiplying
by 𝐴 is written 𝐿 ∶ 𝑥 ↦ 𝐴𝑥. (We will often abuse notation and identify
𝐴 with the operator 𝑥 ↦ 𝐴𝑥.) My use of this notation is to remind us
that functions are not equations or expressions. We may also use ∶= to
mean “is defined to equal”.
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Index of Notation

∶=, defined to be, xvii
𝐴𝑇 , the transpose of 𝐴, xvi
𝐴†, Moore-Penrose pseudo-inverse, 92
𝐵𝑟(𝑥), ball of radius 𝑟 > 0 around 𝑥, 31
𝐿∗, 81
𝑅𝐿, Rayleigh quotient, 100
𝑈 1 ⊕𝑈2, direct sum of subspaces, 17
𝑉𝑇 , transpose of a matrix 𝑉 , xvi
[𝑥]𝑈 , coordinates of 𝑥 with respect to

the basis 𝑈, 48
⟨𝐴, 𝐵⟩𝐹 , the Frobenius inner product of

𝐴 and 𝐵, 23
⟨⋅, ⋅⟩, an inner product, 22
𝜆↓𝑘(𝐿), eigenvalues of 𝐿 in decreasing

order, 110
𝜆↑𝑘(𝐿), 110
ℒ (𝒱,𝒲), set of linear mappings from

𝒱 to𝒲, 29
↦, function mapping, xvii
e𝑗 , the 𝑗th standard basis element, 45
ℬℒ(𝒱,𝒲), 29
𝒰+, non-zero elements of the subspace

𝒰, 127
𝒰1 + 𝒰2, sum of subspaces, 15
𝒱 ×𝒲, product of vector spaces, 125
𝒩(𝐿), nullspace of 𝐿, 18
𝒰⊥, the orthogonal complement of 𝒰,

77
𝑢⊥, the orthogonal complement of

span{𝑢}, 77

ℛ (𝐿), the range of 𝐿, 18
tr 𝐶, trace of a matrix 𝐶, 19
𝑑(𝑎,𝒰), distance from 𝑎 to a subspace

𝒰, 92
𝑓−1(𝐵), the pre-image of 𝐵 under 𝑓, 40
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adjacency matrix, 5
adjoint, 99
of a matrix, 84
operator, 81

Axiom of Choice, 203

balls, 31
open, 32

Banach space, 202
best subspace problem, 9, 91, 171
Bolzano-Weierstrass Theorem, 37, 44,

46, 50, 54

Cauchy-Schwarz-Bunyakovsky
Inequality, 24

CFW Theorem, 111
closed, 31, 32
relatively, 38
subspace, 67

closest point, 67
calculation, 71
for a convex set, 73

coercive, 53, 54
compact, 31, 37, 43, 46, 50, 75
completeness, 31, 38, 50
component functions, 43
continuous, 39, 41, 43
𝜀 − 𝛿, 39
component-wise, 43
eigenvalues, 116

matrix multiplication, 42
norm, 46
sequentially, 39
topologically, 39

convergence, 31, 32
component-wise, 36

convexity, 55
for a set, 55
for a function, 55

coordinates, 56
in an orthonormal basis, 63

Courant-Fischer-Weyl Min-Max
Theorem

for singular values, 163
Courant-Fischer-Weyl Min-max

Theorem, 111
CSB inequality, 24

degree, 5
density
of full rank operators, 166
of invertible matrices, 167
of symmetric matrices with simple
eigenvalues, 168

direct sum of subspaces, 17

Eckart-Young-Mirsky, 93
Eckart-Young-Mirsky Theorem, 11
for Frobenius norm, 185, 186
for operator norm, 182, 184
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eigenvalues
continuity, 116
interlacing, 120
min-max characterization, 111
relation to singular values, 147, 159
Weyl’s inequality, 118

equivalence
for continuity, 40
for norms, 34, 45, 46, 52

Fundamental Theorem of Linear
Algebra, 18, 84, 85

Gram-Schmidt Process, 65
graph, 4
graph Laplacian, 7
gray-scale matrix, 7

Hilbert space, 204

induced norm, 25
inner product, 22, 61
dot product, 22
for product space, 126
Frobenius , 23

invariant subspace, 104

Kabsch-Umeyama Algorithm, 197
kernel, 18

length of a path, 4
low rank approximation, 11, 93
for Frobenius norm, 185, 186
for matrices and Frobenius norm,
187

for matrices and operator norm, 184
for operator norm, 182, 184

minimization, 43
minimizers, 53
minimizing sequences, 53
Moore-Penrose Pseudo-Inverse, 10
Moore-Penrose pseudo-inverse, 92, 179
for matrices, 181

norm, 13, 49
continuity of, 46
definition, 20
equivalence, 34, 45, 46, 52
Euclidean, 21

Frobenius, 26, 161
induced by inner product, 25, 99, 126
max, 21
on ℝ𝑑 , 21
operator, 29
sub-multiplicative matrix norm, 28
taxi-cab, 21

normed vector space, 20
nullity, 18
nullspace, 18

open, 31
balls, 32
relatively, 38

Orthogonal
Procrustes Problem, 11

orthogonal, 61
decomposition, 78
complement, 77, 104
Procrustes Problem, 95, 188, 190

orthogonal matrix, 26
orthonormal, 61
outer product, 24

path, 4
Principal Component Analysis, xiii
Procrustes Problem
orientation preserving, 97, 197
orthogonal, 95, 188, 190

product space, 125
projection, 71
protractors, 29
Pythagorean Theorem, 64

range, 18
rank, 18
lower semi-continuity, 168

Rayleigh quotient, 100, 127
reduced SVD, 88, 145
reverse triangle inequality, 21, 40, 45
Riesz Representation Theorem, 79, 80
rulers, 29

self-adjoint, 99
Separation of convex sets, 73
sequences
Cauchy, 31
convergence, 31, 32
minimizing, 53
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sequentially compact, 31, 37, 43, 46, 50,
75

singular triples, 85, 124, 170
Singular Value Decomposition
for matrices, 143

Singular Value Decomposition, 85
Singular Value Decomposition, 125
by norm, 152
by Spectral Theorem, 159
reduced, 88

singular values, 170
by norm, 152
continuity, 165
Courant-Fischer-Weyl
characterization, 163

Frobenius norm, 161
in terms of eigenvalues, 159
Weyl’s inequality, 164

singular vectors
left, 85
right, 85

Spectral Theorem, 99
for matrices, 108
rank one decomposition, 109

standard norm, 20
sum of subspaces, 15
SVD, 85, 125
reduced, 88
by norm, 152
by Spectral Theorem, 159
for matrices, 143
rank one decomposition, 146
reduced, 145

topology
normed vector space, 32

trace of a matrix, 19
transpose, xvi

Weyl’s inequality, 118
for singular values, 164, 184, 187

zero mapping, 29
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This book provides an elementary analytically 
inclined journey to a fundamental result of linear 
algebra: the Singular Value Decomposition (SVD). 
SVD is a workhorse in many applications of linear 
algebra to data science. Four important applications 
relevant to data science are considered throughout 
the book: determining the subspace that “best” 

approximates a given set (dimension reduction of a data set); � nding 
the “best” lower rank approximation of a given matrix (compression 
and general approximation problems); the Moore-Penrose pseudo-
inverse (relevant to solving least squares problems); and the orthogonal 
Procrustes problem (� nding the orthogonal transformation that most 
closely transforms a given collection to a given con� guration), as well as 
its orientation-preserving version.

The point of view throughout is analytic. Readers are assumed to have 
had a rigorous introduction to sequences and continuity. These are 
generalized and applied to linear algebraic ideas. Along the way to 
the SVD, several important results relevant to a wide variety of � elds 
(including random matrices and spectral graph theory) are explored: 
the Spectral Theorem; minimax characterizations of eigenvalues; and 
eigenvalue inequalities. By combining analytic and linear algebraic 
ideas, readers see seemingly disparate areas interacting in beautiful and 
applicable ways.
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