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Preface

Graphs measure interactions between objects, from follows on Twit-

ter, to transactions between Bitcoin users, and to the flow of energy

in a food chain. Whether we think of graphs as abstract collections

of dots and lines, or view them as modeling complex interactions in

the real world, there is no question that they play an essential role in

understanding nature. Graph theory is a robust topic within math-

ematics, and sets out to formalize the science of interactions. While

graphs statically represent interacting systems, we may also use them

to model the dynamic interactions within those systems. For exam-

ple, imagine an invisible evader loose on a graph, leaving behind only

breadcrumb clues to their whereabouts. You set out with pursuers

of your own, seeking out the evader’s location. Would you be able

to detect their location? If so, then how many resources are needed

for detection, and how fast can that happen? These basic-seeming

questions point towards the broad conceptual framework of the field

of pursuit-evasion games.

In pursuit-evasion games, a set of pursuers attempts to locate,

eliminate, or contain the threat posed by an evader. Pursuit-evasion

has a long history, including the early work by Pierre Bouguer in 1732

on a pirate ship escaping a merchant vessel; see the book Chases and

Escapes: The Mathematics of Pursuit and Evasion [157] for more

discussion.

xvii



xviii Preface

Our focus is on discrete versions of pursuit-evasion games played

on graphs. The rules, specified from the outset, greatly determine the

difficulty of the questions posed on page xv. For example, the evader

may be visible, but the pursuers may have limited movement speed,

only moving to nearby vertices adjacent to them. Such a paradigm

leads to the game of Cops and Robbers, and deep topics like Meyniel’s

conjecture on the cop number of a graph. Central to pursuit-evasion

games is the optimization of certain parameters, whether they are the

cop number, burning number, or localization number, for example.

Finding the values, bounds, and algorithms to compute these graph

parameters leads to fascinating topics intersecting classical graph the-

ory, geometry, and combinatorial designs.

The book aims to provide a friendly invitation to both pursuit-

evasion games and graph theory. An effort is made to make the

definitions, examples, and proofs clear and readable. Readers may

be undergraduate or graduate students who have taken a previous

course in discrete mathematics or graph theory. While our focus is

on pursuit-evasion games, we will reveal many fascinating topics in

graph theory. Along the way, readers will learn about topics such as

treewidth, product graphs, planar graphs, and retracts, to name a

few. We summarize the graph theory concepts that will be discussed

at the beginning of each chapter. Professional mathematicians and

theoretical computer scientists who want to learn about the central

pursuit-evasion games topics in one place will find the book a valuable

resource, and a trove of conjectures and open problems. Applications

of pursuit-evasion games range from robotics [69], to mobile comput-

ing [98], and even to programmable matter [78]. Those working in

the computing sciences and engineering interested in the mathemati-

cal foundations of pursuit-evasion games will find the book a helpful

resource.

The book begins with an introduction to pursuit-evasion games

and graph theory in Chapter 1. More advanced readers may skip

this chapter, or use it as a reference for notation. We then focus

on one of the most famous pursuit-evasion models in Chapter 2, the

game of Cops and Robbers played on graphs. We consider the search

number in Chapter 3, where the robber moves infinitely fast and
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searchers must be employed to capture them. The search number

and its variants tie in closely with parameters such as pathwidth

and treewidth. Graph burning is discussed in Chapter 4, where the

pursuer is missing and an evader attempts to burn the graph as fast as

possible. Graph burning models the spread of contagion in a network,

ranging from memes to viruses. The Localization game is studied in

Chapter 5, where the robber is invisible but detectable by the cops via

distance probes giving partial information about their whereabouts.

Firefighter is discussed in Chapter 6, and is a process analogous to

graph burning, but the pursuers attempt to contain a fire spreading

in a graph. Chapter 7 considers the situation where the robber is

invisible when they are close or far from the cop. Our final chapter

collects several recent variants of pursuit-evasion games, such as Cops

and Eternal Robbers, Angel and Devil, and Lazy Cops and Robbers.

For a typical twelve-week course, the core topics are contained

in the first four chapters. With full proofs covered and moving at a

leisurely pace, this could take about eight to ten weeks. Topics for

the remaining weeks could be taken selectively from the remaining

chapters. If certain sections and proofs are skipped at the discretion

of the instructor, then the entire book could be covered in either a

one- or two-term course. The book may also be used as an adjunct in

a graph theory course if the instructor would like to introduce topics

in pursuit-evasion games.

While we discuss cutting-edge mathematics, we aim to make the

book self-contained, understandable, and accessible to a broad math-

ematical audience. To aid the reader, we have included dozens of

figures explaining concepts and proofs. Each chapter contains several

exercises that will be helpful to those wishing to expand or polish their

skills, and for devising assignments. There are over 170 exercises of

varying degrees of difficulty. The book contains a comprehensive bib-

liography that includes the relevant references for the topics in each

chapter. Theorems without proofs are cited, so that an ambitious

reader can read those outside the book.

An innovation we include at the end of each chapter after the

first are research projects that are of a larger scope than those found
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in the exercises. Projects include citations, where the reader is di-

rected to further reading. The reader will likely need to consult a

small number of other sources for the additional background to com-

plete these projects. These projects may be done for credit at the

end of a course, or used as topics towards an undergraduate thesis.

Projects are entirely optional and may be skipped without upsetting

the flow of the chapters. The projects may also serve as the basis for

an NSF Research Experience for Undergraduates (REU) or NSERC

Undergraduate Student Research Award (USRA).

Although pursuit-evasion games might be viewed as an emerging

topic, its literature is vast, so we have omitted certain advanced direc-

tions. We do not consider the robust literature on graph algorithms in

pursuit-evasion games. However, along the way, we will discuss a few

algorithmic approaches. Further, we focus on deterministic results.

A treatment of pursuit-evasion games using the probabilistic method

and stochastic models may be found in [49]. Lastly, we restrict the

majority of our attention to finite, undirected graphs.

I want to thank the reviewers for their excellent feedback on the

book, which truly helped the present book into the form it is now. I

want to thank my family, friends, students, and co-authors for their

generous support. A warm thank you Ina Mette, Marcia Almeida,

Erin Donahue, John F. Brady Jr, and the team at the AMS for mak-

ing this book a reality. A thank you to Melissa Huggan and Trent

Marbach for their edits. I would especially like to thank my husband

Douglas, who makes my mathematical practice possible.

One last thank you goes to you, the reader. I hope your expe-

rience reading this book will be as fun and inspiring as mine was

writing it.
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[48] A. Bonato, X. Pérez-Giménez, P. Pra lat, B. Reiniger, Overprescribed
Cops and Robbers, Graphs and Combinatorics 33 (2017) 801–815.

[49] A. Bonato, P. Pra lat, Graph Searching Games and Probabilistic Meth-
ods, Chapman and Hall/CRC Press, Boca Raton, FL, 2017.

[50] A. Bonato, B. Yang, Graph searching and related problems, invited
book chapter in: Handbook of Combinatorial Optimization, editors P.
Pardalos, D.Z. Du, R. Graham, 2011.
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[150] M. Miller, J. Širáň, Moore graphs and beyond: a survey of the
degree/diameter problem, The Electronic Journal of Combinatorics
20(2) (2013) DS14.

[151] D. Mitsche, P. Pra lat, E. Roshanbin, Burning graphs—a probabilistic
perspective, Graphs and Combinatorics 33 (2017) 449–471.

[152] D. Mitsche, P. Pra lat, E. Roshanbin, Burning number of graph prod-
ucts, Theoretical Computer Science 746 (2018) 124–135.



Bibliography 247

[153] D. Moghbel, Topics in graph burning and datalog, PhD Thesis, Ry-
erson University, 2020.

[154] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins Uni-
versity Press, 2001.

[155] H. Morris, J. Morris, On generalised Petersen graphs of girth 7 that
have cop number 4, accepted to The Art of Discrete and Applied
Mathematics.

[156] D. Mubayi, J. Williford, On the independence number of the Erdős-
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in-degree, 12

independent set, 9

interval thickness, 79

isometric path, 31

isometric subgraph, 99, 196

isomorphism, 9

Kneser graph, 148

lazy cop number, 214

Lazy Cops and Robbers, 213

limited-visibility Cops and

Robbers, 195

localization capture time, 153

Localization game, 124

localization number, 125

lower burning density, 222

matching, 46

perfect, 46

maximum degree, 7

Messinger’s conjecture, 176

minimum degree, 7

mixed search game, 68

mixed search number, 68

monotone strategy, 68

Moore bound, 43

neighbor, 7

neighbor set, 6

node search game, 73

node search number, 74

order of functions, 12

out-degree, 12

Parsons’ Lemma, 80

path, 8

path decomposition, 76

path-forest, 108

pathwidth, 76, 193

projective plane, 41, 140, 204

proper coloring, 11

retract, 24, 26, 53, 196

robber territory, 140

rooted tree partition, 97

save number, 167

search number, 61

shadow strategy, 25

spanning subgraph, 9

spider, 100

arms, 108

heads, 108

Steiner triple system, 161

strong grid, 114

strong product, 114

subdivision, 83

subgraph, 9

induced, 9

surviving rate, 177

Time-Bomb, 229

tournament, 15

tree, 10

rooted, 96

spanning, 11

Tree Reduction Theorem, 98

treewidth, 33, 76

vertex, 6

big, 178

isolated, 7

protected, 165

saved, 166

simplicial, 13

small, 179

universal, 7

vertex separation, 78

vertex set, 6

walk, 8

winning strategy, 20
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zero-visibility cop number, 188
zero-visibility Cops and Robbers,
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STML/97

Graphs measure interactions between 

objects such as friendship links on Twitter, 

transactions between Bitcoin users, and the 

fl ow of energy in a food chain. While graphs 

statically represent interacting systems, 

they may also be used to model dynamic 

interactions. For example, imagine an invis-

ible evader loose on a graph, leaving only 

behind breadcrumb clues to their whereabouts. You set out 

with pursuers of your own, seeking out the evader’s location. 

Would you be able to detect their location? If so, then how 

many resources are needed for detection, and how fast can 

that happen? These basic-seeming questions point towards 

the broad conceptual framework of pursuit-evasion games 

played on graphs. Central to pursuit-evasion games on graphs 

is the idea of optimizing certain parameters, whether they are 

the cop number, burning number, or localization number, for 

example.

This book would be excellent for a second course in graph 

theory at the undergraduate or graduate level. It surveys 

different areas in graph searching and highlights many fasci-

nating topics intersecting classical graph theory, geometry, and 

combinatorial designs. Each chapter ends with approximately 

twenty exercises and fi ve larger scale projects.
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