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INTRODUCTION 

An algebraic function y of a complex variable x is a function which satisfies 
an equation of the form F(x, y) = 0, where F is a polynomial with complex 
coefficients; i.e., y is a root of an algebraic equation whose coefficients are rational 
functions of x. This very definition exhibits a strong similarity between the 
notions of algebraic function and algebraic number, the rational functions of x 
playing a role similar to that played by the rational numbers. On the other hand, 
the equation F(x, y) = 0 may be construed to represent a curve in a plane in 
which x and y are the coordinates, and this establishes an intimate link between 
the theory of algebraic functions of one variable and algebraic geometry. 

Whoever wants to give an exposition of the theory of algebraic functions of one 
variable is more or less bound to lay more emphasis either on the algebraico-
arithmetic aspect of this branch of mathematics or on its geometric aspect. Both 
points of view are acceptable and have been in fact held by various mathe
maticians. The algebraic attitude was first distinctly asserted in the paper 
Theorie der algebraischen Funktionen einer Verdnderlichen, by R. Dedekind and 
H. Weber (Journ. fur Math., 92, 1882, pp. 181-290), and inspires the book 
Theorie der algebraischen Funktionen einer Variabeln, by Hensel and Landsberg 
(Leipzig, 1902). The geometric approach was followed by Max Noether, Clebsch, 
Gordan, and, after them, by the geometers of the Italian school (cf. in particular 
the book Lezione di Geometria algebrica, by F. Severi, Padova, 1908). Whichever 
method is adopted, the main results to be established are of course essentially the 
same; but this common material is made to reflect a different light when treated 
by differently minded mathematicians. Familiar as we are with the idea that 
the pair "observed fact—observer" is probably a more real being than the 
inert fact or theorem by itself, we shall not neglect the diversity of these various 
angles under which a theory may be photographed. Such a neglect should be 
particularly avoided in the case of the theory of algebraic functions, as either 
mode of approach seems liable to provoke strong emotional reactions in mathe
matical minds, ranging from devout enthusiasm to unconditional rejection. 
However, this does not mean that the ideal should consist in a mixture or synthe
sis of the two attitudes in the writing of any one book: the only result of trying to 
obtain two interesting photographs of the same object on the same plate is a 
blurred and dull image. Thus, without attacking in any way the validity per se of 
the geometric approach, we have not tried to hide our partiality to the algebraic 
attitude, which has been ours in writing this book. 

The main difference between the present treatment of the theory and the one 
to be found in Dedekind-Weber or in Hensel-Landsberg lies in the fact that the 
constants of the fields of algebraic functions to be considered are not necessarily 
the complex numbers, but the elements of a completely arbitrary field. There 
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X INTRODUCTION 

are several reasons which make such a generalization necessary. First, the 
analogy between algebraic functions and algebraic numbers becomes even closer 
if one considers algebraic functions over finite fields of constants. In that case, 
on the one hand class field theory has been extended to the case of fields of 
functions, and, on the other hand, the transcendental theory (zeta function, 
L-series) may also be generalized (cf. the paper of F. K. Schmidt, Analytische 
Zahlentheorie in Korpern der Charakteristik p, Math. Zeits., 33, 1931). Moreover, 
A. Weil has succeeded in proving the Riemann hypothesis for fields of algebraic 
functions over finite fields, thereby throwing an entirely new light on the classical, 
i.e., number theoretic, case (cf. the book of A. Weil, Sur les courbes algebriques et 
les varietes qui s'en deduisent, Paris, Hermann, 1948; this book contains an 
exposition of the theory from a geometric point of view, although this point of 
view is rather different from that of the Italian geometers). Secondly, if S is an 
algebraic surface, and R the field of rational functions on S, then R is a field of 
algebraic functions of one variable over K(x), where K is the basic field and x a 
non constant element of R. E. Picard, among others, has very successfully used 
the method of investigation of S which amounts to studying the relationship 
between R and various fields of the form K(x) (cf. E. Picard and G. Simart, 
Th&orie des fonctions algebriques de deux variables independantes, Paris, Gauthier-
Villars, 1897). Now, even when K is the field of complex numbers, K(x) is not 
algebraically closed, which makes it necessary to have a theory of fields of 
algebraic functions of one variable over fields which are not algebraically closed. 

The theory of algebraic functions of one variable over non algebraically closed 
fields of arbitrary characteristic has been first developed by H. Hasse, who 
defined for these fields the notion of a differential (H. Hasse, Theorie der Differ
entiate in algebraischen Funktionenkorpern mit volkommenen Konstantenkorper, 
Journ. fur Math., 172, 1934, pp. 55-64), and by F. K. Schmidt, who proved the 
Riemann-Roch theorem (F. K. Schmidt, Zur arithmetisclien Theorie der alge
braischen Funlctionen, I, Math. Zeits., 41, 1936, p. 415). In this book, we have 
used the definition of differentials and the proof of the Riemann-Roch theorem 
which were given by A. Weil (A. Weil, Zur algebraischen Theorie der algebraischen 
Funktionen, Journ. fur Math., 179, 1938, pp. 129-133). 

As for contents, we have included only the elementary part of the theory, 
leaving out the more advanced parts such as class field theory or the theory of 
correspondences. However, we have been guided by the desire of furnishing a 
suitable base of knowledge for the study of these more advanced chapters. 
This is why we have placed much emphasis on the theory of extensions of fields of 
algebraic functions of one variable, and in particular of those extensions which 
are obtained by adjoining new constants, which may even be transcendental 
over the field of constants of the original field of functions. That the consideration 
of such extensions is desirable is evidenced by the paper of M. Deuring, Arithme-
tische Theorie der Korrespondenzen algebraischen Funktionenkorper, Journ. fur 
Math., 177, 1937. The theory of differentials of the second kind has been given 
only in the case where the field under consideration is of characteristic 0. The 
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reason for this restriction is that it is not yet clear what the "good" definition of 
the notion should be in the general case: should one demand only that the 
residues be all zero, or should one insist that the differential may be approximated 
as closely as one wants at any given place by exact differentials (or a suitable 
generalization of these)? Here is a net of problems which, it seems, would deserve 
some original research. The last chapter of the book is concerned with the theory 
of fields of algebraic functions of one variable over the field of complex numbers 
and their Riemann surfaces. The scissor and glue method of approach to the 
idea of a Riemann surface has been replaced by a more abstract definition, 
inspired by the one given by H. Weyl in his book on Riemann surfaces, which 
does not necessitate the artificial selecting of a particular generation of the field 
by means of an independant variable and a function of this variable. We have 
also avoided the cumbersome decomposition of the Riemann surface into 
triangles, this by making use of the singular homology theory, as developed by 
S. Eilenberg. 

I have been greatly helped in the writing of this book by frequent conversations 
with E. Artin and O. Goldman; I wish to thank both of them sincerely for their 
valuable contribution in the form of advice and suggestions. 



NOTATIONS FREQUENTLY USED 
Con R/S: conorm from R to S (IV, 7). 
Cosp R/S: cotrace from R to £ (for repartitions, IV, 7; for differentials, VI, 2 and VI, 6). 
d(a): degree of a divisor a (I, 7). 
b(x): divisor of an element x (I, 8). 
b(w): divisor of a differential w (II, 6). 
5(a): dimension of the space of differentials which are multiple of a divisor a (II, 5). 
d: boundary (VII, 3). 
Hn{X, Y): n-dimensional homology group of X modulo Y (VII, 3). 
*(T> V): intersection numbers of the 1-chains y and y' (VII, 6). 
j ( « ,« ' ) : (VI I ,5 ) . 
K("-): field obtained by adjunction to the field K of the element or elements or set of 

elements whose symbols are between the sign ( and the sign ); special meaning for 
fields of algebraic functions of one variable defined in V, 4. 

1(a): dimension of the space of elements which are multiples of a divisor a (II, 1). 
vp: order function at a place p (for elements, I, 5 and III , 1; for repartitions, II , 4; for 

differentials, II , 6). 
Ns/R: Norm from S to R (IV, 7). 
#L:(IV,5). 
W* .-^-component of a differential w (II, 7). 
res *<!>: residue of a differential w at a place p (III, 5). 
Spa/*: Trace from S to R (for repartitions, IV, 7; for differentials, VI, 2). 
Sp?/«: (IV, 5). 
| 7 |: set of points of a chain 7 (VII, 3). 
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