The Algebraic Theory of Semigroups

A. H. Clifford
G. B. Preston

The Algebraic Theory of Semigroups

Number 7
Part I

The Algebraic Theory of Semigroups

A. H. Clifford
G. B. Preston

American Mathematical Society
Providence, Rhode Island

International Standard Serial Number 0076-5376

International Standard Book Number 0-8218-0271-2
Library of Congress Catalog Card Number: 61-15686

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
(C) Copyright 1961 by the American Mathematical Society. All rights reserved. Printed in the United States of America.

Second Edition, 1964
Reprinted with corrections, 1977.
The American Mathematical Society retains all rights
except those granted to the United States Government.
(9) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
$1098765 \quad 060504030201$

TABLE OF CONTENTS

Preface ix
Notation used in Volume I xiii
Chapter 1. Elementary Concepts
1.1 Basic definitions 1
1.2 Light's associativity test 7
1.3 Translations and the regular representation 9
(Lemma 1.0-Theorem 1.3)
1.4 The semigroup of relations on a set 13 (Lemma 1.4)
1.5 Congruences, factor groupoids and homomorphisms 16
(Theorem 1.5-Theorem 1.8)
1.6 Cyclic semigroups 19
(Theorem 1.9)
1.7 Units and maximal subgroups 21
(Theorem 1.10-Theorem 1.11)
1.8 Bands and semilattices; bands of semigroups 23 (Theorem 1.12)
1.9 Regular elements and inverses; inverse semigroups 26
(Lemma 1.13-Theorem 1.22)
1.10 Embedding semigroups in groups 34(Theorem 1.23-Theorem 1.25)
1.11 Right groups 37
(Lemma 1.26-Theorem 1.27)
1.12 Free semigroups and generating relations; the bicyclic semi- group 40
(Lemma 1.28-Corollary 1.32)
Chapter 2. Ideals and Related Concepts
2.1 Green's relations 47(Lemma 2.1-Theorem 2.4)
$2.2 \mathscr{D}$-structure of the full transformation semigroup \mathscr{T}_{X} on a set X 51
(Lemma 2.5-Theorem 2.10)
2.3 Regular \mathscr{D}-classes 58
(Theorem 2.11-Theorem 2.20)
2.4 The Schützenberger group of an \mathscr{H}-class 63(Lemma 2.21-Theorem 2.25)
2.50 -minimal ideals and 0 -simple semigroups 66
(Lemma 2.26-Theorem 2.35)
2.6 Principal factors of a semigroup 71
(Theorem 2.36-Corollary 2.42)
2.7 Completely 0 -simple semigroups 76
(Lemma 2.43-Corollary 2.56)
Chapter 3. Representation by matrices over a group with zero
3.1 Matrix semigroups over a group with zero 87
(Lemma 3.1-Theorem 3.3)
3.2 The Rees Theorem 91
(Theorem 3.4-Lemma 3.6)
3.3 Brandt groupoids 99
(Lemma 3.7-Theorem 3.9)
3.4 Homomorphisms of a regular Rees matrix semigroup 103
(Lemma 3.10-Theorem 3.14)
3.5 The Schützenberger representations 110
(Lemma 3.15-Theorem 3.17)
3.6 A faithful representation of a regular semigroup 117
(Lemma 3.18-Theorem 3.21)
Chapter 4. Decompositions and Extensions
4.1 Croisot's theory of decompositions of a semigroup 121
(Lemma 4.1-Theorem 4.4)
4.2 Semigroups which are unions of groups 126
(Theorem 4.5-Theorem 4.11)
4.3 Decomposition of a commutative semigroup into its archi- medean components; separative semigroups 130
(Theorem 4.12-Theorem 4.18)
4.4 Extensions of semigroups 137
(Theorem 4.19-Theorem 4.21)
4.5 Extensions of a group by a completely 0 -simple semigroup; equivalence of extensions 142
(Theorem 4.22-Theorem 4.24)
Chapter 5. Representation by matrices over a field
5.1 Representations of semisimple algebras of finite order 149
(Lemma 5.1-Theorem 5.11)
5.2 Semigroup algebras 158
(Lemma 5.12-Theorem 5.31)
5.3
Principal irreducible representations of a semigroup
(Lemma 5.32-Theorem 5.36)
5.4 Representations of completely 0 -simple semigroups . . 177
(Theorem 5.37-Corollary 5.53)
$\begin{gathered}\text { 5.5 Characters of a commutative semigroup } \\ \text { (Lemma 5.54-Theorem 5.65) }\end{gathered} \quad . \quad . \quad . \quad 193$
Appendix A 207
Bibliography 209
Author Index 217
Index 219

PREFACE

So far as we know, the term "semigroup" first appeared in mathematical literature on page 8 of J.-A. de Séguier's book, Éléments de la Théorie des Groupes Abstraits (Paris, 1904), and the first paper about semigroups was a brief one by L. E. Dickson in 1905. But the theory really began in 1928 with the publication of a paper of fundamental importance by A. K. Suschkewitsch. In current terminology, he showed that every finite semigroup contains a "kernel" (a simple ideal), and he completely determined the structure of finite simple semigroups. A brief account of this paper is given in Appendix A.

Unfortunately, this result of Suschkewitsch is not in a readily usable form. This defect was removed by D. Rees in 1940 with the introduction of the notion of a matrix over a group with zero, and, moreover, the domain of validity was extended to infinite simple semigroups containing primitive idempotents. The Rees Theorem is seen to be the analogue of Wedderburn's Theorem on simple algebras, and it has had a dominating influence on the later development of the theory of semigroups. Since 1940, the number of papers appearing each year has grown fairly steadily to a little more than thirty on the average.

It is in response to this developing interest that this book has been written. Only one book has so far been published which deals predominantly with the algebraic theory of semigroups, namely one by Suschkewitsch, The Theory of Generalized Groups (Kharkow, 1937); this is in Russian, and is now out of print. A chapter of R. H. Bruck's A Survey of Binary Systems (Ergebnisse der Math., Berlin, 1958) is devoted to semigroups. There is, of course, E. Hille's book, Functional Analysis and Semi-groups (Amer. Math. Soc. Colloq. Publ., 1948), and the 1957 revision thereof by Hille and R. S. Phillips; but this deals with the analytic theory of semigroups and its application to analysis. The time seems ripe for a systematic exposition of the algebraic theory. (Since the above words were written, there has appeared such an exposition, in Russian: Semigroups, by E. S. Lyapin, Moscow, 1960.)

The chief difficulty with such an exposition is that the literature is scattered over extremely diverse topics. We have met this situation by confining ourselves to a portion of the existing theory which has proved to be capable of a well-knit and coherent development. All of Volume 1 and the first half of Volume 2 center around the structure of semigroups of certain types (such as simple semigroups, inverse semigroups, unions of groups,
semigroups with minimal conditions, etc.) and their representation by mappings or by matrices. The second half of Volume 2 treats the theory of congruences and the embedding of semigroups in groups, including a modest account of the active French school of semigroups (which they call "demi-groupes") founded in 1941 by P. Dubreil.

In order to keep our book within reasonable bounds, moreover, we have construed the term "algebraic" in a somewhat narrow sense: the semigroups under consideration are not endowed with any further structure. This has the effect of excluding not only topological semigroups, but ordered semigroups as well. Fortunately, a good account of lattice-ordered semigroups and groups is to be found in G. Birkhoff's Lattice Theory (Amer. Math. Soc. Colloq. Publ., 1940 ; revised 1948). It also excludes P. Lorenzen's generalization of multiplicative ideal theory (see, for example, §5 of W. Krull's Idealtheorie, Ergebnisse der Math., Berlin, 1935) to any commutative semigroup S with cancellation, in which S (or its quotient group) is endowed with a family of subsets called r-ideals, satisfying certain conditions analogous to those for closed sets in topology.

The book aims at being largely self-contained, but it is assumed that the reader has some familiarity with sets, mappings, groups, and lattices. The material on these topics in an introductory text such as Birkhoff and MacLane, A Survey of Modern Algebra (New York, Revised Edition, 1953) should suffice. Only in Chapter 5 will more preliminary knowledge be required, and even there the classical definitions and theorems on the matrix representations of algebras and groups are summarized.

We have included a number of exercises at the end of each section. These are intended to illuminate and supplement the text, and to call attention to papers not cited in the text. They can all be solved by applying the methods and results of the text, and often more simply than in the paper cited.

Each volume has a separate bibliography listing those papers referred to in that volume. No attempt has been made to list those papers on semigroups to which no reference has been made in the text or exercises. The combined bibliography contains about half of the papers which have appeared in the (strictly) algebraic theory of semigroups. (The bibliography in Lyapin's book appears to be complete.) Whenever possible, the reference to the review of each paper in the Mathematical Reviews has been given, (MR x, y) denoting page y of volume x . English translations of Russian titles are those given in the Mathematical Reviews.

The material in Volume 1 (more or less) was presented in a second-year graduate course at Tulane University during the academic year 1958-1959, and this volume has benefited greatly from the students' criticisms. The authors would also like to express their gratitude to Professors A. D. Wallace, D. D. Miller, and P. F. Conrad for many useful suggestions; and, above all, to Dr. W. D. Munn for his very valuable criticisms, especially of Chapter 5,
and for his permission to draw on unpublished material from his dissertation (Cambridge University, 1955) for Sections 3.4 and 4.5. We deeply appreciate the thoughtful kindness of Professor Š. Schwarz and the Central Library of the Slovakian Academy of Sciences for sending us (unsolicited) a photostat print of Suschkewitsch's book. Our thanks go also to Mrs. Anna L. McGinity for typing all of Volume 1. Finally, the authors gratefully acknowledge partial support for this work from the National Science Foundation (U.S.A.).
A. H. C.
G. B. P.

July 28, 1960
The Tulane University of Louisiana
The Royal Military College of Science

NOTATION USED IN VOLUME ONE

Square brackets are used for alternative readings and for reference to the bibliography.

Let A and B be sets.
$A \subset B$ (or $B \supset A$) means A is properly contained in B.
$A \subseteq B$ (or $B \supseteq A$) means $A \subset B$ or $A=B$.
$A \backslash B$ means the set of elements of A which are not in B.
$A \times B$ means the set of all ordered pairs (a, b) with a in A, b in B.
The signs \cup and \cap are reserved for union and intersection, respectively, of sets and relations. The signs \vee and \wedge will be used for join and meet in [semi]lattices.
$|A|$ means the cardinal number of the set A.
The sign \circ is used for composition of relations (§1.4), but is usually omitted for composition of mappings.
denotes the empty set, mapping, or relation.
$\iota\left[\iota_{A}\right]$ denotes the identity mapping or relation [on the set A].
If ϕ is a mapping whose domain includes A, then $\phi \mid A$ means ϕ restricted to A.
$\left\{a_{1}, \cdots, a_{n}\right\}$ means the set whose members are a_{1}, \cdots, a_{n}. Braces are sometimes omitted on single elements, for example $A \cup b$ instead of $A \cup\{b\}$.

If $P(x)$ is a proposition for each element x of a set X, then the set of all x in X for which $P(x)$ is true is denoted by either $\{x \in X: P(x)\}$ or $\{x: P(x), x \in X\}$.

If $M(x)$ is a set for each x in a set X, then the union of all the sets $M(x)$ with x in X is denoted by either $\bigcup_{x \in X} M(x)$ or $\bigcup\{M(x): x \in X\}$.

If $F(x)$ is a member of a set C for each x in a set X, then the subset of C consisting of all $F(x)$ with x in X is denoted by $\{F(x): x \in X\}$. If $X=A \times B$, we may write $\{F(a, b): a \in A, b \in B\}$ instead of $\{F(a, b):(a, b) \in A \times B\}$.

If A is a subset of a semigroup S, then $\langle A\rangle$ denotes the subsemigroup of S generated by A. If S is a group, then the subgroup of S generated by A is $\left\langle A \cup A^{-1}\right\rangle$, where $A^{-1}=\left\{a^{-1}: a \in A\right\}$.

If A and B are subsets of a semigroup S, then $A B$ means $\{a b: a \in A$, $b \in B\}$.
$S^{1}\left[S^{0}\right]$ means the semigroup $S \cup 1[S \cup 0]$ arising from a semigroup S by the adjunction of an identity element 1 [a zero element 0], unless S already has an identity [has a zero, and $|S|>1]$, in which case $S^{1}=S\left[S^{0}=S\right]$. (§1.1)
$a \mid b$ means " a divides b ", that is, $b \in a S^{1}$, where a and b are elements of a commutative semigroup S. (§4.3)
$\rho_{a}\left[\lambda_{a}\right]$ denotes the inner right [left] translation $x \rightarrow x a[x \rightarrow a x]$ of a semigroup S, where a is a fixed element of S. (§1.3)

If ρ is an equivalence relation on a set X, and if $(a, b) \in \rho$, then we write $a \rho b$ and say that a and b are ρ-equivalent, and that they belong to the same ρ-class.

If ρ is a congruence relation on a semigroup S, then S / ρ denotes the factor semigroup of S modulo ρ, and ρ^{\natural} denotes the natural mapping of S upon S / ρ. (§1.5) S / J denotes the Rees factor semigroup of S modulo an ideal J.

Let S be a semigroup, and let $a \in S$. (Following from §2.1)
$L(a)$ denotes the principal left ideal $S^{1} a$.
$R(a)$ denotes the principal right ideal $a S^{1}$.
$J(a)$ denotes the principal two-sided ideal $S^{1} a S^{1}$.
\mathscr{L} means $\{(a, b) \in S \times S: L(a)=L(b)\}$.
\mathscr{R} means $\{(a, b) \in S \times S: R(a)=R(b)\}$.
\mathscr{J} means $\{(a, b) \in S \times S: J(a)=J(b)\}$.
\mathscr{H} means $\mathscr{L} \cap \mathscr{R}$.
\mathscr{D} means $\mathscr{L} \circ \mathscr{R}(=\mathscr{R} \circ \mathscr{L})$.
$L_{a}, R_{a}, J_{a}, H_{a}, D_{a}$ mean respectively the $\mathscr{L}, \mathscr{R}, \mathscr{J}, \mathscr{H}, \mathscr{D}$-class containing a.
$I(a)$ means $J(a) \backslash J_{a} . \quad$ (It is empty or an ideal of S.)
$J(a) / I(a)$ is the principal factor of S corresponding to a. (§2.6)
\mathscr{T}_{X} means the semigroup of all transformations of a set X. (§1.1)
\mathscr{G}_{X} means the group of all permutations of a set X. (§1.1)
\mathscr{I}_{X} means the symmetric inverse semigroup on a set X. (§1.9)
\mathscr{B}_{X} means the semigroup of all binary relations on X. (§1.4)
\mathscr{F}_{X} means the free semigroup on X. (§1.12)
$\mathscr{F} \mathscr{G}_{X}$ means the free group on X. (§1.12)
\mathscr{C} means the bicyclic semigroup. (§1.12)
$\mathscr{M}^{0}(G ; I, \Lambda ; P)$ means the Rees $I \times \Lambda$ matrix semigroup over the group with zero G^{0}, with $\Lambda \times I$ sandwich matrix P.
$\mathscr{M}(G ; I, \Lambda ; P)$ means the Rees $I \times \Lambda$ matrix semigroup without zero over the group G, with $\Lambda \times I$ sandwich matrix P. (§3.1)
$\mathscr{L} \mathscr{T}(V)$ means the algebra of all linear transformations of a vector space V, or the multiplicative semigroup thereof. ($\S \S 2.2,5.1)$
$(\mathfrak{H})_{n}$ means the algebra of all $n \times n$ matrices over an algebra \mathfrak{N}.
$\Phi[S]$ means the algebra of a semigroup S over a field Φ. (§5.2)
\cong means "isomorphic". (§1.3)
~ means "homomorphic", and sometimes "equivalent". (§1.3)
\oplus is used for the direct sum of algebras, vector spaces, and representations. (§5.1)
The $n \times n$ identity matrix is denoted by:
I_{n} when it is over a field ($\S \S 5.2,5.3$),
U_{n} when it is over an algebra with identity element u (§5.1),
Δ_{n} when it is over a group with zero (§3.1).
Γ^{m} denotes the representation of $(\mathfrak{A})_{m}$ associated with the representation Γ of \mathfrak{A}. (§5.1)
M_{L}, M_{R}, M_{J} denote the minimal conditions on the set of principal left, right, two-sided ideals, respectively, of a semigroup. (A partially ordered set P is said to satisfy the minimal condition if each non-empty subset A of P contains at least one minimal element, i.e., an element x of A such that $y<x(y \in P)$ implies $y \notin A).(\S \S 5.3,5.4)$

APPENDIX A

A BRIEF ACCOUNT OF THE 1928 PAPER OF SUSCHKEWITSCH

Starting with an arbitrary finite semigroup S, he considers subsets of S of the form $S a$ having the least possible number of elements. These are evidently just the minimal left ideals of S, and we shall use the current terminology. He shows that each minimal left ideal of S is a left group, and (without using the expression "direct product") shows that it is the direct product of a group and a left zero semigroup. This is, of course, our Theorem 1.27 for finite semigroups. Moreover, any two minimal left ideals of S are isomorphic, and in particular are unions of the same number r of isomorphic groups.

He calls the union K of all the minimal left ideals of S the kernel ("Kerngruppe") of S. If s is the number of distinct minimal left ideals of S, then K is the union of $r s$ mutually isomorphic groups. He shows that these can be arranged in a rectangular array as follows:

K	L_{1}	$L_{2} \cdots L_{8}$	
R_{1}	H_{11}	$H_{12} \cdots H_{18}$	
R_{2}	H_{21}	$H_{22} \cdots H_{2 s}$	
\vdots	\vdots	\vdots	\vdots
R_{r}	$H_{r 1}$	$H_{r 2} \cdots H_{r s}$	

(This is the source of our "eggbox picture", described in §2.1.) The union of the groups $H_{1 \lambda}, \cdots, H_{r \lambda}$ in the λ th column is the minimal left ideal L_{λ} $(\lambda=1, \cdots, s)$. Let $e_{i \lambda}$ be the identity element of the group $H_{i \lambda}$. He shows that the $H_{i \lambda}$ can be arranged so that each $e_{i \lambda}$ acts as a left identity on all the $H_{i \lambda}$ in the same row. When this is done, the union R_{i} of the groups $H_{i 1}, \cdots, H_{i s}$ in the i th row ($i=1, \cdots, r$) is a minimal right ideal of S. Moreover, every minimal right ideal of S is one of the R_{i}. Hence:

Every finite semigroup has a kernel K which is the union of all the minimal left ideals of S and also of all the minimal right ideals of S. The intersection of a minimal left ideal and a minimal right ideal is a (maximal) subgroup of S. These results were subsequently extended to infinite semigroups having minimal left ideals and minimal right ideals (Exercise 13 of §2.7). We know now that it is simpler to introduce the L 's and R 's independently, and the H 's as intersections thereof.

Suschkewitsch goes on to show by quite an involved argument that K is uniquely determined by (1) the abstract group H to which each $H_{i \lambda}$ is isomorphic, (2) the numbers r and s, and (3) the $(r-1)(s-1)$ products $e_{11} e_{i \lambda}(i=2, \cdots, r$; $\lambda=2, \cdots, s)$. He shows conversely that the group H, the numbers r and s, and the $e_{11} e_{i \lambda}$ can be given arbitrarily. This is done by means of transformations of a finite set. Thus he succeeds in determining the structure of the most general finite simple semigroup, but yet not (as came later with the Rees Theorem) in a readily usable form.

This theory also occupies the greater part of Chapter 3 of Suschkewitsch's book [1937].

BIBLIOGRAPHY

Amitsur, S.
1951 Semi-group rings. Riveon Lematematika 5(1951) 5-9 (MR 13, 7).
Andersen, 0.
1952 Ein Bericht über die Struktur abstrakter Halbgruppen. Thesis (Staatsexamensarbeit), Hamburg, 1952.
Baer, R. and Levi, F.
1932 Vollständige irreduzibele Systeme von Gruppenaxiomen. (Beiträge zur Algebra No. 18.) Sitzber. Heidelberger Akad. Wiss., Abh. 2(1932) 1-12.
Ballieu, R.
1950 Une relation d'équivalence dans les groupoüdes et son application à une classe de demi-groupes. III ${ }^{e}$ Congrès National des Sciences, Bruxelles 2(1950) 46-50 (MR 17, 126).
Brandt, H.
1927 Über eine Verallgemeinerung des Gruppenbegriffes. Math. Ann. 96(1927) 360366.

1940 Über die Axiome des Gruppoids. Vierteljschr. Naturforsch. Ges. Zürich 85(1940) 95-104 (MR 2, 218).
Bruck, R. H.
1958 A Survey of Binary Systems. Ergebnisse der Math., Heft 20, Springer, Berlin, 1958 (185 pp.).
Carman, K. S.
1949 Semigroup ideals. M.A. Thesis, directed by D. D. Miller, University of Tennessee, 1949.
Clifford, A. H.
1933 A system arising from a weakened set of group postulates. Annals of Math. 34(1933) 865-871.
1941 Semigroups admitting relative inverses. Annals of Math. 42(1941) 1037-1049 (MR 3, 199).
1942 Matrix representations of completely simple semigroups. Amer. J. Math. 64(1942) 327-342 (MR 4, 4).
1948 Semigroups containing minimal ideals. Amer. J. Math. 70(1948) 521-526 (MR 10, 12).
1949 Semigroups without nilpotent ideals. Amer. J. Math. 71(1949) 834-844 (MR 11, 327).

1950 Extensions of semigroups. Trans. Amer. Math. Soc. 68(1950) 165-173 (MR 11, 499).

1953 A class of d-simple semigroups. Amer. J. Math. 75(1953) 547-556 (MR 15, 98).

1954 Bands of semigroups. Proc. Amer. Math. Soc. 5(1954) 499-504 (MR 15, 930).

1960 Basic representations of completely simple semigroups. Amer. J. Math. 82(1960) 430-434.
Clifford, A. H. and Miller, D. D.
1948 Semigroups having zeroid elements. Amer. J. Math. 70(1948) 117-125 (MR 9, 330).

Climescu, A. C.
1946 Sur les quasicycles. Bull. École Polytech. Jassy 1(1946) 5-14 (MR 8, 134).

Comport, W. W.
1960 The isolated points in the dual of a commutative semigroup. Proc. Amer. Math. Soc. 11(1960) 227-233.
Conrad, P. F.
1957 Generalized semigroup rings. J. Indian Math. Soc. (N.S.) 21(1957) 73-95 (MR 20, 142).
Croisot, R.
1948a Une interprétation des relations d'équivalence dans un ensemble. C. R. Acad. Sci. Paris 226(1948) 616-617 (MR 9, 406).
1948 Condition suffisante pour l'égalité des longueurs de deux chaînes de mêmes extrémités dans une structure. Application aux relations d'équivalence et aux sous-groupes. C. R. Acad. Sci. Paris 226(1948) 767-768 (MR 9, 406).
1953 Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples. Ann. Sci. École Norm. Sup. (3) 70(1953) 361-379 (MR 15, 680).
Dickson, L. E.
1905 On semi-groups and the general isomorphism between infinite groups. Trans. Amer. Math. Soc. 6(1905) 205-208.
Doss, C. G.
1955 Certain equivalence relations in transformation semigroups. M.A. Thesis, directed by D. D. Miller, University of Tennessee, 1955.
Dubreil, P.
1941 Contribution à la théorie des demi-groupes. Mém. Acad. Sci. Inst. France (2)63, no. 3 (1941), 52 pp . (MR 8, 15).

1943 Sur les problèmes d'immersion et la théorie des modules. C. R. Acad. Sci. Paris 216(1943) 625-627 (MR 5, 144).
Gluskin, L. M. (ГЛУСКИН, Л.М.)
1957 Элементарнье обобщеннье групnьь. (Elementary generalized groups.) Mat. Sbornik 41(1957) 23-36 (MR 19, 836).
Good, R. A. and Hughes, D. R.
1952 Associated groups for a semigroup. Bull. Amer. Math. Soc. 58(1952) 624-625 (Abstract).
Green, J. A.
1951 On the structure of semigroups. Annals of Math. 54(1951) 163-172 (MR 13, 100).

Green, J. A. and Rees, D.
1952 On semigroups in which $x^{r}=x$. Proc. ${ }^{\circ}$ Cambr. Phil. Soc. 48(1952) 35-40 (MR 13, 720).
Grimble, Helen B.
1950 Prime ideals in semigroups. M.A. Thesis, directed by D. D. Miller, University of Tennessee, March 1950.
Hancock, V. R.
1960a On complete semimodules. Proc. Amer. Math. Soc. 11(1960) 71-76.
1960 Commutative Schreier extensions of semigroups. Dissertation, The Tulane University of Louisiana, 1960.
Hashimoto, H .
1954 On a generalization of groups. Proc. Japan Acad. 30(1954) 548-549 (MR 16, 564).

Hewitt, E. and Zuckerman, H. S.
1955 Finite dimensional convolution algebras. Acta Math. 93(1955) 67-119 (MR 17, 1048).

1956 The l_{1}-algebra of a commutative semigroup. Trans. Amer. Math. Soc. 83(1956) 70-97 (MR 18, 465).

1957 The irreducible representations of a semigroup related to the symmetric group. Illinois J. Math. 1(1957) 188-213 (MR 19, 249).
Iséki, K.
$1956 a$ Contribution to the theory of semigroups. I. Proc. Japan Acad. 32(1956) 174-175 (MR 17, 1184).
$1956 b$ Contributions to the theory of semi-groups. III. Proc. Japan Acad. 32(1956) 323-324 (MR 18, 282).
1956c Contributions to the theory of semigroups. IV. Proc. Japan Acad. 32(1956) 430-435 (MR 18, 282).
1956d A characterisation of regular semi-group. Proc. Japan Acad. 32(1956) 676-677 (MR 18, 717).
1957 Contributions to the theory of semigroups. VI. Proc. Japan Acad. 33(1957) 29-30 (MR 19, 1158).
Ivan, J.
1953 On the direct product of semigroups. (Slovakian, Russian summary.) Mat.Fyz. Casopis. Slovensk. Akad. Vied 3(1953) 57-66 (MR 16, 9).
1954 On the decomposition of simple semigroups into a direct product. (Slovakian, Russian summary.) Mat.-Fyz. Casopis. Slovensk. Akad. Vied 4(1954) 181202 (MR 17, 346).
Kimura, N.
1954 Maximal subgroups of a semigroup. Kōdai Math. Sem. Rep. 1954(1954) 85-88 (MR 16, 443).
1957 Note on idempotent semigroups. I. Proc. Japan Acad. 33(1957) 642-645 (MR 20, 762).
1958a Note on idempotent semigroups. III. Proc. Japan Acad. 34(1958) 113-114 (MR 20, 762).
$1958 b$ Note on idempotent semigroups. IV. Proc. Japan Acad. 34(1958) 121-123 (MR 20, 762).
1958c The structure of idempotent semigroups. I. Pacific J. Math. 8(1958) 257-275 (MR 21, 253).
1958d On some existence theorems on multiplicative systems. I. Greatest quotient. Proc. Japan Acad. 34(1958) 305-309 (MR 21, 254).
Klein-Barmen, F.
1940 Über eine weitere Verallgemeinerung des Verbandsbegriffes. Math. Z. 46(1940) 472-480 (MR 1, 327).
Koch, R. J.
1953 On topological semigroups. Dissertation, The Tulane University of Louisiana, 1953.

Liber, A. E. (JПИБEP, A. E.)
1954 К теории обобщенньт гpynn. (On the theory of generalized groups.) Doklady Akad. Nauk SSSR 97(1954) 25-28 (MR 16, 9).
Loewy, A.
1927 Über abstrakt definierte Transmutationssysteme oder Mischgruppe. J. Reine Angew. Math. 157(1927) 239-254.
Lyapin, E. S. (ЛЯПИН, E. C.)
1953a Aссочиативные системь всех частичньх преобразований. (Associative systems of all partial transformations.) Doklady Akad. Nauk SSSR 88(1953) 13-15 (MR 15, 395) (errata 92 (1953) 692).
$1953 b$ Канонический вид элементов одной ассоциативной системь, заданной определяюшими соотношениями. (Canonical form of elements of an associative system given by defining relations.) Leningrad Gos. Ped. Inst. Uch. Zap. 89(1953) 45-54 (MR 17, 942).

1953 У Увеличительные элементьи ассочиативньх систем. (Increasing elements of associative systems.) Leningrad Gos. Ped. Inst. Uch. Zap. 89(1953) 55-65 (MR 17, 942).
1954 Полугруппи, во всех представлениях которых операторы имеют неподвижсные точки, I. (Semigroups in all of whose representations the operators have fixed points, I.) Mat. Sbornik 34(1954) 289-306 (MR 15, 850).
Malcev, A. I. (МАЛЬЦЕВ, А. И.)
1939 О включении ассочиативных систем в групnы. (On the embedding of associative systems in groups.) Mat. Sbornik 6(1939) 331-336 (MR 2, 7).
1952 Cимметрические группоиды. (Symmetric groupoids.) Mat. Sbornik 31(1952) 136-151 (MR 14, 349).
Mann, H. B.
1944 On certain systems which are almost groups. Bull. Amer. Math. Soc. 50(1944) 879-881 (MR 6, 147).
McLean, D.
1954 Idempotent semigroups. Amer. Math. Monthly 61(1954) 110-113 (MR 15, 681).
Miller, D. D. and Clifford, A. H.
1956 Regular \mathscr{D}-classes in semigroups. Trans, Amer. Math. Soc. 82(1956) 270-280 (MR 17, 1184).
Munn, W. D.
1955a Semigroups and their algebras. Dissertation, Cambridge University, 1955.
$1955 b$ On semigroup algebras. Proc. Cambridge Phil. Soc. 51(1955) 1-15 (MR 16, 561).

1957a Matrix representations of semigroups. Proc. Cambridge Phil. Soc. 53(1957) 5-12 (MR 18, 489).
$1957 b$ The characters of the symmetric inverse semigroup. Proc. Cambridge Phil. Soc. 53(1957) 13-18 (MR 18, 465).
1960 Irreducible matrix representations of semigroups. Quarterly J. Math. Oxford, Ser. (2) 11 (1960) 295-309.
1961 Pseudo-inverses in semigroups. Proc. Cambridge Phil. Soc. 57 (1961) 247-250.
Munn, W. D. and Penrose, R.
1955 A note on inverse semigroups. Proc. Cambridge Phil. Soc. 51(1955) 396-399 (MR 17, 10).
Numakura, K .
1954 A note on the structure of commutative semigroups. Proc. Japan Acad. 30(1954) 262-265 (MR 16, 214).
Oganesyan, V. A. (OГAHECGH, B.A.)
1955 O nолупростоте системной алееърьi. (On the semisimplicity of a system algebra.) Akad. Nauk Armyan. SSR. Dokl. 21(1955) 145-147 (MR 18, 465).
Ponizovsky, I. S. (ПОНИЗОВСКИЙ, И. С.)
1956 о матричных представлениях ассочиативных систем. (On matrix representations of associative systems.) Mat. Sbornik 38(1956) 241-260 (MR 18, 378).
1958 м матричных неприводимых представлениях конечных полугрупn. (On irreducible matrix representations of finite semigroups.) Uspehi Mat. Nauk 13(1958) 139-144 (MR 21, 383).
Poole, A. R.
1937 Finite ova. Amer. J. Math. 59(1937) 23-32.
Posey, E. E.
1949 Endomorphisms and translations of semigroups. M.A. Thesis, directed by D. D. Miller, University of Tennessee, 1949.

Prachar, K.
1947 Zur Axiomatik der Gruppen. Akad. Wiss. Wien. S.-B. II a. 155(1947) 97-102 (MR 9, 491).

Preston, G. B.
1954a Inverse semi-groups. J. London Math. Soc. 29(1954) 396-403 (MR 16, 215).
$1954 b$ Inverse semi-groups with minimal right ideals. J. London Math. Soc. 29(1954) 404-411 (MR 16, 215).
1954 c Representations of inverse semi-groups. J. London Math. Soc. 29(1954) 411419 (MR 16, 216).
1957 A note on representations of inverse semigroups. Proc. Amer. Math. Soc. 8(1957) 1144-1147 (MR 19, 941).
1958 Matrix representations of semigroups. Quarterly J. Math. Oxford Ser. (2) 9(1958) 169-176 (MR 20, 960).
Redei, L.
1952 Die Verallgemeinerung der Schreierschen Erweiterungstheorie. Acta Sci. Math. Szeged 14(1952) 252-273 (MR 14, 614).
Rees, D.
1940 On semi-groups. Proc. Cambridge Phil. Soc. 36(1940) 387-400 (MR 2, 127).
1941 Note on semi-groups. Proc. Cambridge Phil. Soc. 37(1941) 434-435 (MR 3, 199).

1948a On the ideal structure of a semi-group satisfying a cancellation law. Quarterly J. Math. Oxford Ser. 19(1948) 101-108 (MR 9, 567).

1948 On the group of a set of partial transformations. J. London Math. Soc. 22 (1948) 281-284 (MR 9, 568).
Ricy, R. P.
1949 Completely simple ideals of a semigroup. Amer. J. Math. 71(1949) 883-885 (MR 11, 327).
Ross, K. A.
1959 A note on extending semicharacters on semigroups. Proc. Amer. Math. Soc. 10(1959) 579-583 (MR 22, 12).
1961 Extending characters on semigroups. Proc. Amer. Math. Soc. 12 (1961).
Schützenberger, M. P.
1947 Sur certains treillis gauches. C. R. Acad. Sci. Paris 224(1947) 776-778 (MR 8, 432).

1956a Sur une représentation des demi-groupes. C. R. Acad. Sci. Paris 242(1956) 2907-2908 (MR 18, 13).
$1956 b$ Sur deux représentations des demi-groupes finis. C. R. Acad. Sci. Paris 243 (1956) 1385-1387 (MR 18, 282).
$1957 a \overline{\mathscr{D}}$ représentation des demi-groupes. C. R. Acad. Sci. Paris 244(1957) 1994-1996 (MR 19, 249).
1957 Applications des $\overline{\mathscr{D}}$ représentations à l'étude des homomorphismes des demigroupes. C. R. Acad. Sci. Paris 244(1957) 2219-2221 (MR 19, 249).
1958 Sur la représentation monomiale des demi-groupes. C. R. Acad. Sci. Paris 246(1958) 865-867 (MR 20, 394).
Schwarz, S. (ШВАРЦ, Ш.)
1943 Zur Theorie der Halbgruppen. (Slovakian, German summary.) Sborník prác Prírodovedekej Fakulty Slovenskej Univerzity v Bratislave No. 6(1943) 64 pp . (MR 10, 12).
1951 On the structure of simple semigroups without zero. Czechoslovak Math. J. 1(1951) 41-53 (MR 14, 12).
1953а $К$ теории периодических полугруnn. (Contribution to the theory of torsion semigroups.) Czechoslovak Math. J. 3(1953) 7-21 (MR 15, 850).
1953b О максимальных идеалах в теории полугрynn. (On maximal ideals in the theory of semigroups.) I. Czechoslovak Math. J. 3(1953) 139-153 (MR 15, 850).

1953с О максимальных идеалах в теории попугрупn. (On maximal ideals in the theory of semigroups.) II. Czechoslovak Math. J. 3(1953) 365-383 (MR 15, 850).

1954a Tеория характеров коммутативньи полугрупn. (The theory of characters of finite commutative semigroups.) Czechoslovak Math. J. 4(1954) 219-247 (MR 16, 1085).
$1954 b$ Характеры коммутативных полугрупп как функции классов. (Characters of commutative semigroups as class functions.) Czechoslovak Math. J. 4(1954) 291-295 (MR 16, 1086).
1954 с $О$ некоторой связи Галуа в теории характеров полугрупn. (On a Galois connection in the theory of characters of commutative semigroups.) Czechoslovak Math. J. 4(1954) 296-313 (MR 16, 1086).
1956 Semigroups satisfying some weakened forms of the cancellation law. (Slovakian, Russian and English summaries.) Mat.-Fyz. Casopis Slovensk. Akad. Vied 6(1956) 149-158 (MR 19, 940).
Skolem, T.
1951 Some remarks on semi-groups. Norske Vid. Selsk. Forh., Trondheim 24(1951) 42-47 (MR 13, 906).
Steinfeld, O.
1956 Über die Quasiideale von Halbgruppen. Publ. Math. Debrecen 4(1956) 262-275 (MR 18, 790).
1957 Über die Quasiideale von Halbgruppen mit eigentlichem Suschkewitsch-Kern. Acta Sci. Math. Szeged 18(1957) 235-242 (MR 20, 282).
Stoll, R. R.
1944 Representations of finite simple semigroups. Duke Math. J. 11(1944) 251-265 (MR 5, 229).
1951 Homomorphisms of a semigroup onto a group. Amer. J. Math. 73 (1951) 475481 (MR 12, 799).
Stolt, B.
1956 Über eine besondere Halbgruppe. Ark. Mat. 3(1956) 275-286 (MR 17, 942).
SUSCHKewitsch, А. (СУШКЕВИЧ, А. К.)
1928 Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit. Math. Ann. 99(1928) 30-50.
1933 Über die Matrizendarstellung der verallgemeinerte Gruppen. Com. Soc. Math. Kharkow 6(1933) 27-38.
1937 Teopия обобченных гpynn. (Theory of Generalized Groups). Gos. Nauk.Tekh. Izd. Ukranii, Kharkow, 1937 (176 pp.). (Out of print.)
1940а Исследования о бесконечных подстановках. (Investigations on infinite substitutions.) Memorial volume dedicated to D. A. Grave, Moscow (1940) 245253 (MR 2, 217).
1940 ИСследования о бесконечкьих подстановках. (Investigations on infinite substitutions.) Comm. Inst. Sci. Math. Mec. Univ. Kharkoff (4) 18(1940) 27-37 (MR 3, 99).
Sźep, J.
1956 Zur Theorie der Halbgruppen. Publ. Math. Debrecen 4(1956) 344-346. (MR 18, 110).
Tamari, Dov.
1948 On a certain classification of rings and semigroups. Bull. Amer. Math. Soc. 54(1948) 153-158 (MR 9, 490).
Tamura, T.
1950 Characterization of groupoids and semilattices by ideals in a semigroup. J. Sci. Gakugei Fac. Tokushima Univ. 1(1950) 37-44 (MR 13, 430).

1954a On finite one-idempotent semigroups. I. J. Gakugei, Tokushima Univ. (Nat. Sci.) 4(1954) 11-20 (MR 15, 850).
$1954 b$ Note on unipotent inversible semigroups. Kōdai Math. Sem. Rep. 1954(1954) 93-95 (MR 16, 443).
1955a One-sided bases and translations of a semigroup. Math. Japonica 3(1955) 137141 (MR 17, 1184).
$1955 b$ On translations of a semigroup. Kōdai Math. Sem. Rep. 7(1955) 67-70 (MR 18, 318).

1957 Commutative nonpotent archimedean semigroup with cancellation law. I. J. Gakugei Tokushima Univ. 8(1957) 5-11 (MR 20, 533).
1958 Notes on translations of a semigroup. Ködai Math. Sem. Rep. 10(1958) 9-26 (MR 20, 1066).
Tamura, T. and Kimura, N.
1954 On decompositions of a commutative semigroup. Kōdai Math. Sem. Rep. 1954(1954) 109-112 (MR 16, 670).
1955 Existence of greatest decomposition of a semigroup. Kōdai Math. Sem. Rep. 7(1955) 83-84 (MR 18, 192).
Teissier, Marianne
1952a Sur l'algèbre d'un demi-groupe fini simple. C. R. Acad. Sci. Paris 234(1952) 2413-2414 (MR 14, 10).
$1952 b$ Sur l'algèbre d'un demi-groupe fini simple. II. Cas général. C. R. Acad. Sci. Paris 234(1952) 2511-2513 (MR 14, 10).
Thierrin, G.
1951 Sur une condition nécessaire et suffisante pour qu'un semi-groupe soit un groupe. C. R. Acad. Sci. Paris 232(1951) 376-378 (MR 12, 389).

1952a Sur les éléments inversifs et les éléments unitaires d'un demi-groupe inversif. C. R. Acad. Sci. Paris 234(1952) 33-34 (MR 13, 621).
$1952 b$ Sur une classe de demi-groupes inversifs. C. R. Acad. Sci. Paris 234(1952) 177179 (MR 13, 621).
$1954 a$ Sur quelques classes de demi-groupes possédant certaines propriétés des semigroupes. C. R. Acad. Sci. Paris 238(1954) 1765-1767 (MR 15, 849).
$1954 b$ Sur quelques propriétés de certaines classes de demi-groupes. C. R. Acad. Sci. Paris 239(1954) 1335-1337 (MR 16, 443).
$1955 a$ Demi-groupes inversés et rectangulaires. Acad. Roy. Belg. Bull. Cl. Sci. (5) 41(1955) 83-92 (MR 17, 10).
$1955 b$ Sur une propriété caractéristique des demi-groupes inversés et rectangulaires. C. R. Acad. Sci. Paris 241(1955) 1192-1194 (MR 17, 459).

1955 Contribution à la théorie des équivalences dans les demi-groupes. Bull. Soc. Math. France 83(1955) 103-159 (MR 17, 584).
1956 Sur quelques decompositions des groupoïdes. C. R. Acad. Sci. Paris 242(1956) 596-598 (MR 17, 825).
Tully, E. J.
1960 Representation of a semigroup by transformations of a set. Dissertation, The Tulane University of Louisiana, 1960.
Vagner, V. V. (BAГHEP, B. B.)
1952a К теории частичньт преобразований. (On the theory of partial transformations.) Doklady Akad. Nauk SSSR (N.S.) 84(1952) 653-656 (MR 14, 10).
$1952 b$ Обобченные групnь. (Generalized groups.) Doklady Akad. Nauk SSSR (N.S.) 84(1952) 1119-1122 (MR 14, 12).

Vandiver, H. S.
1940 On the imbedding of one semi-group in another, with application to semi-rings. Amer. J. Math. 62(1940) 72-78 (MR 1, 105).

Vorobev, N. N. (BOPOBbEB, H. H.)
1953a Ассочиативнье системы, всякая подсистема которых имеет единичу. (Associative systems of which every subsystem has a unity.) Doklady Akad. Nauk SSSR 88(1953) 393-396 (MR 14, 718).
1953 о симметрических ассочиативных системах. (On symmetric associative systems). Leningrad Gos. Ped. Inst. Uch. Zap. 89(1953) 161-166 (MR 17, 943).
Wallace, A. D.
1953 A note on mobs. II. Anais Acad. Brasil Ci. 25(1953) 335-336 (MR 15, 854).
1955 The structure of topological semigroups. Bull. Amer. Math. Soc. 61(1955) 95112 (MR 16, 796).
1957 Retractions in semigroups. Pacific J. Math. 7(1957) 1513-1517 (MR 20, 396).
Warne, R. J. and Williams, L. K.
1961 Characters on inverse semi-groups. Czechoslovak Math. J. 11 (1961) 150-155.
Wiegandt, R.
1958 On complete semi-groups. Acta Sci. Math. Szeged 19(1958) 93-97 (MR 20, 394).
$1958 b$ On complete semi-modules. Acta Sci. Math. Szeged 19(1958) 219-223 (MR 20, 1066).

Yamada, M.
1955a A note on middle unitary semigroups. Kōdai Math. Sem. Rep. 7(1955) 49-52 (MR 17, 585).
$1955 b$ On the greatest semilattice decomposition of a semigroup. Kōdai Math. Sem. Rep. 7(1955) 59-62 (MR 17, 584).
Yamada, M. and Kimura, N.
1958 Note on idempotent semigroups. II. Proc. Japan Acad. 34(1958) 110-112 (MR 20, 762).

AUTHOR INDEX

Page n inl rs which include a reference to the exercises are printed in italics.

Albert, A. A., 86
Amitsur, S., 159, 163
Andersen, O., 43, 5C, 81, 123
Baer, R., 39
Ballieu, R., 38
Bell, E. T., 40
Birkhoff, G., viii
Brandt, H., 1, 99, 100, 101
Brauer, R., 158
Bruck, R. H., vii, 6, 27, 33
Carman, K. S., 75
Clifford, A. H., $13,23,27,38,39,40,49,50$, $59,60,61,62,68,70,78,84,91,102,121$,
123, 126, 129, 137, 142, 149, 169, 177, 192
Climescu, A. C., 20
Comfort, W. W., 203
Conrad, P. F., 37,100
Croisot, R., 98, 103, 121, 123, 124, 125, 126
Deuring, M., 99
Dickson, L. E., vii, 4
Dubreil, P., vii, 19, 34, 36
Doss, C. G., 33, 51
Frobenius, G., 20, 21
Gluskin, L. M., 34
Good, R. A., 84
Green, J. A., 47, 48, 49, 59, 61, 71, 79, 130
Greville, T. N. E., 63
Grimble, H. B., 40, 71
Hancock, V. R., 137
Hashimoto, H., 38
Hewitt, E., 95, $121,130,135,148,149,159$,
167, 169, 170, 193, 194, 195, 197, 199, 205
Hille, E., vii
Hughes, D. R., 84
Huntington, E. V., 4
Iséki, K., 26, 34, 126, 206
Ivan, J., 83, 97, 130
Jacobson, N., 62, 155169
Kimura, N., 18, 23, 26, 121, 130, 131, 135
Klein-Barmen, F., 4
Koch, R. J., 66, 84
Krull, W., viii, 126
Levi, F., 39
Liber, A. E., 28
Light, F. W., 7
Loewy, A., 99
Lorenzen, P., viii
Lyapin, E. S., vii, viii 34, 43, 46
MacLane, S., viii
McLean, D., 129, 130
Malcev, A. I., 6, 34
Mann, H. B., 38
Miller, D. D., 49, 51, 59, 60, 61, 62, 70, 91
Moore, E. H., 20, 63

Munn, W. D., 28, 40, 62, 68, 75, 76, 82, 102, $103,109,121,143,147,148,149,159,167$, $169,170,172,174,176,191$
Neumann, J. von, 27
Numakura, K., 26
Oganesyan, V. A., 165
Ore, O., 34, 35
Penrose, R., 28, 63
Phillips, R. S., vii
Pierpont, J., 5
Poole, A. R., 20, 21
Ponizovsky, I. S., 148, 170
Posey, E. E., 13, 26
Prachar, K., 38
Preston, G. B., 27, 28, 30, 87, 110, 117
Rédei, L., 137
Rees, D., vii, 17, 20, 32, 34, 35, 43, 47, 71, 74, 83, 89, 91, 94, 103, 106, 130
Rich, R. P., 78, 79, 83
Ross, K. A., 203
Schützenberger, M. P., 63, 64, 110, 129
Schwarz, S., 21, 23, 26, 38, 70, 126, 136, 149, 193, 195, 201, 203, 205, 206
Séguier, J.-A. de, vii
Skolem, T., 38
Steinfeld, O., 85
Stoll, R. R., 10, 110
Stolt, B., 38
Suschkewitsch, A. K., vii, 20, 23, 37, 40, 51, $58,67,71,80,84,85,99,142,148,177,191$, 207, 208
Szép, J., 38
Tamari, D., 37
Tamura, T., 13, 18, 26, 38, 71, 121, 130, 131, 135, 137, 144
Teissier, M., 165, 168
Thierrin, G., 6, 26, 27, 33, 38, 98, 129, 130
Tully, E. J., 10, 92, 107, 110
Vagner, V. V., 27, 28, 29, 30
Vandiver, H. S., 37
Vorobev, N. N., 7, 129
Waerden, B. L. van der, 34, 150, 155, 158
Wallace, A. D., 23, 84, 97
Ward, M., 20
Warne, R. J., 195, 201, 203
Weber, H., 4
Wedderburn, J. H. M., 97
Wiegandt, R., 137
Williams, L. K., 195, 201, 203
Yamada, M., 26, 98, 131
Zassenhaus, H., 74
Zuckerman, H. S., 95, 121, 130, 135, 148, 149, $159,167,169,170,193,194,195,197,199$, 205

INDEX

Terms are listed primarily under the broad concept involved, such as algebra, group, ideal, matrix, relation, representation, and semigroup. One-sided concepts are listed under the stem word
Page numbers which include a reference to the exercises are printed in italics. The dots and dashes stand for previous italicised terms (possibly of several words), the dashes being used for the earlier, and the dots for the later, terms.
For pure symbols, see the list of notation on page xili.
adjoint of a homomorphism, 200
adjunction of an identity (or zero), 4
algebra ($=$ linear associative \longrightarrow), 149
___ of a semigroup ($=$ semigroup
division , q.v.), 159
factor ($=$ difference) -150
full matrix ——, 151, 160
ideal (q.v.) of an ——, 149
Munn
order of an -149
radical of an —, 149, 168
representation (q.v.) of an ——, 151
semigroup -, 158, 159
contracted . . . ———160, 166, 169, 176
semisimple ——, 149, 162, 169, 174
class number of a $\ldots, 150$
Main Representation Theorem for ... -s, 154
simple components of a \ldots. . 150 , 169
Wedderburn's First Theorem, 150
simple ——, 150
Wedderburn's Second Theorem, 151
anti-automorphism, 9
involutorial ——, 9, 62
anti-endomorphism, 9
anti-homomorphism, 9
anti-isomorphism, 9
anti-representation, 9
[extended] regular
Schützenberger ——, 110-112
archimedean, see semigroup
associative (binary) operation, 1 - linear algebra, see algebra
associativity, Light's test for, 7
automorphism, 9
axioms for $S \backslash 0,100$
band, 4, 24, 26, 98, 120, 129, 130, 169
algebra of a ——, 169
——of groups, $80,83,91,125,129$
___ of semigroups, 26,129
commutative $\frac{=\text { semilattice, q.v. }}{\text {. }}$
$\underset{\text { rectangular }}{\text { free }}, 129,130,25,26,50,83,91,97,98$, 129
\ldots of groups, $80,83,91$
.. - of [completely] simple semi-
basic, see under matrix and representation
basis class of semigroups, 34
belonging to an idempotent, 167
bicyclic, see semigroup
bi-ideal, 84, 85
binary operation $=$ operation, 1
binary relation (= relation, q.v.), 13
bisimple, see semigroup
cancellable element, 3, 37
right [left] ———, 3
cancellative, see semigroup
canonical $=$ natural, q.v.
carrier space, 152
center, 3
central element, 3
character of a commutative semigroup, 193, 205

- semigroup, 194, 205, 206
principal $\quad 195$
apex of a ... 195
semi
, 194
unit , 194
vanishing ideal of a ——, 194
class number, 150
commutative, see semigroup
compatible, see relation
complete lattice, 24
composition, see relation, ideal series, and transformation
congruence, see relation
coördinates of Rees matrices, 107
Croisot's condition (m, n), 124
cross-section of a partition, 54, 56
\mathscr{D}-class, 47, 49, 51-57, 58-61, 62, 66, 96, 97, 112, 115, 116
decomposition, see representation and semigroup
descending chain condition, 170
direct product, see semigroup
direct sum, see representation
0 -disjoint, 67
divisor, 131
interior ——, 40
proper _of zero, 68, 71, 142, 145
right [left] ——, 40
right [left] ——or zero, 156
duality (left-right), 5
egg-box picture, 48, 56, 61, 93, 207
elementary ρ_{0}-transition, 18
embedding, see semigroup
empty word, 41
endomorphism, 9, 26
equivalence, see relation
exponents, laws of, 2, 3
extension, see representation and semigroup

```
factor ( \(=\) difference) algebra, 150
    _- semigroup (or groupoid), 16
    principal ——of a \(\ldots, 72,76,103,161\),
        170
    Rees - . ., 17
free, see band, group, and semigroup
```

generalized group ($=$ inverse semigroup, q.v.),
28
generalized inverse ($=$ inverse, q.v.), 27
generating relations, 41
generators of a congruence, 18
of a groupoid (or semigroup), 3
of an equivalence relation, 14
of an ideal, 5
of an inverse semigroup, 31
Green's Lemma, 49
Green's Theorem, 59
group, 4, 21, 33, 39, 84, 85, 125, 135
band of -s , see band
characters of a commutative ——, 197
congruences on a group, 19
embedding a semigroup in a
37
extensions of a by a completely 0 .
simple semigroup, 142-147
free - $\mathscr{F} \mathscr{G}_{X}$ on a set $X, 43$
full linear - $\mathscr{G} \mathscr{L}(V)$ on a vector space
V, 57
generalized ——_ inverse semigroup,
q.v.), 28
\mathscr{H}-class, 54, 57, 59, 61, 62, 65, 66, 79
inverse, 27
of left [right] quotients, 36, 37
of units, 21,23
of zeroids, 70, 71, 135
part of a commutative semigroup,
136, 167, 205
—— with zero, 5, 70, 83, 87
mixed - (Loewy), 99
partial ——, 103
right [left] ——, see under semigroup
[dual] Schützenberger - of an \mathscr{H}-class,
64, 65, 66, 111
semilattice of \longrightarrow s, see semilattice
simply transitive ——s, 64, 65
structure - of a Rees matrix semi-
group (q.v.), 88
subgroup of a semigroup, $5,50,70,82,84$
maximal ... (see also \mathscr{H}-class above), 22 ,
$23,40,61,84,85,136,205,207$
symmetric $-\mathscr{G}_{X}$ on a set $X, 2,6,23$,
33, 54, 57, 58, 96, 97, 99
union of $\xrightarrow{-}$, see union
groupoid, 1
Brandt ——, 1, 99
partial ——, 1, 100, 138
\mathscr{H}-class, 47, 48, 50, 57, 59, 61, 62, 63-66, 79, 110
group ——, see under group
non-group ——, 62, 65-66
homogeneous, see relation
homomorphic image, see maximal and nontrivial
homomorphism, 9
adjoint of a $, 9,200$
canonical $=$ natural, q.v.
induced ——, 17
... —— Theorem, 17, 19
Main - Theorem, 16
natural —— ρ^{\natural} determined by a congruence $\rho, 16$
non-trivial ——, 103
partial ———, 93, 109, 138, 143
ramification associated with a homomorphism, 141
hull, see inverse and translational
i.a.a. $=$ involutorial anti-automorphism, q.v. ideal (left, right, two-sided), 5, 149
bi-—, 84, 85
closed —— (= semiprime ——, q.v.), 206

- extension of a semigroup, 137
generators of an —, 5
maximal proper ——, 71
minimal left [right] ——, 66, 70, 80, 84, 85, 130
0 -minimal left [right] ——, 67-70, 76-80, 83, 84, 89
minimal (two-sided) ——, 66, 69, 70
0 -minimal (two-sided) ——, 67-70, 83
nilpotent - of an algebra, 149
operator-isomorphic right [left] $\quad \mathrm{s}$ of an algebra, 154
power of an - of an algebra, 149
prime - $, 40,71,125,126,194,204,205$
principal (left, right, two-sided) - , 6, $27,47,52,57,75,83$
quasi-——, 85
semiprime $\frac{, 71,121,125,126,205}{}$
series, 73, 74, 150
composition ..., 74, 75, 76
factors of an $\ldots, 73,74,76,150$
isomorphic - ..., 74
principal ..., 73, 75, 76, 161
refinement of an —_ ..., 74
relative -_ . ., 74, 75, 150
universally maximal -40 ...minimal -, 70
idempotent (element), 4, $6,20,37,38,54,56$, $57,59,61,62,63$
belonging to an ——, 167
- congruence, 131
—— semigroup = band, q.v.
natural partial ordering of the -_s, 24
over [under] an ——, 23
primitive $\longrightarrow, 26,76,83,84,103$
identity element (see also matrix), 3, 20
adjunction of an -, 4
right [left] ——, 3, 39, 40
increasing element, left or right, 46
index of an element (or cyclic semigroup), 19, 21, 23
induced, see homomorphism and relation
inflation, see semigroup
inner, see translation and translational hull
interior divisor, 40
inverse elements, 27, 33, 60, 61, 62, 91

$$
\begin{aligned}
& \text { group- hull, } 32,37,46 \\
& =\text { semigroup, see under semigroup } \\
& =\text { subsemigroup, } 30
\end{aligned}
$$

$$
\begin{aligned}
& \text { left [right] } \\
& \text { relative }-, 27
\end{aligned}, 4,21
$$

$$
\text { relative }, 27
$$

involutorial anti-automorphism, 9,62
isomorphism, 9

$$
\text { partial }, ~ 93,97
$$

——_ theorems, 71
\mathscr{J}-class, 48, 52, 74, 123, 126, 170, 172, 176, 191
join, 14, 24
kernel, 6, 66, 67, 69, 70, 84, 85, 165, 176, 205, 207
Kerngruppe $=$ kernel, q.v.
\mathscr{L}-class, see $\mathscr{R}[\mathscr{L}]$-class
lattice, 24, 202, 205

- of congruences, 24
left-right duality, 5
linear associative algebra = algebra, q.v.
linear transformation, 57, 62
null-space of a $\quad 57,57,62$
rank of a - 57
linked, see translation

Maschke's Theorem, 158
matrix (see also algebra, representation, semigroup)
column-monomial ——, 113, 115, 116
diagonal , 95
factorization of a
basic ... of a ——, 181, 191
equivalent . . s of a \quad, 181, 192
width of a ... of a $\quad, 180$
identity —, 91, 102, 151, 154, 171
invertible ——, 95, 106, 145
Moore's general reciprocal of a
non-singular over an algebra, 157, 169

- over a group with zero, 87
-_units, 83, 91, 97, 160
Nullity, Sylvester's Law of, 183
product of -s over a group with zero, 87, 91
rank of a, 181
Rees - 88
regular ——, 89
row-monomial _, 87, 111, 115, 116
strictly ...
sandwich _of a Rees matrix semigroup, 88, 96
normalization of the . . ——, 94, 106107
\ldots ——of a Munn algebra, 162
maximal
_- homomorphic image of given type, 18
. . . group image, 18, 21, 84, 110
- ... semilattice image, 18, 130, 131, 132, 135, 203
_ ... separative image, 132, 136, 198, 200
___ left [right] simple subsemigroup, 125 26
- proper ideal, 71
—— simple subsemigroup, 125
___ subgroup, see subgroup under group
meet, 24
middle unit, 98
minimal conditions M_{J}, M_{L}, and $M_{R}, 148,149$, $170,172,177,196,200$
minimal \mathscr{J}-class, 170
mixed group (Loewy), 99
module, double, 152
multiplicative function, 194
Munn matrix algebra, 162
natural basis, 151
natural (= canonical) homomorphism, 16
- mapping, 14
non-trivial homomorphic image, 103
normalization of the sandwich matrix, 94, 106-107
nowhere commutative, see semigroup
one-to-one mapping, 2
—— partial right [left] translation, 32
——partial transformation, 29
onto mapping, 2
operation (= binary operation), 1
order of a groupoid (or semigroup), 3
——of an algebra, 149
___ of an element, 19
over an idempotent, 23
p.r.t. $=$ partial one-to-one right translation, q.v.
partial (binary) operation, 1 group, 103
—— groupoid, 1, 100, 138
- homomorphism, 93, 109, 138, 143
ramification associated with a _ _..., 141
———isomorphism, 93, 97
- one-to-one right translation, 32
-_ one-to-one transformation, 29
——ordering, 23
natural -... of the idempotents, 24
partition, 14
56, 57 determined by a transformation, 51, 56, 57, 58
period of an element (or of a cyclic semigroup), 19
periodic, see semigroup
permutation, 2
power, 2, 149
primitive, see idempotent
principal, see character, factor, ideal, ideal
series, representation
projection, 56, 57, 155
properly nilpotent element of an algebra, 149
quasi-ideal, 85
quotient ($=$ factor) groupoid, or semigroup, 16
quotients (left or right), group of, 36, 37
$\mathscr{R}[\mathscr{L}]$-class, 47, 50, 56, 57, 61, 62, 117, 125
ramification, 141
reciprocal (= inverse) elements, 27
reciprocal, general, of a matrix (E. H. Moore), 63
rectangular, see band and semigroup
reductive, see semigroup
Rees congruence, 17
——factor semigroup, 17
—_ matrix, 88
——_matrix semigroup (q.v.), 88
___ Theorem, 94
regular (see also matrix, representation, semigroup)
—— \mathscr{D}-class, 58-63, 91-94 element, 26
_- Rees matrix semigroup, 89
relation ($=$ binary relation), 13
compatible ——, left or right, 16
composition of $\longrightarrow \mathrm{s}, 13$
congruence, 16, 19
$\ldots \phi \circ \phi^{-1}$ induced by a homomorphism $\phi, 16$
idempotent . . ., 131
Rees . . ., 17
right [left] . . ., 16, 19
separative . . ., 132
converse of a $\quad 14$
divisibility —_ (see also divisor), 131
empty $\longrightarrow, 13$
equivalence -, 14
$\phi, 15$
intersection and join of . . .——s, 14
natural mapping ρ q determined by an ...
generating $\stackrel{\rho, 14}{ }$ s for a semigroup, 41
Green's $-\mathrm{s}, \mathscr{L}, \mathscr{D}, \mathscr{H}, \mathscr{J}$ (q.v.), 47, 48
homogeneous $=$ compatible, q.v.
partial ordering of $\xrightarrow{s}, 14$
product ($=$ composition) of $\longrightarrow \mathrm{s}, 13$
regular $=$ compatible, q.v.
semigroup \mathscr{B}_{X} of $\longrightarrow \mathrm{s}$ on a set $X, 13-15$
transitive closure ρ^{t} of $a-\rho, 14$
universal ——, 13
representation, $9,110,148,151,160,168,169$
absolutely irreducible $\longrightarrow, 154,192$
anti(q.v.), 9
apex of a principal
associated -171
Γ^{m} of $a, 155$
basic $\longrightarrow, 185,193$
carrier space of a, 152
completely ($=$ fully) reducible,- 154
decomposition of a
defining matrices of a $\quad, 180$
degree of a
direct sum of \longrightarrow __s, 117, 119
equivalent ——s, 152, 192
extended regular ——, 9, 33
extending matrix of a $\longrightarrow, 180,191,192$, 193
extension of a $\longrightarrow, 171,176,178,191$, 192, 193
basic . . . of a $\quad, 177,185,191,193$
principal . . . of a
faithful ($=$ true) $-, 9,117-120,148$
fully (= completely) reducible ——, 154
induced ——, 9, 152, 171
invariant subspace of a
irreducible constituents of a ——_, 153, 193
absolutely ...
... invariant subspace, 153
$\ldots-153,154$
-s of a semisimple algebra (Main Theorem), 154
principal ——, 171, 177
apex of a ... $\quad 171$
\ldots extension of a $\quad 171$
proper ——, 177, 191, 192
regular $\quad, 9,33,64,65,154$
extended $\ldots \longrightarrow, 9,33$
(right) . . - ($=\ldots$ - $), 154$
_ space ($=$ carrier space of a -), 152
Schur's Lemma, 154
[dual] Schützenberger $, 110-115,116$, 117, 118, 119
true $=$ faithful \longrightarrow q.v.
ultimate reduction of a, 153
unit $\longrightarrow, 166,169,176,193$
vanishing ideal of a, 171
representative mapping of a partition, 56
reversible, see semigroup

Schreier extension of a semigroup, 137
Schützenberger group (q.v.), 64 representation (q.v.), 112
semicharacter, 194
semigroup (see also band, semilattice, union)
algebra $\Phi[S]$ of a S over a field Φ, 158, 159
contracted —_ ..., 160, 166
archimedean commutative $\longrightarrow, 131,135$, 136
. . . components of a commutative 130, 135, 205
basis class of $-\mathrm{s}, 34$
bicyclic $\mathscr{C}, 43-46,50,80,81,97$
bisimple ——, $49,50,51,62,80,97$
0 -bisimple $-, 76,79$
Brandt ——, 100, 103, 147, 165,.169, 176, 191
semigroup-continued
cancellative ———, 3, 6, 18, 23, 33, 34-37, 51, 133-136, 137, 199
right [left] . . $\quad, 3,6,10,13,21,23$, $32,33,37-40,50,117$
center of a $\quad 3$
character (q.v.) of a commutative 193
commutative ___ (see also nowhere ... $-1), 3,18,21,24,33,34,36,37$, $125,126,130-137,164,167,169,193-$ 206
\ldots band $=$ semilattice, q.v.
completely [0-]simple (see also Rees matrix $), 76-85,86,90,94,97,102$, $103,142,163,177,192$
cyclic $\quad, 19,20,21,23,46,142,159$, 169, 176
decomposition of a
direct product of $-\mathrm{s}, 37,38,83,97,98$, 130, 207
\mathscr{D}-simple \quad bisimple ——, q.v.
E-inversive ——, 98
embedding of a ___ in a group, 34-37
... of a in a symmetric inverse semigroup, 30
extension ($=$ ideal . . .) of a \quad, 137142, 142-147
equivalent . .s of a
Schreier . . . of a ——, 137
free,$- 40-41$
full transformation $-\mathscr{T}_{X}$ on a set X, $2,6-7,13,23,33,51-58,75,95,99,116$, 125,170
generating relations for $a \longrightarrow, 41$
ideal (q.v.) of a
idempotent \quad = band, q.v.
commutative . . $\longrightarrow=$ semilattice, q.v.
inflation of $a-, 98$
intra-regular $\longrightarrow, 121,123,125$
inverse - $28-34,60,102-103,119$, 127-129, 165, 176
elementary ... ——, 34
embedding an ... S in $\mathscr{I}_{S}, 30$
generators of an ... $\quad 31$
. . . hull of a —— $32,35,46$
... subsemigroup of an ... ——, 30
symmetric ...- \mathscr{I}_{x} on a set $X, 29$, 30, 33
left group, see right [left] group below
M-inversive —_, 98
nowhere commutative ——, 26, 33, 97
null (= zero) \longrightarrow _ 4, 67, 72, 73, 97
one-idempotent ($=$ unipotent) ———, 21, 26, 33, 71, 135
periodic $\longrightarrow, 20,21,23,26,136$
rectangular ——_(see also band), 98
reductive ——, right or left, 9
weakly ... ——, 11, 116, 139
Rees matrix _- (see also completely [0-]simple -), 88-91, 92-96, 97, 99, 102, 103-110, 114-116, 119, 125, 142-147, $163,166,177-193$
regular $, 26,33,34,40,56,57,62,84$, $85,89,103,119,120,125$
\ldots Rees matrix $\quad 89$
right [left] . . . —, 121-122, 125, 129
representation (q.v.) of a
reversible _—_, right or left, 34, 37
strongly . . -26
right [left] group, 37-40, 50, 58, 66, 70, 125, 142, 191, 207
above
_ generated by a set subject to generating relations, 41
of linear transformations, 57,62 of matrix units, $83,91,97,160$

- \mathscr{B}_{X} of relations on a set $X, 13-15$ of transformations, see full above
semisimple —_, 74, 75, 76, 125, 162
separative ——, 131, 135, 136, 197-200, 206
simple __ (see also completely simple -), 5, 40, 51, 66-70, 73, 123, 125, 192
right [left] $\ldots \longrightarrow, 5,37,38,50,66$, 68, 70, 117, 125
0 -simple _ (see also completely 0 -simple $-), 67,68,71,72,73,81,192$
right [left] ... $, 67,68,70$
stationary on the right [left], 98
symmetric inverse - see inverse above
transformation ——, see full transformation ——above
unipotent $=$ one-idempotent
, q.v.
zero ——_ null —_ q.v
right [left] . . $\longrightarrow, 4,6,13,26,33$, 37, 38, 39, 129
semilattice, 24, 33
lower $\longrightarrow, 24$
maximal homomorphic ——image, see maximal
- of archimedean commutative semi-
groups, 132
126
- of groups, 128, 129, 136
of one-idempotent semigroups, 26
- of rectangular bands, 129
of semigroups, 26, 129
——of simple semigroups, 123
upper-_, 24
separative, see semigroup, maximal homomorphic image, and congruence
series, see ideal
set product, 5
simply transitive, 64
structure group of a Rees matrix semigroup, 88
subgroup, see under group
subgroupoid, 2
subsemigroup, 3
symmetric, see group and inverse semigroup

[^0]```
transformation-continued
 defect of a,- 6
 iterate (\(=\) composition) of ——s, 1
 linear - (q.v.), 57, 62
 partial one-to-one ——, 29
 product (\(=\) composition) of \(-\mathrm{s}, 1\)
 range of a ——, 51, 57, 58, 62
 rank of a \(-, 6,52,53,57\)
 upon (= onto) a set, 2
 [simply] transitive set of --s, 64
transition, elementary, 18
transitive, see relation and transformation
translation, left [right], 10, 116, 139, 142
 inner left [right] ——, 9, 13, 116
 linked left and right \(-\mathrm{s}, 10,13,139\)
 partial one-to-one left [right] ——, 32
translational hull, 11, 13, 139
 inner part of the -12
triples and Rees matrices, 88
two-sided, see ideal, identity, zero
```

under an idempotent, 23
union (see also band and semilattice)
of groups, 23, 33, 34, 37-40, 97, 122,
125, 126-130, 134, 136, 164, 206

122 of [left, right] simple semigroups, 122, 123, 125
unit (see also character and representation), 21, 37
middle -, 98
right [left] identity, 21, 46
... of an element of an inverse semigroup, 30
$\cdots$. ${ }_{57}$ subsemigroup, $21,23,33,50$, 57
universal (right, left, or interior) divisor, 40
universally maximal ideal, 40 minimal ideal, 70
—— . . $\bar{J}$-class, 170
word, 41
zero element (left, right, two-sided), 3
right [left] semigroup, see under semigroup, 4
semigroup ( $=$ null semigroup, q.v.), 4
zeroid element [right, left], 70, 71, 84, 136



[^0]:    trace of a $\mathscr{D}$-class, 92,97
    transformation, 1
    composition of $-\mathrm{s}, 1$
    constant

