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TO 
MARY AND JANET 



THE SYSTEM OF REFERENCING USED IN THIS BOOK 

The book is divided into chapters, sections, and subsections. A reference 
VIII. 5C is to Subsection C of Section 5 of Chapter VIII. However, if this 
reference occurs in Chapter VIII, it is abbreviated to 5C. Lemmas, theorems, 
and corollaries are referred to in the same way: Theorem 3A is the theorem 
appearing in Section 3, Subsection A of the chapter in which the reference 
occurs. 

The numbered equations run consecutively within each chapter. Equa
tions marked (*), (t), etc., are consecutive within each subsection. 

An author's name followed by a boldface number enclosed in square 
brackets—PoincanS [1]—is a reference to the IJST OF REFERENCES 
appearing at the end of the book. 

iv 



PREFACE 

Much has been written on the theory of discontinuous groups and auto-
morphic functions since 1880, when the subject received its first formulation. 
The purpose of this book is to bring together in one place both the classical 
and modern aspects of the theory, and to present them clearly and in a 
modern language and notation. The emphasis in this book is on the 
fundamental parts of the subject. 

In writing the book I had in mind three classes of readers: graduate 
students approaching the subject for the first time, mature mathematicians 
who wish to gain some knowledge and understanding of automorphic func
tion theory, and experts. For the first class Chapter II was included; with 
this chapter the book is almost self-contained. The first chapter, an 
historical account, is in my opinion essential to an understanding of the 
whole theory; I hope, in any event, that it will make interesting reading. 
Chapters III to VII develop the basic and more classical theory; Chapters 
VIII to XI, the more modern developments. In Chapter VI a connection is 
made with the theory of Riemann surfaces. A section of NOTES at the end 
of the book provides additional material and textual comment and criticism. 

The book is essentially restricted to functions of a single complex variable. 
In the last chapter a sketch of the theory for several variables is presented. 
I hope that this chapter will excite the enthusiasm of readers and make 
them want to consult the large and rapidly growing literature in this rela
tively new field, which already has so many accomplishments to its credit. 
At the present time there seems to he no comprehensive account of this 
subject. 

On the next page I shall detail the many debts incurred in the writing of 
this book. There is one debt, however, that must be mentioned specially; 
it is the one I owe to my teacher and friend, Hans Rademacher. I first 
learned about the subject of this book from him, and his many-sided and 
continuing interest in mathematics will always be a strong incentive for me 
to go on. 

April, 1963 
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NOTES 

CHAPTER II 
(p. 66) Replace p. 56, 11. l * - 8 * and p. 57, 11. 1 -4 by the following: 
Define the normal closure of a subset A of a group H to be the smallest 

normal subgroup (intersection of all normal subgroups) of H that contains 
A. Choose in N a subset 91 such that N is the normal closure of 91 in F. 
(For example we could take 9) = N.) The set of relations corresponding 
to the words in Wis called a system of defining relations © in G. Each 
relation in G is a consequence of the defining relations in the sense that 
the left member of the relation is a product of conjugates of powers of the 
left members of elements of ©. Obviously a system of defining relations 
is not unique, since any set of relations containing © is still a system of 
defining relations. 

More special is the following concept. A set of relations 9? is called a 
basis for the relations in G if 

(1) every relation in G is a consequence of relations in 9t, and 
(2) no relation in 91 is a consequence of the remaining relations in 9t. 

CHAPTER III 
1 (P- 97). The following equation is valid only for a%d ^ 0. (Note that 

btjdi = Ui(0) is finite.) Suppose a< = 0 on an infinite set of indices {%}; then 
d # 0 since Ui is nonsingular. We write 

r r b{ dtjci 
Ui{z) - JiTTw; 

and the proof goes through as before. Similarly, if c< « 0. 

2 (p. 98). If there is no exceptional value w0> the set of values 
{T(i^2)| T 6 fli} may omit w} but in that case it must assume each w\ ^ w. 
Then {T(Nz) \ T e fi2} cannot omit wu etc. 

3 (Ex. 5, p. 102). If T is a discrete group of 2 x 2 matrices with real 
399 
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entries, the normalizer of every element in F is cyclic. Cf. Hall [1], p. 14. 
[T belongs to the normalizer of A e F if and only if T and A commute. By 
II. 9F, Theorem 2, either T and A have the same fixed point set or they are 
both elliptic of period two. Use III. Theorem 2E and the discreteness of T; 
the case in which T and A are both elliptic of period two is easily handled by 
transforming the fixed points of A to 0 and oo and noticing that the fixed 
points of T and A lie on one straight line and separate each other.] 

CHAPTER IV 

4 (p. 119). It is not necessary to use isometric circles for the construction 
of the Schottky groups. It is sufficient that Tj be any linear transformation 
mapping the interior of Czj-\ on the exterior of Caj. The free product of 
Ti, • • •, Tn is discontinuous and has the other properties mentioned. 

5 (p. 126). / / a is an ordinary point and an elliptic fixed point, Ta is finite 
cyclic. The subgroup F„ contains only elliptic elements and is therefore 
finite (III. Theorem 2A). Two elliptic elements which have one fixed point 
in common have the other fixed point in common also, otherwise their com
mutator would be parabolic. The multipliers of the elliptic elements are 
roots of unity and finite in number, and the result follows. 

5a (p. 129). Each point of a parabolic cycle is called a parabolic vertex. 

6 (p. 138). This argument is not correct, for the reasoning of 5B cannot 
be applied to Too, which has oo as a fixed point. However, T' = AT^A-1 

does not have oo as a fixed point, and every element of T' fixes ̂ 4oo. There
fore, by the argument of the text, J?', the standard fundamental region of 
T', has sides. Hence so does i?x = A~lR'. 

7 (p. 139). By the use of the previous methods the reader may prove 
Theorems IF, 10, 1H, 4C, 4E, 4G for the fundamental region R defined in 
this subsection. Also Theorem 3B, modified as follows: replace 1) by 1'): 
Each side is an arc of an isometric circle, the full circle, or a side of R<x>; 
replace 4) by 4'): s< and s\ have equal euclidean length if they are not sides 
of Rao. 

8 (p. 148). This argument breaks down if No is not relatively compact, 
for then diameter No is infinite. However, by 7B, Lemma 1, we can assert 
that K meets only a finite number of A<, hence only a finite number of N{. 

CHAPTER V 

9 (p. 158). We can prove by reasoning similar to that of the above para
graph that F does not have an (isolated) essential singularity at t = 0. On 
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one sequence we have F(z) -* 0. Let t$(t) - • 1 on some sequence; on the 
corresponding sequence in the z-plane \F(z)\ - • oo. Thus F has no unique 
limit. 

10 (p. 172). This argument is not quite adequate. That 

\ (w + dj/cj)-! dw --> 0 

as C\ —• 0 is clear, for the integrand is bounded. Now 

(w - zi)"1 dw = log (w2 - z\)l(wi - zi), 

where w\t u>z are the endpoints of C], There is a parabolic transformation Q 
(not belonging to T) that fixes z\ and sends u»2 to ?/>i; Q has the form 
(Qz - zi)-1 = (z - zi)-1 + c. Hence (w2 - zi)/(u>i - zi) -* 1 as w\ ->zi, 
i.e., as C j -^ 0. 

11 (p. 174). Let Az « - (z - zo)_1, where zo is neither fixed point nor 
limit point of I\ Choose a T'-image of R\ say J?',, which is bounded. Then 
for ze R\ = A~lR[ we never have z = z0. Hence 4'(z) ?* o, oo and the 
displayed equation in the text can be shown to be correct. 

12 (p. 179). 1) Since, in the definition of an infinite product, the factors 
are required never to vanish, the theorem should assert the uniform conver
gence of (32) in any compact subset of 9/ that avoids the set {z„}. Absolute 
convergence holds in 9/ — {zw}. 

2) In the third line of the proof, after "JVexpi**," add "where 

3) In the first displayed line on p. 180 we define arg un(z) to be the con
tinuous argument which reduces to 0 at z = 0. This determination is unique 
if \z\ < |zn|, i.e., when \z\ £ p < 1, for n 5 AT(p). Thus 2 <Pn converges 
uniformly in \z\ g p, since <l\v+p - <t>.v converges uniformly to zero. 

CHAPTER VI 
13 (p. 204). The points of 2+ are parabolic vertices and cannot also 

be elliptic vertices (IV. 4G). Since each elliptic vertex lying in ^ is a vertex 
of some fundamental region (IV. 4E), it follows that there are a finite 
number of inequivaleht elliptic vertices in r, that is to say, T has a finite 
number of elliptic fixed point classes. If r is a principal circle group, this 
is true also of the parabolic classes (IV. 7E). 

14 (p. 210). We fix the branch of oju*t zo so that L o M(z) = z in a whole 
neighborhood of z<>. This is possible since o\ is a local homeomorphism. 
Also we can fix the branch of a j 1 so that M o L(z) = a j l o o2(z) = z in a 
neighborhood of ZQ. Then M = L~l. 
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15 (p. 215). This note has been eliminated. 

16 (p. 218). Condition 1) of the lemma is not needed since it is implied by 
2). However, 1) is used explicitly in the following oonstruction which 
forms the basis for the proof of Theorem 5D. 

17 (p. 211). Let C(S) be the group of conformal mappings of the Riemann 
surface S on itself. A. Hurwitz proved: 

THEOREM. If 8 is a compact surface of genua g > 1, C(S) is a finite group 
of order at most 84(gr - 1 ) . The upper bound is attained. 

The finiteness of C(S) had been proved earlier by H. A. Schwarz. We shall 
break up the proof into several theorems. 

THEOREM 1. S is hyperbolic (i.e., the universal covering surface 3 is con-
formally equivalent to a disk). 

To prove the result, we list all surfaces with elliptic and parabolic universal covering 
surfaces S (S conformal with sphere and plane, reapectively). Let & be 
equivalent to the domain E on the sphere. The group of covering trans
formations of 5 is isomorphic with a group r of linear transformations of 
E on itself and no element of r has a fixed point in E (cf. VI. 3J; 3K, 1)). 
If E is the sphere, r reduces to the identity and S is of genus zero. If £ is 
the plane, r can contain, besides the identity, only elements having « as 
sole fixed point, that is, translations. Hence T is either the identity, the 
simply periodic group, or the doubly periodic group. The corresponding 
surfaces S are the plane, the twice punctured sphere, and the torus. Thus 
a surface of genus > 1 cannot be elliptic or parabolic. 

THEOREM 2. If we write S = r \ # , then T contains only the identity and 
hyperbolic elements. 

This is an immediate consequence of VI. Theorem 3G. For the funda
mental region R of Y is compact in # and so V can have no parabolio ele
ments. But also r is free of elliptic elements (VI. Theorem 3K). 

THEOREM 3. C(S) acts discontinuously in S. 
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By VI. Corollary 3L, the discontinuity of C(S) in S is equivalent to that of 
JVfl(D/r in # , or what amounts to the same thing, of Nn(r). Let iV< -> / 
be a sequence of distinct elements of Nn. If M e V we have NiMN^1 = M\ 
with Ml e T. Since T is discrete, it must be that M = M\ for i > io- Thus 
Ni commutes with M, i > io, and so has the same fixed point set, since M is 
hyperbolic (II. 9P, Theorem 2). 

Now r is not abelian. For all abelian discontinuous groups defined on % 
are cyclic and so have genus 0 or 1. Hence let M\, M% be two elements of V 
that do not commute and therefore have different fixed point sets. For all 
large i the transformation N( must have the same fixed point set as both M\ 
and M2, which is impossible. The contradiction shows there is no sequence 
Ni-+I\ hence Nn is discontinuous and so is C(S). 

We now prove Hurwitz's theorem. The order of C(S) is equal to the index 
li of T in NQ(T). Let R be a fundamental region for I\ T a fundamental 
region for Nn. Now R consists of \i copies of T, namely, the images of T by 
representatives of the cosets iV^rj/r—cf. VII. 6F. All copies of T have the 
same hyperbolic area as T, denoted by |T|. Hence 

M = | * | /W 
Since Y has no elliptic or parabolic elements, \R\ = 4n(g - 1)—cf. V. Ex. 5-2. 
On the other hand, by Siegel's theorem (Note 19), we have \T\ ^ 7r/21. 

The lower bound for \T\ is attained by the triangle group (0, 3; 2, 3, 7)— 
cf. VII. 1G and Ex. 2, p. 185. 

CHAPTER VII 

17a (p. 220). The proof of Poincarg's theorem is not correct: Sections 
1C, ID are completely wrong. For a valid proof, including careful discussion 
of the hypotheses, cf. B. Maskit, Advances in Mathematics 7 (1971), 
219-230; G. de Rham, L'Enseignement Math. 17 (1971), fasc. 1. 

18 (Section 2, pp. 230-234). We make a number of comments on the 
proof of this Section. 

2B. We agree that sequences KK~l may be inserted in or deleted from 
chains; thus UKK~lV = UV. This principle is used to get the equation 
C » ULiU-iV. For C = ULVi with Vx = [t„, in+u • • - , * , ] . Hence C = 
ULU-WVi = ULiU-iV. 

2D. The grating ^more conveniently rectangular than square) is first 
drawn in the whole plane (or sphere). It induces a subdivision of the 
interior of L into a finite number of pieces. A coherent orientation of this 
complex of pieces induces a consistent orientation of L, and we choose that 
orientation of the complex which induces the orientation L already has. 

Besides the stated requirements on the grating we shall demand that no 
piece (rectangle or boundary polygon) shall lie in more than one fundamental 
region unless it encloses a boundary point of the region, in which case it shall 
lie in those fundamental regions, and only those, that have the point on their 
boundaries. 
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Each oriented piece determines several loops, depending on which vertex 
of the piece is used as a starting point; these loops, however, are all equiva
lent. If Li lies entirely in Bj, the loop is defined to be the empty one. If 
Lt lies in Bj and /?*, the loop is defined to be iji&j. If Li contains a vertex, 
the loop is obtained by writing down in order the fundamental regions 
crossed by describing L\ in the correct orientation. 

What Theorem 2D proves is the following: for any collection of n pieces 
forming with its boundary M an oriented complex, the path M determines a 
word W(AI) which can be written in the form stated. For our application 
we have only to observe that any oriented path L of the type we have speci
fied can be regarded as the boundary of a complex of n pieces for a sufficiently 
large n. 

10 (p. 241). Prove the following theorems of Siegel (Ann. of Math. 46 
(1945), 708-718), in which T always denotes a horocyclic group defined on 
the unit disk. 

THEOREM 1. The hyperbolic area of every normal polygon of V ia the same. 
[Let AY No be two normal polvgonsj denote hyperbojic area by \N\\. 

Use the relation JV, D UV€r{ VN2nNx\f U{JV2Q V'W,} DiV2 and the 
nonoverlapping of images of a normal polygon to get | Ni \ —\Ni\ ^\N2\, etc.] 

THEOREM 2. AT has finite hyperbolic area if and only if it has a finite number 
of sides. T can be generated by a system of not more than 31 iV| /TT -f 6 generators. 

[Suppose AT has 2/? sides. From the center of the unit disk draw a straight 
line to each vertex of Ar dividing it into 2n triangles. By the Gauss-Bonnet 
formula (Ex. 1, p. 185) we obtain \N\ =2w(n - 1 - X / f 1 ) , proving that 
\N\ is finite if rc is. Suppose conversely that \N\ is finite. We select 2n consecu
tive sides arbitrarily and connect an interior point of N to the endpoints of 
these sides, forming 2n triangles. Using the Gauss-Bonnet theorem we get 

2 n - l 2n 

where a, is the vertex angle of the ;th triangle and fy, y; are the other 
angles in counterclockwise order; «> =7>+/3H-I- NOW £«> ^ 2T and Og 
Uj < * —the case WJ = * can be excluded by combining two adjacent triangles. 
Hence 

3tr+|N| £ £ ( * - - « , ) . 

Assuming the number of sides is infinite, let n —* »; then £ ( T —«,•) con
verges and WJ —* w. Thus u>> = 0 only finitely often, corresponding to the 
parabolic vertices. For the vertices inside <2f we now have 2*/3 < o>j < *f 
J>jo- Summing this equation over the r, vertices of an ordinary cycle 
of order lj9 we find 2 < r,/, < 3, a contradiction. 
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THEOREM 3. For any 1\ \N\ ^ TT/21. The lower bound is attained for the 
triangle group (0, 3; 2, 3, 7). 

[We may assume \N\ finite. Apply Ex. 2, p. 185: \N\ = 2*{2g-2 + 
£ ( 1 - / f ! ) } . The theorem follows by considering cases. Bear in mind that 
\N\ > 0 ; this excludes the group (1,0) for example. 1 

Rankin has established that the corresponding lower bound for horocyclic 
groups defined in the upper half-plane and having translations is 7r/3, and it is 
attained for the modular group. Cf. R. A. Rankin, Horocyclic groups, Proc. 
London Math. Soc. 4 (1954), 219-234; p. 230. 

20 (p. 241). Linda Keen (Acta Math. 115 (1966), 1-16) has proved the 
following result. Let r be a horocyclic group of finite signature (g,n) with 
g>0, 3g-3+n>0, and with the usual presentation (cf. VII. (6)). By 
the translation axis of a hyperbolic transformation A we mean the hyper
bolic line joining the fixed points of A and A \ Let p be the intersection 
of the translation axes of A: and B}. Apply top the generating transforma
tions of r and join these images in the order of the group relation in the 
second line of (6). The result will be a strictly convex polygon bounded by 
hyperbolic lines and which satisfies all the requirements of a canonical 
polygon as we have defined it. 

It is noteworthy that this fundamental region is not only a canonical 
polygon in the sense of Frieke-Klein but it is even unique. 

The proof makes use of Bers' version of the "continuity method" of Klein 
and Poincare via the theory of quasiconformal mappings. 

21 (p. 242). It is, however, true that every finitely-generated principal 
circle group admits a fundamental region with a finite number of sides. 
Cf. M. Heins, Fundamental polygons of fuchsian and fuchsoid groups, Ann. 
Acad. Scient. Fennicae A337 (1964); also L. Greenberg, Fundamental 
polygons for fuchsian groups, J. Analyse (1966). A proof will presumably 
also be contained in the forthcoming book of Nielsen and Fenchel on 
discontinuous groups. 

22 (p. 254). For example, let F be a free group with free generators 
*i, • • •, tr. We represent F by T, a Schottky group (IV. 2C) defined by r 
pairs of congruent circles that are mated by transformations T(,i = 1, • • •, r. 
The circles of one pair must not intersect the circles of another pair, but it is 
possible to make the circles of a given pair externally tangent. Let there be s 
pairs of tangent circles. It is easily calculated that the genus of T is r - s. 
Since s may be any integer between 1> and r, there is no unique genus asso
ciated with the abstract group F. 

In the other direction, however, we have the following result. Let Fi, T2 
be principal-circle groups with relatively compact fundamental region in j / t and 
let T\ and T2 be isomorphic as abstract groups. Then Ti has the same signature 
as Te. 
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The hypotheses imply that T has a fundamental region with a finite num
ber of sides and no parabolic vertices. The theorem states that in such cases 
the abstract group determines the genus and the number and orders of the 
fixed points of the transformation group. 

To prove the result we remark first that T< has no parabolic generators. 
Suppose Ti has signature (g, n\ l\% • •, ln) with elliptic generators Et. The 
element E\ generates a maximal finite cyclic subgroup Z)< of order U. Con
versely every maximal finite cyclic subgroup D is conjugate to some Dt. 
Indeed, let D be generated by E, where E is clearly elliptic. Then E has a 
fixed point a in % and a is a vertex of some normal polygon N. Since the 
fixed point of each generator Et is conjugate to some vertex in N, it follows 
that a is conjugate to the fixed point of some Et and our assertion is estab
lished. Under the isomorphism of Ti on T2, a maximal finite cyclic sub
group in Ti is mapped onto a maximal finite cyclic subgroup of the same 
order in IY and conversely. The orders of these subgroups are the "periods " 
U in the signature of T<; they are therefore the same in Ti as in IV 

Let T< have genus gt,i = 1, 2; we have to show that gi = g%. Let Hi be 
the normal closure of the elements of finite order in T< (smallest normal sub
group of T< containing all elements of finite order). There is a theorem of 
group theory to the effect that a presentation of K< = ly//* is obtained from 
one of T| by setting each generator of finite order equal to 1. Thus K\ is 
generated by 2g\ elements A\y B\9 • • •, A9v B9x with the single defining rela
tion [A\, B\]- • -[Agv B9i] as 1, where [Au Bt] is the commutator of At and 
B\. The group Ar2 has a similar presentation with g\ replaced by g%. Let K[ 
be the commutator subgroup of K\; it is a normal subgroup consisting of all 
finite products of commutators of pairs of elements in K\. Then K\IK[ is 
abelian; it is the "free abelian " group of rank 2gx. A free abelian group is 
determined solely by its rank. Since K^/Ko is isomorphic to K\jK\ (because 
V\ ~ T2 and H\ ~ #2), the ranks must be the same and so (71 = g*. 

22a (6D, p. 254). A group G is said to be residually finite if the intersec
tion of all its normal subgroups of finite index is the identity (Hall [1], p. 16). 
Since the subgroups G{a) used in the proof of Theorem 6D are normal, we 
have proved a stronger property than was claimed, namely, that G and T are 
residually finite. 

23 (p. 257). In the above discussion the 7\ have no essential significance 
and should be omitted. Thus we would define 

P* = (J AiR*. 

The same remark holds for the further discussion up to and including 
Theorem 6F. 



NOTES 407 

CHAPTER VIII 

24 (p. 270). The fundamental region & thus constructed will be bounded 
by straight lines and circular arcs, but in general the circular arcs will not be 
arcs of isometric circles. The fundamental region in # is a normal polygon 
with center selected so that it has the required properties. This polygon will 
coincide with Ford's fundamental region only if its center happens to be the 
origin (IV. 7). 

25 (p. 271). The argument proceeds unchanged to the point where 
Ym = Ym+i(m > N). This implies d'm + l = d'm which, combined with 
1 < d'm < I + A*c, gives |dm+i - dm\ < X*c. Since dm+i - dw = 
A*c(*m+i - tm)> we have tm+\ = tm> hence dm+i = dm for m > N. This is the 
desired contradiction. 

28 (p. 273). It may be wondered why the local variable here is 
e ( - 1/A(T - p)) whereas in V. IB it was e(l/c(r - p)). In the former case 
the transformation fixing p is 

in the present case it is 

(r - P)-1 - (r - p)"1 - A, 
as we calculate from the result of VIII. Ex. 2-1. 

27 (p. 280). In the proof that the numerators of the terms of 0(rt Aj) are 
bounded we use the fact that cjo > 0 (cf. 2D). Thus the c's appearing in the 
matrices (ab\cd) of (S) are bounded below in absolute value by a positive 
constant provided they are not zero. 

28 (p. 284). The integral defining the scalar product may be regarded as 
either a Riemann or a Lebesgue integral. For the purpose of changing 
variables, which we do several times, it is convenient to use the Riemann 
integral and to apply the standard theorem (R. Courant, Differential and 
Integral Calculus, vol. 2, Nordemann, New York, 1937, p. 253). The trans
formation will always be of the form r = LT, where L is a linear transforma
tion preserving Jf. Thus L = (a b\c d) is continuously differentiable, 
one-one, and has positive Jacobian | I / ( T ) | = \er + d)~2. 

29 (p. 287). The argument that TtR lies in # fails if R is not bounded 
by isometric circles; in any event a better argument is the following. We 
know that 

U TiR=Su \0<u<\o,v>0)=S2 
netD) 

are both (measurable) fundamental regions for the subgroup r . . Let wdxdy 
be an integrable invariant differential on rK. Using the identities 

RiD U \VRtCiRil U[R2DV-%\DR2i G = ra 
V£G V 

and remembering that the boundaries of R\, R2 are of measure zero, we 
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get, by complete additivity, 

R\ VR2nR\ R2DV 1Rl
 R2 

By reversing Rx and R2 the reverse inequality is obtained. Hence ffw is 
the same over every measurable fundamental region with boundary of 
measure zero. This gives the equation on line 3 of page 287. 

CHAPTER IX 

30 (p. 303). The expansion (3) was developed in Chapter VIII on the 
assumption that r is an integer, whereas in a few lines we shall permit r to be 
an arbitrary real number. Tlierefore it is necessary to reexamine the 
derivation in VIII. 3A. The difficulty occurs in the second line of (*) where 
we tacitly assumed that 

/ T - P) V = (T - piY 
\ -Ajr + 1 + XjpJ (-AfT + 1 + X^Y 

It is sufficient to prove this for T = p; + iy,y > 0. The left member 
becomes (////(I - A;ty))r. Since the argument of the quantity inside the 
parentheses clearly lies between 0 and TT, the above equation is justified. 

31 (p. 308). To prove T^ is a finite set: let T e h and let T\ be the image of 
r in Cl$ by St = MAi *, Me V. If n e Lit Rt cover r by an interval on h 
so small that it is mapped into lnt R by M. If n is a boundary point of £t 
cover r by two half-open intervals (r\ T], [T, T"), T' < T < T", each of 
which is mapped into CI U by elements M. Then T is covered by the open 
interval (T\ T"). Since CI h is compact wre can select from the above 
intervals a finite covering of h, each interval of the covering being associated 
with at most two elements J7. The set T[v consists of exactly those M. 

CHAPTER XI 

32 (p. 365). M Newman has proved (Illinois J. of Math. 8 (1964), 262 -
265): Every normal subgroup of T is a free group except r, r2, and r3. / / 
H is any subgroup of T, then H is free if and only if it contains no elements of 
finite order. The proof is based on Kuros's Subgroup Theorem (Hall [l], 
p. 315) and can be extended to any group of finite signature containing 
parabolic elements, since such a group is isomorphic to a free product. 
Cf. M. I. Knopp, J. Lehner, and M. Newman, Subgroups of F-groups, 
Math. Annalen 160 (1965), 312-318. 

33 (p. 357). The followingjirgument should be considered on the (com
pact) Riemann surface S = H\tf^. Each ^-equivalence class of points 
(lines, triangles) determines a single point (line, triangle) on S. The natural 
triangulation of R(H) induces a triangulation of S. The statements of the 
text now become clear. 
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