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PREFACE 

The subject matter of this book might be labelled fairly accurately Intrin
sic geometry of uniform spaces. | For an impatient reader, this means elements 
(25%), dimension theory (40%), function spaces (12£%), and special topics 
in topology.} As the term "geometry" suggests,'we shall not be concerned 
with applications to functional analysis and topological algebra. However, 
applications to topology and specializations to metric spaces are of central 
concern; in fact, these are the two pillars on which the general theory stands. 
This dictum brings up a second exclusion: the book is not much concerned 
with restatements of the basic definitions or generalizations of the funda
mental concepts. These exclusions are matters of principle. A third exclusion 
is dictated mainly by the ignorance of the author, excused perhaps by the 
poverty of the literature, and at any rate violated in several places in the 
book: this is extrinsic (combinatorial and differential) geometry or topology. 

More than 80% of the material is taken from published papers. The pur
pose of the notes and bibliography is not to itemize sources but to guide fur
ther reading, especially in connection with the exercises; so the following 
historical sketcn serves also as the principal acknowledgement of sources. 

The theory of uniform spaces was created in 1936 by Wei} [W]. All the 
basic results, especially the existence of sufficiently many pseudometrics, are 
in Weil's monograph. However, Weil's original axiomatization is not at all 
convenient, and was soon succeeded by two other versions: the orthodox 
(Bourbaki [Bo]) and the heretical (Tukey [T]). The present author is a notor
ious heretic, and here advances the claim that in this book each system is 
used where it is most convenient, with the result that Tukey's system of uni
form coverings is used nine-tenths of the time. 

In the 1940's nothing of interest happened in uniform spaces. But three 
interesting things happened. DieudonnS [l] invented paracompactness and 
crystallized certain fmportant metric methods in general topology, mainly 
the partition of unity. Stone [l] showed that all metrizable spaces are para-
compact, and in doing so, established two important covering theorems 
whose effects are still spreading through uniform geometry. Working in 
another area, Eilenberg and MacLane defined the notions of category, func
tor, and naturality, and pointed out that their spirit is the spirit of Klein's 
Erlanger Programm and their reach is greater. 

The organization of this book is largely assisted by a rudimentary version 
of the Klein-Eilenberg-MacLane program (outlined in a foreword to this 
book). We are interested in the single category of uniform spaces, two or 
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PREFACE 

three of its subcategories, and a handful of functors; but to consider them 
as instances of more general notions gives us a platform to stand on that is 
often welcome. 

In 1952 Shirota [l] established the first deep theorem in uniform spaces, 
depending on theorems of Stone [l] and Ulam [l]. Except for reservations 
involving the axioms of set theory, the theorem is that every topological 
space admitting a complete uniformity is a closed subspace of a product of 
real lines. A more influential step was taken in 1952 by Efremovic [l] in 
creating proximity spaces. This initiated numerous significant Soviet con
tributions to uniform and proximity geometry (which are different but coin
cide in the all-important metric case), central among which is Smirnov's 
creation of uniform dimension theory (1956; Smirnov [4]). The methods of 
dimension theory for uniform and uniformizable spaces are of course mainly 
taken over from the classical dimension theory epitomized in the 1941 book 
of Hurewicz and Wallman [HW]. Classical methods were pushed a long way 
in our direction (1942-1955) by at least two authors not interested in uniform 
spaces: Lefschetz [L], Dowker [l; 2; 4; 5]. These methods—infinite coverings, 
sequential constructions—were brought into uniform spaces mainly by Isbell 
[1; 2; 3; 4] (from 1955). 

Other developments in our subject in the 1950's do not really fall into a 
coherent pattern. What has been described above corresponds to Chapters I, 
II, IV and V of the book. Chapter III treats function spaces. The material is 
largely classical, with additions on injectivity and functorial questions from 
Isbell [5], and some new results of the same sort. The main results of Chap
ters VI (compactifications) and VIII (topological dimension theory) are no 
more recent than 1952 (the theorem Ind = dim of Katetov [2]). 

The subject in Chapters VII and VIII is special features of fine spaces, 
i.e., spaces having the finest uniformity compatible with the topology. Chap
ter VII is as systematic a treatment of this topic as our present ignorance 
permits. Central results are Shirota's theorem (already mentioned) and 
Glicksberg's [2] 1959 theorem which determines in almost satisfactory terms 
when a product of fine spaces is fine. There is a connecting thread, a functor 
invented by Ginsburg—Isbell [l] to clarify Shirota's theorem, which serves 
at least to make the material look more like uniform geometry rather than 
plain topology. There are several new results in the chapter (VII. 1-2, 23, 
25, 27-29, 32-35, 39); and a hitherto unpublished result of A. M. Gleason 
appears here for the first time. Gleason's theorem (VII. 19) extends previous 
results due mainly to Marczewski [1; 2] and Bokstein [l]. He communicated 
it to me after I had completed a draft of this book including the Marczewski 
and Bokstein theorems; I am grateful for his permission to use it in place 
of them. 
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PREFACE 

Most chapters are followed by exercises adding details to the theory (in 
some cases doing duty for proofs omitted in the text), starred exercises whose 
results will be used later in the text, occasional unsolved problems, and a 
major unsolved problem. The major unsolved problems are Problems A, Bi, 
B2, B3> C, D. Not all are precisely posed, but all describe areas in which 
there seems to be good reason to expect interesting results although the 
results now known are quite unsatisfactory. The appendix might reasonably 
be counted as another such problem, for it gives several characterizations 
of the line and draws attention to the plane. 

A preliminary version of this book was prepared as a set of lecture notes at 
Purdue University in 1960. The wofk of writing it has been supported at 
Purdue by the Office of Naval Research and at the University of Washing
ton by the National Science Foundation. I am indebted to Professors M. 
Henriksen and M. Jerison for helpful criticisms of the Purdue lecture notes. 
Professors E. Alfsen, H. Corson, J. de Groot, E. Hewitt, E. Michael, D. 
Scott, and J. Segal have contributed some criticisms and suggestions during 
the writing of the final version. Many blemishes surviving that far were 
caught and exposed by Professor P. E. Conner for the Editorial Committee. 
But none of my distinguished colleagues has assumed responsibility for the 
remaining errors, which are mine. 
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FOREWORD 

Categories. A concrete category & is defined by defining a class © of sets, 
called objects of 16\ and for each ordered pair of objects (X, Y) a set 
Map(X, Y) of functions / : X-*Y, called mappings, such that 

(a) The identity function on each object is a mapping; 
(b) Every function which is a composition of mappings is a mapping. 
The analysis of this definition presents some peculiar difficulties, because 

the class © may be larger than any.cardinal number, and is larger in all cases 
arising in this book. But the difficulties need not concern us here. All we need 
is an indication of what is superfluous in the definition, i.e., of when two con
crete categories determine the same abstract category. 

A covariant functor F: 5£—> & is given when we are given two functions, 
F0 and Fu as follows. FQ assigns to each object X of & an object F0(X) of &'. 
F{ assigns to each mapping /: X-^Y of & a mapping Fx(f)\ F0(X)—>F0(Y) 
of 3 . Further, 

(A) For each identity mapping lx of &, FI(IX) = IF0(X)', 
(B) For every composed mapping gf of&yFl(gf) = Fl(g)Fl(f). 
Having noted the distinction between F0 and Fu we can ignore it for 

applications, writing F 0 (X) as F ( X ) , F^f) as F(f). The short notation de
fines a composition of covariant functors F: 5f—> f2?, G: 2)—> Sf for us: 
GF(X) = G(F(X)) , GF(/) = G(F(/ ) ) . Then an isomorphism is a covariant 
functor F: &—* St for which there exists a covariant functor F" 1 : ^ — > ^ 
such that both FF~l and F~lF are identity functors. 

A categorical property is a predicate of categories 3̂ such that if *$(&) and 
^ i s isomorphic with 2 then %(2#). Similarly we speak of categorical def
initions, ideas, and so on. 

The notion of a mapping /: X—> Y having an inverse f"1: Y—>X is categori
cal. The defining conditions are just ff~1 = lY, f~1f=lx- A mapping having 
an inverse m$£ is called an isomorphism \n$g. 

The notion of a mapping /: X—>Y being one-to-one is not categorical. 
However, it has an important categorical consequence. If /: X—*Y is one-
to-one then for any two mappings d: W—>X, e: W—>X, fd=fe implies d = e . 
A mapping having this left cancellation property is called a monomorphism. 
Similarly a mapping /such thatgf=hf impliesg= h is called an epimorphism. 
A mapping / : X—>X satisfying / / = / is a retraction. 

REMARK. If a retraction is either a monomorphism or an epimorphism then 
it is an identity. 

A contravariant functor F: 5f—>Q> assigns to each object X of 5^ an object 
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FOREWORD 

F(X) of Q) or to each mapping /: X—>Y of & a mapping in the opposite 
direction F(f) : F(Y)-*F(X) of ̂ satisfying condition (A) above and 

(B*) For every composed mapping gf of if, F(gf) = F(f)F(g). Contra-
variant functors can be composed; but the composition of two contravar
iant functors is a covariant functor. In fact, functors of mixed variances 
can be composed, with an obvious rule for the variance of the composition. 

A duality F: (&—>>Q)\s a contravariant functor admitting an inverse, which 
is a contravariant functor F"1: Q)-*^ such that both FF~l and F~lF are 
identity functors. It is a theorem tnat: 

Every concrete category is the domain of a duality. 

An interested reader may prove this, letting F(X) be the set of all subsets 
o f X a n d F ( / ) = / - \ 

The principle of duality says roughly that any categorical theorem 0 for 
arbitrary categories implies another theorem 0* for arbitrary categories. For 
example, if 0 is a theorem about a single category # , the statement of 0 for# 
is equivalent to a statement about a category^ related to SS by a duality 
F: 5£—*Si. that statement about D is 0*, and it is true for arbitrary categories 
because every category is the range of a duality. 

The theorem 0 that a retraction / which is a monomorphism is an identity 
can illustrate duality. The statement 0* is that if / is a mapping in 5£, 
F:5£—*3t is a duality, and F(f) is a retraction and a monomorphism, then 
F(f) is an identity. Using several translation lemmas we can simplify 0* to 
the equivalent form: if / is a retraction and an epimorphism then / is an 
identity. 

Note that we may have "dual problems" which are not equivalent to each 
other. A typical problem in a category S? is, does Sf have the property ^? 
If ̂ P'is categorical, there is a dual property*®*, and the given problem is equiv
alent to the problem does a category dual to^have the property Ĵ*? By the 
dual problem we mean: Does ^have the property Ĵ*? 

Finally, we need definitions of subcategory, full subcategory, and functor of 
several variables. A subcategory £} of Sg is a category such that every object 
of QJ is an object of & and every mapping of ^ is a mapping of ^ . 2} is a 
full subcategory if further, every mapping of $£ whose domain and range are 
objects of Q) is a mapping of Q). 

For several variables we want the notion of a product of finitely many cate
gories S£\, • • -^n. The product is a category whose objects may be described 
as n-tuples (Xi, • • -,X„), each X, an object of SS{. To represent these as sets 
the union Xx\j • • • UXn would serve, if some care is taken about disjointness. 
Theset Map((Xj , . .-,X„), (Yi, ••-, YJ) is the product set Map(XltYi) 
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X---X Map (Xn, Yn). Again, the mappings (A,- ••,/„) can be represented 
as functions on XiU• • • UXn, with (A,••-,/„) |Xt = A-

A pure covariant functor on ^ , • • • , ^ n is a covariant functor defined on 
the product ^ X • • • X-^n- A functor on 5fu • • -, ^n, covariant in the set / 
of indices and contravariant in the remaining indices, is a function F on 
5fxX ••• X-^to a category Q>% taking objects to objects, mappings to map
pings, identities to identities; taking mappings / = {A}: {X,|—>{ Y,} to map
pings F(f) :F({Zi))-+F(\ Wt)), where for iel, Z,= X, and W^YU butfor 
i(£J, Zi= Y,-and Wj=X,; and preserving the composition operation defined 
in the product category by gof=h, where /i,=^Afor i £ j , hi=figi otherwise. 
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APPENDIX 

LINE AND PLANE 

For the real line E1, we can give a characterization. 

THEOREM A. A complete metric space which is uniformly locally connected, 
has a star-bounded basis of uniform coverings, and has a basis of coverings with 
nerve El, is isomorphic with E1. 

(A star-bounded basis is defined in Exercise V.9.) 
No characterization of the plane is known. At least, we can distinguish two 

problems, for the Euclidean plane and the hyperbolic plane of Bolyai-
Lobacevskii. 

THEOREM B. The hyperbolic plane is not embeddable in any Euclidean space. 

We prove first 

1. A complete metric space X that is homeomorphic with El is isomorphic with 
El if and only if X is uniformly locally connected and has a star-bounded basis. 

PROOF. Clearly E1 satisfies these conditions. Suppose X satisfies them. 
Let ^ b e a covering belonging to some star-bounded basis, and observe that 
every family of star-bounded uniform coverings finer than ^ is a star-
bounded family. For, if J/~ and <% are finer than °y, and W is a common 
refinement of J?~ and ^ which belongs to a star-bounded family with ^ 
routine counting shows that\9~\Jfy is star-bounded. 

Let ^ be a uniform covering consisting of connected sets which is a star-
refinement of ^ Choose some homeomorphism of X with the line and define 
U\ as the star of the point 0 with respect to ^. Then U\ is an interval. 
Because of the star-bounded basis, U\ is precompact; because of complete
ness, it is a finite interval (a, 6), with or without endpoints. Define U\ as the 
union of all elements of ^ which contain b and do not contain 0, Ul-i as the 
union of those which contain a and not 0, and so on for all Ul

±n. We get a 
uniform covering %x finer than ^ consisting of intervals, and with nerve 
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160 LINE AND PLANE 

isomorphic with E1. For this nerve Nx we also have a marked point 0, the 
vertex corresponding to J7i; and a simplicial isomorphism e^.N^E1 taking 
the vertices onto the integers. 

In the same way we construct a uniform covering (%2<*<%1, whose ele
ments are intervals of diameter (in the metric space X) at most 1/2, and 
whose nerve is uniformly isomorphic with E1. Continuing, we have a star-
bounded basis which is a normal sequence, with each nerve a copy of E\ and 
the elements of % n+l contained in any given element of ^ " forming a chain. 
The limit space L of the barycentric system on { fy" \ is isomorphic with X, 
by V.33. To get an isomorphism of L upon El, observe first that every vertex 
of Nn is the image of at least one vertex of Nn+1, since the bonding mappings 
fmn are onto and take simplexes into closed simplexes. Recursively select a 
thread of vertices mapping upon 0 in Nu and call each of these vertices 0 
in Nn. Define e\\ N2-*Ni as follows. e'f(0) = 0. For m= ±1, ±2 , • • •, let vm be 
the nearest vertex to 0 in N2 such that fni^n) = mf and put e\ {vm) = m. On the 
intervals in N2 between these vertices, e\ is linear. 

The inverse images under e\ of intervals [m, m + l ] in Nx contain bounded 
numbers of vertices, by star-boundedness. Moreover, each contains at least 
three vertices, since the mapping /2i does not take any simplex to a set of 
diameter 1. 

Define e j + 1 recursively in the same manner, and e% by composition; put 
em=e1e%. Obviously, the functions emgm: L—>El are each uniformly contin
uous. Moreover, they form a Cauchy sequence, since each e^ differs from fmn 
only by modifications within some intervals whose images under en have 
diameter at most 21-n. Let e be the limit of (emgm\. Then e is a uniformly 
continuous mapping of L onto E1 realizing all ^ n , and the proof is complete. 

Now Theorem A could be proved by using a topological characterization 
of the line, together with the first paragraph of the following argument. 
Instead we shall indicate a direct proof along the same lines as the proof of 
Proposition 1. 

PROOF OF THEOREM A. Suppose the uniform space X has a basis of cov
erings with nerve E1, and A, B, C are three far connected sets each of which 
meets a closed connected set J; then J contains one of A, B, C. For on the 
contrary assumption we can find points a, b, c in A — J, B — Jt C—J, and a 
uniform covering ^ with nerve E1 with respect to which J, a, 6, and c have 
disjoint stars and A, B, and C have disjoint stars. Realizing ^ by a canoni
cal mapping, we have an absurdity. 

Now let °y be a uniform covering belonging to some star-bounded basis. 
Let Wx be a finer uniform covering with nerve El, and index the elements 
Wi of JjT1 with the integers i so that Wi meets Wj if and only if \i—j\^l. 
Let ^ l be a finer uniform covering with compact connected sets. (As in 
Proposition 1, X is uniformly locally compact because of star-boundedness 
and completeness.) Let H; be the union of all elements Z of ^ l such that i 
is the smallest integer in absolute value such that ZCW/. Let J7~i be the 
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covering whose elements are the components of the sets if,. Evidently ^ < 

It is possible for one element K of J/"1 to be contained in another element 
L of JT1; but evidently this implies that L is not again contained in a third 
element M. Hence we can form the subcovering ^ l consisting of all elements 
of S^x which are not contained in other elements of J7~l, and _^rl <°k l < 
3F \ The nerve of <%l is connected, for there is a finer uniform covering with 
connected nerve (El). No element J of %l meets three other elements A ,B, C; 
for any two of A, B, C must be either different components of the same H, 
or components of some Hi and Hj with | i—j\ = 2, and (since disjoint compact 
sets are far) the first paragraph of the proof applies. Now the nerve oi fy1 is 
also infinite, and the only infinite connected complexes in which no vertex is 
joined to three others are the half-line and line. But 0kl is finer than yjT1, 
and each element of yj^1 contains only finitely many elements of ^ \ Since 
the nerve of W1 is a line, the nerve of ^ is not a half-line. 

Continuing in the same manner we can construct a basis [^ J to which 
the argument of Proposition 1 will apply, completing the proof. 

2. COROLLARY. A closed subspace of a Euclidean space that is homeomorphic 
with E1 is isomorphic with E1 if it is uniformly locally connected. 

3. COROLLARY. A metric space homeomorphic with E1 is isomorphic with El 

if it has a transitive group of isometries. 

The first corollary is trivial; the second is easy. 
REMARKS. (1) In Corollary 2, if the curve is rectifiable, yet arc length need 

not be a uniformly continuous function. (2) The 2-dimensional Finsler spaces 
having transitive groups of isometries are known (Busemann [l]). Up to uni
form isomorphism, the only noncompact ones are the Euclidean and hyper
bolic planes and ElXSl. But if we do not assume a Finsler space, nothing is 
known in this context. 

For Theorem B, we do not need much background information on the 
hyperbolic spaces Hn. (One may consult, for example, [BK].) Recall that Hn 

is a metric space homeomorphic with En, having an elementary geometric 
structure (line, plane,-••; length, angle), having free mobility (any isometry 
of a subspace of Hn into Hn can be extended to an isometry of Hn onto 
itself), and with the angles of every equilateral triangle less than 7r/3, varying 
from 7r/3 to 0 as the side goes from 0 to Q°. 

Then we can triangulate H2 at once. Since there exists an equilateral 
triangle with each angle 27r/7, the space can be covered with such triangles 
with exactly seven of them meeting at each vertex. The triangles are isomet
ric with each other and (being compact) uniformly equivalent with ordinary 
triangles; hence H2 is uniformly equivalent with the corresponding uniform 
complex. 



162 LINE AND PLANE 

In this triangulation, the number of vertices which can be joined to a 
given vertex by connected chains of n or fewer edges is seven times the sum 
of the first 2n Fibonacci numbers (plus one if we count the given vertex). 
Recall that the ratios of consecutive Fibonacci numbers approach a limit > 
3/2, so that these numbers exceed (3/2)n. 

PROOF OF THEOREM B. Let ^ be a uniform covering whose elements have 
diameter less than the side 5 of a triangle in the triangulation described 
above. ^ has some Lebesgue number s/m, and the mnth iterated star of an 
element of fy must contain (3/2)n different elements of fy. No polynomial in 
mn exceeds(3/2)n, and H2 does not have a basis of uniform coverings of 
polynomial growth. 

This proof is due to Edward Nelson. A somewhat more sophisticated proof 
was published by Efremovic [2]. 
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