Mathematical
Surveys Monographs

Uniform Spaces

J. R. Isbell

UNIFORM SPACES

UNIFORM SPACES

J. R. ISBELL

American Mathematical Society
Providence, Rhode Island

Text composed on Photon, partly subsidized by NSF Grant G21913

International Standard Serial Number 0076-5376

International Standard Book Number 0-8218-1512-1

Library of Congress Catalog Card Number: 64-16541

Copying and reprinting Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code $0076-5376 / 91$ to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.

Copyright (c) 1964 by the American Mathematical Society. All rights reserved. Printed in the United States of America The American Mathematical Society retains all rights except those granted to the United States Government. The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

$$
109876543 \quad 9594939291
$$

PREFACE

The subject matter of this book might be labelled fairly accurately Intrinsic geometry of uniform spaces. \{For an impatient reader, this means elements (25%), dimension theory (40%), function spaces ($12 \frac{1}{2} \%$), and special topics in topology. \} As the term "geometry" suggests,'we shall not be concerned with applications to functional analysis and topological algebra. However, applications to topology and specializations to metric spaces are of central concern; in fact, these are the two pillars on which the general theory stands. This dictum brings up a second exclusion: the book is not much concerned with restatements of the basic definitions or generalizations of the fundamental concepts. These exclusions are matters of principle. A third exclusion is dictated mainly by the ignorance of the author, excused perhaps by the poverty of the literature, and at any rate violated in several places in the book: this is extrinsic (combinatorial and differential) geometry or topology.

More than 80% of the material is taken from published papers. The purpose of the notes and bibliography is not to itemize sources but to guide further reading, especially in connection with the exercises; so the following historical sketen serves also as the principal acknowledgement of sources.

The theory of uniform spaces was created in 1936 by Weil [W]. All the basic results, especially the existence of sufficiently many pseudometrics, are in Weil's monograph. However, Weil's original axiomatization is not at all convenient, and was soon succeeded by two other versions: the orthodox (Bourbaki [Bo]) and the heretical (Tukey [$\mathbf{T}]$). The present author is a notorious heretic, and here advances the claim that in this book each system is used where it is most convenient, with the result that Tukey's system of uniform coverings is used nine-tenths of the time.

In the 1940's nothing of interest happened in uniform spaces. But three interesting things happened. Dieudonné [1]invented paracompactness and crystallized certain important metric methods in general topology, mainly the partition of unity. Stone [1] showed that all metrizable spaces are paracompact, and in doing so, established two important covering theorems whose effects are still spreading through uniform geometry. Working in another area, Eilenberg and MacLane defined the notions of category, functor, and naturality, and pointed out that their spirit is the spirit of Klein's Erlanger Programm and their reach is greater.

The organization of this book is largely assisted by a rudimentary version of the Klein-Eilenberg-MacLane program (outlined in a foreword to this book). We are interested in the single category of uniform spaces, two or
three of its subcategories, and a handful of functors; but to consider them as instances of more general notions gives us a platform to stand on that is often welcome.

In 1952 Shirota [1] established the first deep theorem in uniform spaces, depending on theorems of Stone [1] and Ulam [1]. Except for reservations involving the axioms of set theory, the theorem is that every topological space admitting a complete uniformity is a closed subspace of a product of real lines. A more influential step was taken in 1952 by Efremovič [1] in creating proximity spaces. This initiated numerous significant Soviet contributions to uniform and proximity geometry (which are different but coincide in the all-important metric case), central among which is Smirnov's creation of uniform dimension theory (1956; Smirnov [4]). The methods of dimension theory for uniform and uniformizable spaces are of course mainly taken over from the classical dimension theory epitomized in the 1941 book of Hurewicz and Wallman [HW]. Classical methods were pushed a long way in our direction (1942-1955) by at least two authors not interested in uniform spaces: Lefschetz [L], Dowker [1; 2; 4; 5]. These methods-infinite coverings, sequential constructions-were brought into uniform spaces mainly by Isbell [1; 2; 3; 4] (from 1955).

Other developments in our subject in the 1950's do not really fall into a coherent pattern. What has been described above corresponds to Chapters I, II, IV and V of the book. Chapter III treats function spaces. The material is largely classical, with additions on injectivity and functorial questions from Isbell [5], and some new results of the same sort. The main results of Chapters VI (compactifications) and VIII (topological dimension theory) are no more recent than 1952 (the theorem Ind=dim of Katětov [2]).

The subject in Chapters VII and VIII is special features of fine spaces, i.e., spaces having the finest uniformity compatible with the topology. Chapter VII is as systematic a treatment of this topic as our present ignorance permits. Central results are Shirota's theorem (already mentioned) and Glicksberg's [2] 1959 theorem which determines in almost satisfactory terms when a product of fine spaces is fine. There is a connecting thread, a functor invented by Ginsburg-Isbell [1] to clarify Shirota's theorem, which serves at least to make the material look more like uniform geometry rather than plain topology. There are several new results in the chapter (VII. 1-2, 23, $25,27-29,32-35,39$); and a hitherto unpublished result of A. M. Gleason appears here for the first time. Gleason's theorem (VII. 19) extends previous results due mainly to Marczewski [1; 2] and Bokštein [1]. He communicated it to me after I had completed a draft of this book including the Marczewski and Bokstein theorems; I am grateful for his permission to use it in place of them.

Most chapters are followed by exercises adding details to the theory (in some cases doing duty for proofs omitted in the text), starred exercises whose results will be used later in the text, occasional unsolved problems, and a major unsolved problem. The major unsolved problems are Problems A, B_{1}, $\mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{C}, \mathrm{D}$. Not all are precisely posed, but all describe areas in which there seems to be good reason to expect interesting results although the results now known are quite unsatisfactory. The appendix might reasonably be counted as another such problem, for it gives several characterizations of the line and draws attention to the plane.

A preliminary version of this book was prepared as a set of lecture notes at Purdue University in 1960. The work of writing it has been supported at Purdue by the Office of Naval Research and at the University of Washington by the National Science Foundation. I am indebted to Professors M. Henriksen and M. Jerison for helpful criticisms of the Purdue lecture notes. Professors E. Alfsen, H. Corson, J. de Groot, E. Hewitt, E. Michael, D. Scott, and J. Segal have contributed some criticisms and suggestions during the writing of the final version. Many blemishes surviving that far were caught and exposed by Professor P. E. Conner for the Editorial Committee. But none of my distinguished colleagues has assumed responsibility for the remaining errors, which are mine.

TABLE OF CONTENTS

Preface V
Foreword xi
Categories xi
Chapter I. Fundamental concepts 1
Metric uniform spaces 1
Uniformities and preuniformities 3
Uniform topology and uniform continuity 6
Exercises 11
Notes 12
Chapter II. Fundamental constructions 13
Sum, product, subspace, quotient 13
Completeness and completion 17
Compactness and compactification 20
Proximity 24
Hyperspace 27
Exercises 32
Notes 35
Chapter III. Function spaces 36
The functor U 36
Injective spaces 39
Equiuniform continuity and semi-uniform products 43
Closure properties 49
Exercises 52
Research Problem A 54
Research Problem B_{1} 54
Notes 55
Chapter IV. Mappings into polyhedra 56
Uniform complexes 56
Canonical mappings 61
Extensions and modifications 65
Inverse limits 70
Exercises 73
Research Problem B_{2} 76
Notes 76

TABLE OF CONTENTS

Chapter V. Dimension (1) 78
Covering dimension 78
Extension of mappings 81
Separation 85
Metric spaces 88
Exercises 92
Research Problem C 95
Notes 96
Chapter VI. Compactifications 97
Dimension-preserving compactifications 97
Examples 102
Metric case 106
Freudenthal compactification 109
Exercises 117
Research Problem D 121
Notes 121
Chapter VII. Locally fine spaces 123
The functor λ 123
Shirota's theorem 127
Products of separable spaces 130
Glicksberg's theorem 133
Supercomplete spaces 140
Exercises 141
Research Problem B_{3} 144
Notes 144
Chapter VIII. Dimension (2) 146
Essential coverings 146
Sum and subset 148
Coincidence theorems 153
Exercises 155
Notes 157
Appendix. Line and plane 159
Bibliography 163
Index 173

FOREWORD

Categories. A concrete category \mathscr{C} is defined by defining a class \mathfrak{D} of sets, called objects of $\mathscr{S}^{\mathscr{F}}$, and for each ordered pair of objects (X, Y) a set $\operatorname{Map}(X, Y)$ of functions $f: X \rightarrow Y$, called mappings, such that
(a) The identity function on each object is a mapping;
(b) Every function which is a composition of mappings is a mapping.

The analysis of this definition presents some peculiar difficulties, because the class \mathfrak{O} may be larger than any cardinal number, and is larger in all cases arising in this book. But the difficulties need not concern us here. All we need is an indication of what is superfluous in the definition, i.e., of when two concrete categories determine the same abstract category.
A covariant functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is given when we are given two functions, F_{0} and F_{1}, as follows. F_{0} assigns to each object X of \mathscr{C} an object $F_{0}(X)$ of \mathscr{D}. F_{1} assigns to each mapping $f: X \rightarrow Y$ of \mathscr{C} a mapping $F_{1}(f): F_{0}(X) \rightarrow F_{0}(Y)$ of \mathscr{D}. Further,
(A) For each identity mapping 1_{X} of $\mathscr{C}, F_{1}\left(1_{X}\right)=1_{F_{0}(X)}$;
(B) For every composed mapping $g f$ of $\mathscr{C}, F_{1}(g f)=F_{1}(g) F_{1}(f)$.

Having noted the distinction between F_{0} and F_{1}, we can ignore it for applications, writing $F_{0}(X)$ as $F(X), F_{1}(f)$ as $F(f)$. The short notation defines a composition of covariant functors $F: \mathscr{C} \rightarrow \mathscr{D}, G: \mathscr{D} \rightarrow \mathscr{E}$ for us: $G F(X)=G(F(X)), G F(f)=G(F(f))$. Then an isomorphism is a covariant functor $F: \mathscr{C} \rightarrow \mathscr{D}$ for which there exists a covariant functor $F^{-1}: \mathscr{D} \rightarrow \mathscr{C}$ such that both $F F^{-1}$ and $F^{-1} F$ are identity functors.

A categorical property is a predicate of categories \mathfrak{P} such that if $\mathfrak{P}(\mathscr{C})$ and \mathscr{C} is isomorphic with \mathscr{D} then $\mathfrak{P}(\mathscr{D})$. Similarly we speak of categorical definitions, ideas, and so on.

The notion of a mapping $f: X \rightarrow Y$ having an inverse $f^{-1}: Y \rightarrow X$ is categorical. The defining conditions are just $f^{-1}=1_{Y}, f^{-1} f=1_{X}$. A mapping having an inverse in \mathscr{C} is called an isomorphism in \mathscr{C}.

The notion of a mapping $f: X \rightarrow Y$ being one-to-one is not categorical. However, it has an important categorical consequence. If $f: X \rightarrow Y$ is one-to-one then for any two mappings $d: W \rightarrow X, e: W \rightarrow X, f d=f e$ implies $d=e$. A mapping having this left cancellation property is called a monomorphism. Similarly a mapping f such that $g f=h f$ implies $g=h$ is called an epimorphism. A mapping $f: X \rightarrow X$ satisfying $f f=f$ is a retraction.

Remark. If a retraction is either a monomorphism or an epimorphism then it is an identity.

A contravariant functor $F: \mathscr{C} \rightarrow \mathscr{D}$ assigns to each object X of \mathscr{C} an object
$F(X)$ of \mathscr{D} or to each mapping $f: X \rightarrow Y$ of \mathscr{C} a mapping in the opposite direction $F(f): F(Y) \rightarrow F(X)$ of \mathscr{D} satisfying condition (A) above and
(B^{*}) For every composed mapping $g f$ of $\mathscr{b}, F(g f)=F(f) F(g)$. Contravariant functors can be composed; but the composition of two contravariant functors is a covariant functor. In fact, functors of mixed variances can be composed, with an obvious rule for the variance of the composition.

A duality $F: \mathscr{C} \rightarrow \mathscr{D}$ is a contravariant functor admitting an inverse, which is a contravariant functor $F^{-1}: \mathscr{D} \rightarrow \mathscr{C}$ such that both $F F^{-1}$ and $F^{-1} F$ are identity functors. It is a theorem that:

Every concrete category is the domain of a duality.
An interested reader may prove this, letting $F(X)$ be the set of all subsets of X and $F(f)=f^{-1}$.

The principle of duality says roughly that any categorical theorem θ for arbitrary categories implies another theorem θ^{*} for arbitrary categories. For example, if θ is a theorem about a single category \mathscr{C}, the statement of θ for \mathscr{b} is equivalent to a statement about a category \mathscr{D} related to \mathscr{C} by a duality $F: \mathscr{C} \rightarrow \mathscr{D}$; that statement about D is θ^{*}, and it is true for arbitrary categories because every category is the range of a duality.

The theorem θ that a retraction f which is a monomorphism is an identity can illustrate duality. The statement θ^{*} is that if f is a mapping in \mathscr{b}, $F: \mathscr{C} \rightarrow \mathscr{D}$ is a duality, and $F(f)$ is a retraction and a monomorphism, then $F(f)$ is an identity. Using several translation lemmas we can simplify θ^{*} to the equivalent form: if f is a retraction and an epimorphism then f is an identity.

Note that we may have "dual problems" which are not equivalent to each other. A typical problem in a category \mathscr{C} is, does \mathscr{C} have the property \mathfrak{P} ? If \mathfrak{P}_{1} is categorical, there is a dual property \mathfrak{P}^{*}, and the given problem is equivalent to the problem does a category dual to \mathscr{C} have the property \mathfrak{P}^{*} ? By the dual problem we mean: Does \mathscr{C} have the property \mathfrak{P}^{*} ?

Finally, we need definitions of subcategory, full subcategory, and functor of several variables. A subcategory \mathscr{D} of \mathscr{C} is a category such that every object of \mathscr{D} is an object of \mathscr{C} and every mapping of \mathscr{D} is a mapping of \mathscr{C}. \mathscr{D} is a full subcategory if further, every mapping of \mathscr{C} whose domain and range are objects of \mathscr{D} is a mapping of \mathscr{D}.

For several variables we want the notion of a product of finitely many categories $\mathscr{L}_{1}, \ldots, \mathscr{C}_{n}$. The product is a category whose objects may be described as n-tuples $\left(X_{1}, \cdots, X_{n}\right)$, each X_{i} an object of \mathscr{C}_{i}. To represent these as sets the union $X_{1} \cup \cdots \cup X_{n}$ would serve, if some care is taken about disjointness. The set $\operatorname{Map}\left(\left(X_{1}, \cdots, X_{n}\right),\left(Y_{1}, \cdots, Y_{n}\right)\right)$ is the product set $\operatorname{Map}\left(X_{1}, Y_{1}\right)$

CATEGORIES

$\times \cdots \times$ Map $\left(X_{n}, Y_{n}\right)$. Again, the mappings $\left(f_{1}, \cdots, f_{n}\right)$ can be represented as functions on $X_{1} \cup \cdots \cup X_{n}$, with $\left(f_{1}, \cdots, f_{n}\right) \mid X_{i}=f_{i}$.
A pure covariant functor on $\mathscr{L}_{1}, \cdots, \mathscr{C}_{n}$ is a covariant functor defined on the product $\mathscr{C}_{1} \times \cdots \times \mathscr{C}_{n}$. A functor on $\mathscr{C}_{1}, \cdots, \mathscr{C}_{n}$, covariant in the set I of indices and contravariant in the remaining indices, is a function F on $\mathscr{C}_{1} \times \cdots \times \mathscr{C}_{n}$ to a category \mathscr{D}, taking objects to objects, mappings to mappings, identities to identities; taking mappings $f=\left\{f_{i}\right\}:\left\{X_{i}\right\} \rightarrow\left\{Y_{i}\right\}$ to mappings $F(f): F\left(\left\{Z_{i}\right\}\right) \rightarrow F\left(\left\{W_{i}\right\}\right)$, where for $i \in I, Z_{i}=X_{i}$ and $W_{i}=Y_{i}$, but for $i \notin I, Z_{i}=Y_{i}$ and $W_{i}=X_{i}$; and preserving the composition operation defined in the product category by $g o f=h$, where $h_{i}=g_{i} f_{i}$ for $i \in I, h_{i}=f_{i} g_{i}$ otherwise.

APPENDIX

LINE AND PLANE

For the real line E^{1}, we can give a characterization.
Theorem A. A complete metric space which is uniformly locally connected, has a star-bounded basis of uniform coverings, and has a basis of coverings with nerve E^{1}, is isomorphic with E^{1}.
(A star-bounded basis is defined in Exercise V.9.)
No characterization of the plane is known. At least, we can distinguish two problems, for the Euclidean plane and the hyperbolic plane of BolyaiLobačevskií.

Theorem B. The hyperbolic plane is not embeddable in any Euclidean space.
We prove first

1. A complete metric space X that is homeomorphic with E^{1} is isomorphic with E^{1} if and only if X is uniformly locally connected and has a star-bounded basis.

Proof. Clearly E^{1} satisfies these conditions. Suppose X satisfies them. Let \mathscr{V} be a covering belonging to some star-bounded basis, and observe that every family of star-bounded uniform coverings finer than \mathscr{V} is a starbounded family. For, if \mathscr{T} and \mathscr{U} are finer than \mathscr{V}, and \mathscr{W} is a common refinement of \mathscr{T} and \mathscr{U} which belongs to a star-bounded family with \mathscr{V}, routine counting shows that $\mathscr{T} \cup \mathscr{U}$ is star-bounded.

Let \mathscr{F} be a uniform covering consisting of connected sets which is a starrefinement of \mathscr{V}. Choose some homeomorphism of X with the line and define U_{0}^{1} as the star of the point 0 with respect to \mathscr{F}. Then U_{0}^{1} is an interval. Because of the star-bounded basis, U_{0}^{1} is precompact; because of completeness, it is a finite interval (a, b), with or without endpoints. Define U_{1}^{1} as the union of all elements of \mathscr{F} which contain b and do not contain $0, U_{-1}^{1}$ as the union of those which contain a and not 0 , and so on for all $U_{ \pm n}^{1}$. We get a uniform covering \mathscr{U}^{1} finer than \mathscr{V}, consisting of intervals, and with nerve
isomorphic with E^{1}. For this nerve N_{1} we also have a marked point 0 , the vertex corresponding to U_{0}^{1}; and a simplicial isomorphism $e^{1}: N_{1} \rightarrow E^{1}$ taking the vertices onto the integers.

In the same way we construct a uniform covering $\mathscr{U}^{2}<^{*} \mathscr{C}^{1}$, whose elements are intervals of diameter (in the metric space X) at most $1 / 2$, and whose nerve is uniformly isomorphic with E^{1}. Continuing, we have a starbounded basis which is a normal sequence, with each nerve a copy of E^{1}, and the elements of \mathscr{U}^{n+1} contained in any given element of \mathscr{U}^{n} forming a chain. The limit space L of the barycentric system on $\left\{\mathscr{U}^{n}\right\}$ is isomorphic with X, by V.33. To get an isomorphism of L upon E^{1}, observe first that every vertex of N_{n} is the image of at least one vertex of N_{n+1}, since the bonding mappings $f_{m n}$ are onto and take simplexes into closed simplexes. Recursively select a thread of vertices mapping upon 0 in N_{1}, and call each of these vertices 0 in N_{n}. Define $e_{1}^{2}: N_{2} \rightarrow N_{1}$ as follows. $e_{1}^{2}(0)=0$. For $m= \pm 1, \pm 2, \cdots$, let v_{m} be the nearest vertex to 0 in N_{2} such that $f_{21}\left(v_{m}\right)=m$, and put $e_{1}^{2}\left(v_{m}\right)=m$. On the intervals in N_{2} between these vertices, e_{1}^{2} is linear.

The inverse images under e_{1}^{2} of intervals [$m, m+1$] in N_{1} contain bounded numbers of vertices, by star-boundedness. Moreover, each contains at least three vertices, since the mapping f_{21} does not take any simplex to a set of diameter 1.

Define e_{n}^{n+1} recursively in the same manner, and e_{n}^{m} by composition; put $e^{m}=e^{1} e_{1}^{m}$. Obviously, the functions $e^{m} g_{m}: L \rightarrow E^{1}$ are each uniformly continuous. Moreover, they form a Cauchy sequence, since each e_{n}^{m} differs from $f_{m n}$ only by modifications within some intervals whose images under e^{n} have diameter at most 2^{1-n}. Let e be the limit of $\left\{e^{m} g_{m}\right\}$. Then e is a uniformly continuous mapping of L onto E^{1} realizing all \mathscr{U}^{n}, and the proof is complete.

Now Theorem A could be proved by using a topological characterization of the line, together with the first paragraph of the following argument. Instead we shall indicate a direct proof along the same lines as the proof of Proposition 1.

Proof of Theorem A. Suppose the uniform space X has a basis of coverings with nerve E^{1}, and A, B, C are three far connected sets each of which meets a closed connected set J; then J contains one of A, B, C. For on the contrary assumption we can find points a, b, c in $A-J, B-J, C-J$, and a uniform covering \mathscr{U} with nerve E^{1} with respect to which J, a, b, and c have disjoint stars and A, B, and C have disjoint stars. Realizing \mathscr{U} by a canonical mapping, we have an absurdity.

Now let \mathscr{V} be a uniform covering belonging to some star-bounded basis. Let \mathscr{W}^{1} be a finer uniform covering with nerve E^{1}, and index the elements W_{i} of \mathscr{W}^{1} with the integers i so that W_{i} meets W_{j} if and only if $|i-j| \leqq 1$. Let \mathscr{F}^{1} be a finer uniform covering with compact connected sets. (As in Proposition $1, X$ is uniformly locally compact because of star-boundedness and completeness.) Let H_{i} be the union of all elements Z of \mathscr{F}^{1} such that i is the smallest integer in absolute value such that $Z \subset W_{i}$. Let \mathscr{T}^{1} be the
covering whose elements are the components of the sets H_{i}. Evidently $\mathscr{F}^{1}<$ $\mathscr{T}^{1}<\mathscr{W}^{1}$.

It is possible for one element K of \mathscr{T}^{1} to be contained in another element L of \mathscr{T}^{1}; but evidently this implies that L is not again contained in a third element M. Hence we can form the subcovering \mathscr{U}^{1} consisting of all elements of \mathscr{T}^{1} which are not contained in other elements of \mathscr{T}^{1}, and $\mathscr{T}^{1}<\mathscr{U}^{1}<$ \mathscr{T}^{1}. The nerve of \mathscr{U}^{1} is connected, for there is a finer uniform covering with connected nerve (E^{1}). No element J of \mathscr{U}^{1} meets three other elements A, B, C; for any two of A, B, C must be either different components of the same H_{i} or components of some H_{i} and H_{j} with $|i-j|=2$, and (since disjoint compact sets are far) the first paragraph of the proof applies. Now the nerve of \mathscr{U}^{1} is also infinite, and the only infinite connected complexes in which no vertex is joined to three others are the half-line and line. But \mathscr{U}^{1} is finer than \mathscr{W}^{1}, and each element of \mathscr{W}^{1} contains only finitely many elements of \mathscr{U}^{1}. Since the nerve of \mathscr{W}^{1} is a line, the nerve of \mathscr{U}^{1} is not a half-line.

Continuing in the same manner we can construct a basis $\left\{\mathscr{W}^{n}\right\}$ to which the argument of Proposition 1 will apply, completing the proof.
2. Corollary. A closed subspace of a Euclidean space that is homeomorphic with E^{1} is isomorphic with E^{1} if it is uniformly locally connected.
3. Corollary. A metric space homeomorphic with E^{1} is isomorphic with E^{1} if it has a transitive group of isometries.

The first corollary is trivial; the second is easy.
Remarks. (1) In Corollary 2, if the curve is rectifiable, yet arc length need not be a uniformly continuous function. (2) The 2 -dimensional Finsler spaces having transitive groups of isometries are known (Busemann [1]). Up to uniform isomorphism, the only noncompact ones are the Euclidean and hyperbolic planes and $E^{1} \times S^{1}$. But if we do not assume a Finsler space, nothing is known in this context.

For Theorem B, we do not need much background information on the hyperbolic spaces H^{n}. (One may consult, for example, [BK].) Recall that H^{n} is a metric space homeomorphic with E^{n}, having an elementary geometric structure (line, plane, \cdots; length, angle), having free mobility (any isometry of a subspace of H^{n} into H^{n} can be extended to an isometry of H^{n} onto itself), and with the angles of every equilateral triangle less than $\pi / 3$, varying from $\pi / 3$ to 0 as the side goes from 0 to ∞.

Then we can triangulate H^{2} at once. Since there exists an equilateral triangle with each angle $2 \pi / 7$, the space can be covered with such triangles with exactly seven of them meeting at each vertex. The triangles are isometric with each other and (being compact) uniformly equivalent with ordinary triangles; hence H^{2} is uniformly equivalent with the corresponding uniform complex.

In this triangulation, the number of vertices which can be joined to a given vertex by connected chains of n or fewer edges is seven times the sum of the first $2 n$ Fibonacci numbers (plus one if we count the given vertex). Recall that the ratios of consecutive Fibonacci numbers approach a limit > $3 / 2$, so that these numbers exceed $(3 / 2)^{n}$.

Proof of Theorem B. Let \mathscr{U} be a uniform covering whose elements have diameter less than the side s of a triangle in the triangulation described above. \mathscr{U} has some Lebesgue number s / m, and the $m n t h$ iterated star of an element of \mathscr{U} must contain $(3 / 2)^{n}$ different elements of \mathscr{U}. No polynomial in $m n$ exceeds $(3 / 2)^{n}$, and H^{2} does not have a basis of uniform coverings of polynomial growth.

This proof is due to Edward Nelson. A somewhat more sophisticated proof was published by Efremovič [2].

BIBLIOGRAPHY

I. Books

[B] R. H. Bing (editor), Summary of lectures and seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, 1955; revised 1957.
[Bo] N. Bourbaki, Topologie générale, Chaps. 1-2, Act. Sci. Ind. no. 858, 1940; 3rd ed., Act. Sci. Ind. no. 1142, Paris, 1960.
[BK] H. Busemann and P. J. Kelly, Projective Geometry and Projective Metrics, New York, 1953.
[D] M. M. Day, Normed Linear Spaces, 2nd ed., Berlin, 1962.
[ES] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.
[F] M. K. Fort (editor), Topology of 3-manifolds, Proceedings of the 1961 Topology Institute, Englewood Cliffs, N. J., 1962.
[GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, Princeton, 1960.
[HW] W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.
[K] J. L. Kelley, General Topology, New York, 1955.
[L] S. Lefschetz, Topics in topology, Princeton, 1942.
[NST] E. Nagel, P. Suppes, and A. Tarski (editors), Logic, Methodology and Philosophy of Science, Proceedings of the 1960 International Congress, Stanford, 1962.
[T] J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940.
[W] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Act. Sci. Ind. no. 551, Paris, 1937.

II. Papers

P. S. Aleksandrov (П. С. Александров)

1. Some results in the theory of topological spaces obtained within the last twenty-five years, Uspehi Mat. Nauk, v. 15(1960), no. $2,25-95=$ Russian Math. Surveys, v. 1(1960), 23-83.
P. S. Aleksandrov and V. Ponomarev (П. С. Александров и В. Пономарев)
2. О бикомпактных расширениях топологических пространств (On bicompact extensions of topological spaces), Dokl. Akad. Nauk SSSR, v. 121 (1958), 575-578.
3. О некоторых классах n-мерных пространств (On some classes of n-dimensional spaces), Sibir. Mat. Z̆., v. 1(1960), 3-13.

E. M. Alfsen and O. Njåstad

1. Proximity and generalized uniformity, Fund. Math., v. 52(1963), 235-252.

R. Arens

1. Extension of functions on fully normal spaces, Pacific J. Math., v. 2(1952), 11-22.
A. Arhangel'skiĭ (A. Архангельский)
2. External bases of sets lying in bicompacta, Dokl. Akad. Nauk SSSR, v. 132(1960), 495-496=Soviet Math. Dokl., v. 1(1960), 573-574.
N. Aronszajn and P. Panitchpakdi
3. Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math., v. 6(1956), 405-439.

M. Atsuji

1. Uniform continuity of continuous functions of metric spaces, Pacific J. Math., v. 8(1958), 11-16.
2. Uniform continuity of continuous functions on uniform spaces, Canadian J. Math., v. 13(1961), 657-663.
R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr.
3. On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc., v. 9(1958), 500-506.

R. H. Bing

1. The cartesian product of a certain non-manifold and a line is E^{4}, Ann. of Math., v. 70(1959), 399-412.
M. F. Bokšteĭn (M. Ф. Бокштейн)
2. Un théorème de séparabilité pour les produits topologiques, Fund. Math., v. 35(1948), 242-246.

M. Brown

1. Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc., v. 11(1960), 478-483.
H. Busemann
2. Quasihyperbolic geometry, Rend. Circ. Mat. Palermo, v. 4(1955), 256-269.

E. ČECH

1. Sur la dimension des espaces parfaitement normaux, Bull. Int. Acad. Prague, v. 33(1932), 38-55.
2. Contribution à la théorie de la dimension, Čas. Mat. Fys., v. 62(1933), 277-291.
3. On bicompact spaces, Ann. of Math., v. 38(1937), 823-844.

H. J. Cohen

1. Sur un problème de M. Dieudonné, C. R. Acad. Sci. Paris, v. 234(1952), 290-292.
H. H. Corson
2. Normality in subsets of product spaces, Amer. J. Math., v. 81(1959), 785-796.
3. Collections of convex sets which cover a Banach space, Fund. Math., v. 49(1961), 143-145.
4. The weak topology of a Banach space, Trans. Amer. Math. Soc., v. 101 (1961), 1-15.
H. H. Corson and J. R. Isbell
5. Some properties of strong uniformities, Quart. J. Math., v.11(1960), 17-33.
H. H. Corson, T. J. McMinn, E. A. Michael, and J.-I. Nagata
6. Bases and local finiteness, Notices Amer. Math. Soc., v.6(1959), 814. J. Dieudonne
7. Une généralisation des espaces compacts, J. Math. Pures Appl., v. 23 (1944), 65-76.
G. A. Dirac
8. Theorems related to the four colour conjecture, J. London Math. Soc., v. 29 (1954), 143-149.
D. Doŭ́linov (Д. Дойчинов)
9. Necessary and sufficient conditions for the uniform imbedding of a space into Euclidean space, Dokl. Akad. Nauk SSSR, v. 138(1961), 1276-1279= Soviet Math. Dokl ${ }_{3}$, v. 2(1961), 817-820.
R. Doss
10. On uniform spaces with a unique structure, Amer. J. Math., 71(1949), 19-23.

C. H. Iowker

1. Mapping theorems for non-compact spaces, Amer. J. Math., v. 69(1947), 200-242.
2. Topology of metric complexes, Amer. J. Math., v. 74(1952), 555-577.
3. On a theorem of Hanner, Ark. Mat., v. 2(1952), 307-313.
4. Inductive dimension of completely normal spaces, Quart. J. Math., v. 4 (1953), 267-281.
5. Local dimension of normal spaces, Quart. J. Math., v. 6(1955), 101-120.
C. H. Dowker and W. Hurewicz
6. Dimension of metric spaces, Fund. Math., v. 43(1956), 83-88.
J. Dugundir
7. An extension of Tietze's theorem, Pacific J. Math., v. 1(1951), 353-367. V. A. Efremovič (B. A. Ефремович)
8. Геометрия блиэости. I (The geometry of proximity. I) Mat. Sb., v. 31 (1952), 189-200.
9. Неэквиморфность пространств Евклида и Лобачевского (Nonequimorphism of Euclidean and Lobačevskian spaces), Uspehi Mat. Nauk, v. 4 (1949), no. 2. 178-179.
10. Геометрия близости Риманновых многообразии (Proximity geometry of Riemannian manifolds), Uspehi Mat. Nauk, v. 8(1953), no. 5, 189-191. A. Flores
11. Über n-dimensionale Komplexe die im $R_{2 n+1}$ absolut selbstverschlungen sind, Ergebn. eines Math. Koll., v. 6(1935), 4-7.

H. Freudenthal

1. Entwicklungen von Räumen und ihre Gruppen, Comp. Math., v. 4(1937), 145-234.
2. Neuaufbau der Endentheorie, Ann. of Math., v.43(1942), 261-279. P. J. Freyd
3. Functor theory, thesis, Princeton, 1960.
Z. Frolík
4. The topological product of two pseudocompact spaces, Czech. Mat. J., v. 10(1960), 339-349.
L. Gillman and M. Jerison
5. Stone-Čech compactification of a product, Arch. Math., v. 10(1959), 443-446.
S. Ginsburg and J. R. Isbell
6. Some operators on uniform spaces, Trans. Amer. Math. Soc., v. 93(1959), 145-168.

I. Glicksberg

1. Representation of functionals by integrals, Duke Math. J., v. 19(1952), 253-261.
2. Stone-Cech compactifications of products, Trans. Amer. Math. Soc., v. 90 (1959), 369-382.
M. Gutierrez-Burzaco
3. Extension of uniform homotopies, Indag. Math., v. 20(1958), 61-69.
4. Uniform homotopy groups, Indag. Math., v. 22(1960), 67-73.

S. Hanai

1. On closed mappings. II, Proc. Japan Acad., v. 32(1956), 388-391. F. Hausdorff
2. Die Mengen G_{δ} in vollständigen Räumen, Fund. Math., v.6(1924), 147-148.
M. Henriksen and J. R. Isbell
3. Local connectedness in the Stone-Čech compactification, Illinois J. Math., v. 1(1957), 574-582.
4. Some properties of compactifications, Duke Math. J., v. 25(1957), 83-105. G. Higman and A. H. Stone
5. On inverse systems with trivial limits, J. London Math. Soc., v. 29(1954), 233-236.
J. R. Isbell
6. Zero-dimensional spaces, Tôhoku Math. J., v. 7(1955), 1-8.
7. On finite-dimensional uniform spaces. (I)-II, Pacific J. Math., v. 9(1956), 107-121 and v. 12(1962), 291-302.
8. Embeddings of inverse limits, Ann. of Math., v. 70(1959), 73-84.
9. Irreducible polyhedral expansions, Indag. Math., v. 23(1961), 242-248.
10. Uniform neighborhood retracts, Pacific J. Math., v.11(1961), 609-648.
11. Supercomplete spaces, Pacific J. Math., v. 12(1962), 287-290.
12. Subobjects, adequacy, completeness, and categories of algebras, Rozprawy Mat., v. 38(1963), 32pp.
J. R. Isbell and Z. Semadeni
13. Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc., v. 107(1963), 38-48.
M. Катètov (M. Катетов)
14. On real-valued functions in topological spaces, Fund. Math., v. 38(1951), 85-91.
15. 0 размерности несепарабельных пространств. I (On the dimension of non-separable spaces. I), Czech. Mat. J., v. 2(1952), 333-368.

H. Kenyon

1. Two theorems about relations, Trans. Amer. Math. Soc., v. 107(1963), 1-9. V. Kuz'minov and I. Švedov (B. Кузьминов и И. Шведов)
2. Cohomology and dimension of uniform spaces, Dokl. Akad. Nauk SSSR, v. 135(1960), 1322-1325 = Soviet Math. Dokl., v.1(1960), 1383-1386. B. Levšenko (Б. Јевшенко)
3. 0 понятии компактности и точечно-конечных покрытиях (On compactness conditions and point-finite coverings), Mat. Sb., v. 42(1957), 479-484. O. Lokucievskif (О. Локуциевский)
4. О размерности бикомпактов (On the dimension of bicompacta), Dokl. Akad. Nauk SSSR, v. 67(1949), 217-219.
S. Lubinin
5. Theory of covering spaces, Trans. Amer. Math. Soc., v. 104(1962), 205-238.
A. Lunc (А. Лунц)
6. Бикомпакт, индуктивная размерность которого больше чем размерность определенная при помощи покрытий (A bicompactum whose inductive dimension is greater than the dimension defined by means of coverings), Dokl. Akad. Nauk SSSR, v. 66(1949), 801-803.

M. J. Mansfield

1. Some generalizations of full normality, Trans. Amer. Math. Soc., v. 86 (1957), 489-505.
E. Marczewski (E. Szpilrajn)
2. Remarque sur les produits cartésiens d'espaces topologiques, C. R. Acad. Sci. URSS, v. 31(1941), 525-528.
3. Sur deux propriétés des classes d'ensembles, Fund. Math., v. 33(1945), 303-307.

S. Mardešic

1. Chainable continua and inverse limits, Glas. Mat. Fiz. Astr., v. 14(1959), 219-232.
2. On covering dimension and inverse limits of compact spaces, Illinois J. Math., v. 4(1960), 278-291.
S. Mazur
3. On continuous mappings on Cartesian products, Fund. Math., v. 39 (1952), 229-238(1953).

E. J. McShane

1. Extension of range of functions, Bull. Amer. Math. Soc., v. 40(1934), 837-842.

K. Menger

1. Über umfassendste n-dimensionale Mengen, Proc. Acad. Wetensch. Amst., v. 29(1926), 1125-1128.

E. Michael

1. Topologies on spaces of subsets, Trans. Amer. Math. Soc., v. 71(1951), 152-182.
2. Cuts, Acta Math., (to appear).

K. Morita

1. Star-finite coverings and the star-finiteness property, Math. Japon., v. 1 (1948), 60-68.
2. On the dimension of normal spaces. I-II, Jap. J. Math., v. 20(1950), 5-36, and J. Math. Soc. Japan, v. 2(1950), 16-33.
3. On the simple extension of a space with respect to a uniformity. I-IV, Proc. Japan Acad., v. 27(1951), 65-72, 130-137, 166-171, and 632-636.
4. On the dimension of product spaces, Amer. J. Math., v. 75(1953), 205-223.
5. Normal families and dimension theory for metric spaces, Math. Ann., v. 128(1954), 350-362.
S. Mrówka
6. On the notion of completeness in proximity spaces, Bull. Acad. Polon. Sci., v. 4(1956), 477-478.
J.-I. Nagata
7. On a metric characterizing dimension, Proc. Japan Acad., v. 36(1960), 327-331.

T. Nishiura

1. Semi-compact spaces and dimension, Proc. Amer. Math. Soc., v. 12 (1961), 922-924.

J. Novák

1. On the Cartesian product of two compact spaces, Fund. Math., v. 40 (1953), 106-112.

N. Onuchic

1. P-spaces and the Stone-Cech compactification, An. Acad. Brasil Ci., v. 30 (1958), 43-45.
2. On the Nachbin uniform structure, Proc. Amer. Math. Soc., v. 11(1960), 177-179.
I. Parovičenko (И. Паровиченко)
3. О некоторых специальных классах топологических пространств и δs-операций (On some special classes of topological spaces and δ s-operations), Dokl. Akad. Nauk SSSR, v. 115(1957), 866-868.

B. Pasynkov (Б. Пасынков)

1. О полиэдральных снектрах и размерности бикомпактов, в частности бикомпактных групп (On polyhedral spectra and dimension of bicompacta, in particular bicompact groups), Dokl. Akad. Nauk SSSR, v. 121 (1958), 45-48.
2. A class of transitive single-valued spectra for bicompacta, Dokl. Akad. Nauk SSSR, v. 131(1960), 253-254 = Soviet Math. Dokl., v. 1(1960), 235-236.
3. Inverse spectra and dimension, Dokl. Akad. Nauk SSSR, v. 138(1961), 1013-1015 = Soviet Math. Dokl., v. 2(1961), 772-774.

B. Pospisill

1. Kemark on bicompact spaces, Ann of Math., v. 38(1937), 845-846. J. Rainwater
2. Spaces whose finest uniformity is metric, Pacific J. Math., v. 9(1959), 567-570.

M. Reichbach

1. The power of topological types of some classes of 0-dimensional sets, Proc. Amer. Math. Soc., v. 13(1962), 17-23.
P. Roy
2. Failure of equivalence of dimension concepts for metric spaces, Bull. Amer. Math. Soc., v. 68(1962), 609-613.
P. Samuel
3. Ultrafilters and compactifications, Trans. Amer. Math. Soc., v. 64(1948), 100-132.
V.Sandberg (В. Сандберг)
4. A new definition of uniform spaces, Dokl. Akad. Nauk SSSR, v. 135 (1960), 535-537 = Soviet Math. Dokl., v. 1(1960), 1292-1294.
N. Šanin (H. Шанин)
5. O взаймном пересечении открытых подмножеств произведения топологических пространств (On mutual intersections of open subsets of products of topological spaces), Dokl. Akad. Nauk SSSR, v. 53(1946), 499-501.
6. О произведении топологических пространств (On products of topological spaces), Trudy Mat. Inst. Steklov, No. 24, Moscow, (1948).

D. Scott

1. Measurable cardinals and constructible sets, Bull. Acad. Sci. Polon., v. 9 (1961), 521-524.

Z. Semadeni

1. Projectivity, injectivity, and duality, Rozprawy Mat., v. 35(1963), 47 pp .
J. C. Shepherdson
2. Inner models for set theory. II, J. Symb. Logic, v. 17(1952), 225-237. T. Shirota
3. A class of topological spaces, Osaka Math. J., v. 4(1952), 23-40. W. Sierpiński
4. Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C. R. Acad. Sci. Paris, v. 162 (1916), 629-632.

K. Sitnikov (К. Ситников)

1. Пример двумерного множества в трехмерном евклидовом пространстве, допускающего сколь угодно малые деформации в одномерный полиэдр, и некоторая новая характеристика размерности множеств в евклидовых пространствах (An example of a two-dimensional set in threedimensional Euclidean space having arbitrarily small deformations into onedimensional polyhedra, and some new characterizations of dimension for sets in Euclidean spaces), Dokl. Akad. Nauk SSSR, v. 88(1953), 21-24.

E. Sklyarenko (Е. Скляренкo)

1. Бикомпактные расширения семибикомпактных пространств (Bicompact extensions of semibicompact spaces), Dokl. Akad. Nauk SSSR, v. 120 (1958), 1200-1203.
2. On dimensional properties of infinite-dimensional spaces, Izv. Akad. Nauk SSSR, v. 23(1959), 197-212=Amer. Math. Soc. Translations, Ser. 2. v. 21, 35-50.
3. On perfect bicompact extensions, Dokl. Akad. Nauk SSSR, v. 137 (1961), 39-41 = Soviet Math. Dokl., v. 2(1961), 238-240.
4. Бикомпактные расширения и размерность (Bicompact extensions and dimension), Trudy Tbilis. Mat. Inst., v.27(1960), 113-114.
Yu. M. Smirnov (Ю. М. Смирнов)
5. О пространствах близости (On proximity spaces), Mat. Sb., v. 31 (1952), 543-574.
6. О полноте пространств близости. I-II (On completeness of proximity spaces. I-II), Trudy Mosk. Mat. Obšč:, v. 3(1954), 271-306 and v.4(1955), 421-438.
7. О метризуемости бикомпактов, разлагаемых в сумму множеств со счетной базой (On the metrizability of bicompacta decomposed into a sum of sets with countable base), Fund. Math., v. 43(1956), 387-393.
8. On the dimension of proximity spaces, Mat. Sb., v. 41 (1956), 283-302= Amer. Math. Soc. Translations, Ser. 2, v. 21, 1-20.
9. Geometry of infinite uniform complexes and δ-dimension of point sets, Mat. Sb., v. 43(1956), 137-156 = Amer. Math. Soc. Translations, Ser. 2, v. 15, 95-113.
10. Пример вполне регуларного пространства с нульмерным чеховским наростом, не обладающего свойством семибикомпактности (An example of a completely regular space with zero-dimensional Čech remainder, not having the property of semibicompactness), Dokl. Akad. Nauk SSSR, v. 120 (1958), 1204-1206.
11. Пример нульмерного нормального пространства, имеющего бесконечную размерность в смысле покрытий (An example of a zerodimensional normal space having infinite covering dimension), Dokl. Akad. Nauk SSSR, v. 123(1958), 40-42.
12. Некоторые соотношения в теории размерности (Some relations in dimension theory), Mat. Sb., v. 29(1951), 157-172.

A. H. Stone

1. Paracompactness and product spaces, Bull. Amer. Math. Soc., v. 54 (1948), 977-982.
2. Universal spaces for some metrizable uniformities, Quart. J. Math., v. 11 (1960), 105-115.
E. Tihomirova (E. Тихомирова)
3. Новый инвариант близости (A new proximity invariant), Uspehi Mat. Nauk, v. 13(1958), no. 5. 197-202.

L. B. Treybig

1. Concerning certain locally peripherally separable spaces, Pacific J. Math., v. 10(1960), 697-704.
S. Ulam
2. Zur Mässtheorie in der allgemeinen Mengenlehre, Fund. Math., v. 16 (1930), 140-150.
I. A. Vaĭnsteín (И. A. Вайнштейн)
3. О замкнутых отображениях (On closed mappings), Uč. Zap. Mosk. Gos. Univ., v. 155(1952), 3-53.
N. Vedenisor (Н. Веденисов)
4. Замечания о размерности топологических пространств (Remarks on the dimension of topological spaces), Uč. Zap. Mosk. Gos. Univ., v. 30 (1939), 131-146.
P. VupĚnka (П. Вопенка)
5. 0 размерности компактных пространств (On the dimension of compact spaces), Czech. Mat. J., v. 8(1958), 319-326.

L. Zippin

1. On semicompact spaces, Amer. J. Math., v. 57(1935), 327-341.

INDEX

Absolute $G_{\delta} 119$
Admit 133
Almost 2-fully normal 35
ANRU 82
Antiresidual 4
Ascoli Theorem 51
Asymptotic 74
Barycentric subdivision 59
Barycentric system 90
Base, basis 4, 5, 109
Bonding mapping 70
Canonical 13, 61
Carrier 58
Categorical property ix
Category ix
Cauchy 17, 19, 29
Čech uniformity 34
Cluster point 29, 140
Coarse 5
Cofinal 3
Coloring 66
Compatible 10 left 70
Complete, completion 18
Complete cluster point 138
Completely normal 150
Completely separated 98
Concrete category ix
Connecting mapping 62
Continuous porperty 74
Contravariant ix
Convergent 17, 28, 140
Convex metric space 40
Coordinate 14, 70
Coreflection 22
Coshrinking 63
Countable projection 130
Covariant ix
Covering character 134
Covering dimension 97
$\Delta d 78$
δ-chain 26
$\delta d 64$
δ Ind 85
δ-invariant 24
δ-isomorphism 24
δ-mapping 24
δ-separate 85

Defect 121
Density 66
Density character 142
Derivative 125
Dimension 56, 64, 78, 97
Dimensionally deficient 94
Directed set 4
Discrete collection 23
Dual property x
Duality x
Ell-infinity space 19
Embedding 15
Entourage 12
Epimorphism ix
Equicharacter 142
Equicontinuous 50, 51
Equiuniformly continuous 43
Essential 85, 146
Euclidean complex 67
Example M 103
Extension (of a covering) 65
Face 56
Far 24
Filter, filter base 4
Fine 5, 10
Finsler space 160
Fitting 119
Free 85
Free mobility 160
Freudenthal compactification 112
Full x
Fully normal 35
Function space 36
Functor, covariant ix
contravariant ix
of several variables x

Gleason theorem 130, 132
Glicksberg theorem 136, 138
Graph space 54
Hausdorff distance 30
Height 126
Homotopy 62, 82
Hyperconvergent 29
Hyperspace 28
Inductive dimension 85, 97, 98
Injection 13
Injective 39
Inverse image 7
Inverse limit 70
Isomorphism ix, 7
λ-uniform 125
$l_{\infty} 19$
Large dimension 78
Lebesgue number 1
Left compatible 70
Left continuous 74
Limit space 70
Lindelöf at infinity 113
Lindelöf property 107
Local dimension 156
Locally fine 124
Mapping ix, 7
Measurable 128
Metric 1
Metric uniform space 2
Minimum dimension 97
Monomorphism ix
Near 12, 24, 28, 36
Neighborhood 109
Nerve 61
Net 28
Normal 5, 10
Normally embedded 99
Object ix
Partition 11
Partition of unity 61
Perfect 114
Perfectly normal 149
Point-finite 61, 69, 125

Pointwise convergence 49
Pointwise precompact 51
Polar 16
Polyhedron 57
Polynomial growth 74
Precompact 22
Preuniformity 4
Product 14
Projection 14
countable 130
Proper filter 4
Proper mapping 119
Proximal 24
Pseudocompact 135
Pseudodiscrete 135
Pseudometric 1
Pure 32
Quasi-component 99
Quasi-ordered set 3
Quasi-uniformity 125
Quotient 15, 32
rd 80
RE space 94
Realization 19, 57
Refinement 4, 26
Reflection 21
Reflective 33
Regular uniformity 145
Residual 3
Retraction ix
Rim-compact 111
σ-compact 106
σ-disjoint 47
Samuel compactification 23
Semi-Cauchy 31
Semilinear mapping 63
Semi-uniform product 44
Separate 4, 97
Shirota theorem 130
Shrinking 63
Sierpinski curve 118
Simplicial 56
Simultaneous extension 48
Skeleton 56
Stable 29
Star 4, 56
Star-bounded 66, 94

Star-finite 11, 117
Star-refinement 4
Star-uniform 141
Stone theorem 124
Strict shrinking 65
Sub-basis 5
Subcategory x
Subdivision 59
Subfine 123
Subspace 15, 125
Successor 4
Sum 13
Supercomplete 31
Topology, uniform 6
Triangulation 58
Ulam Problem 128
theorem 128

Uniform complex 58
covering 1, 4, 125
dimension 64
equivalence 2,7
neighborhood 24
space 4
Uniformity 4
Uniformizable 8
Uniformly continuous 1,6 discrete 23
locally 124
Vanishing 86
Vertex mapping 56
Weak 5
Zero-dimensionally embedded 112

