Topics in Operator Theory

Edited by

Carl Pearcy

Topics in Operator Theory

Surveys and Monographs Number 13

Topics in
 Operator Theory

Edited by Carl Pearcy

The articles in this volume were originally commissioned for the MAA STUDIES series, but were transferred by mutual agreement of the Association and the Society to MATHEMATICAL SURVEYS.

2000 Mathematics Subject Classification. Primary 47-XX.

Library of Congress Cataloging in Publication Data
Pearcy, C. 1935-
Topics in operator theory.
(Mathematical surveys, no. 13)
Includes bibliographies.

1. Linear operators. I. Title. II. Series:

American Mathematical Society. Mathematical surveys. no. 13.
QA329.2.P4 515'.72 74-8254

ISBN 0-8218-1513-X ISSN 0076-5376
(C) Copyright 1974 by the American Mathematical Society. All rights reserved. Printed in the United States of America.

Second printing, with addendum, 1979.
The American Mathematical Society retains all rights
except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
109876543060504030201

TABLE OF CONTENTS

Preface vii
I. Invariant subspaces 1
by Donald Sarason

1. Introduction 3
2. Some immediate observations 4
3. Reducing subspaces of normal operators 6
4. Invariant subspaces and operator algebras 10
5. Unitary operators 14
6. The bilateral shift 20
7. Maximal subalgebras 31
8. The Volterra operator 33
9. The Volterra operator plus multiplication by x 37
Addendum (1978) 44
Bibliography 45
II. Weighted shift operators and analytic function theory 49
by Allen L. Shields
10. Introduction 51
11. Elementary properties 51
12. Weighted sequence spaces 57
13. The commutant 61
14. The spectrum 66
15. Analytic structure 73
16. Hyponormal and subnormal shifts 83
17. Algebras generated by shifts 88
18. Strictly cyclic shifts 92
19. Invariant subspaces 102
20. Cyclic vectors 109
21. Notes and comments 116

TABLE OF CONTENTS

Addendum (1978) 122a
Bibliography 123
Supplemental Bibliography (1978) 128a
III. A version of multiplicity theory 129
by Arlen Brown
Introduction 131

1. The standard spectral measure 133
2. Cyclic subspaces 135
3. Multiplicity: The problem 136
4. The algebra of finite measures 137
5. σ-ideals of measures 139
6. Cycles and measures 142
7. σ-ideals and subspaces 144
8. Multiplicity: The solution 147
9. Uniform multiplicity one 152
10. The separable case 153
11. The L_{2}-space of a σ-ideal 156
Bibliography 160
IV. Canonical models 161
by R. G. Douglas Introduction 163
12. Canonical models and unitary dilations 164
13. Unitary operators and invariant subspaces 170
14. Absolute continuity and the functional calculus 179
15. Characteristic operator functions 191
16. Contractions in class C_{0} and Jordan models 205
17. Related and more general models 212
Bibliography 215
V. A survey of the Lomonosov technique in the theory of invariant sub- spaces 219
by Carl Pearcy and Allen L. Shields Addendum (1978) 228
Bibliography 229
Index 231

PREFACE

The articles in this volume are concerned with various aspects of the theory of bounded linear operators on Hilbert space. This area of mathematical research is presently experiencing a period of intense excitement, due, no doubt, to the fact that during the past year several remarkable advances have been made on hard problems in the field. One particular problem on which considerable progress has been made is the "invariant subspace problem." This is the question whether every (bounded, linear) operator T on a separable, infinite-dimensional, complex Hilbert space H maps some (closed) subspace different from (0) and H into itself. It is therefore highly appropriate that the first and last of the five expository articles in this volume deal with invariant subspaces.

The main theme of the first article, by Donald Sarason, may be summarized as follows. If T is a bounded linear operator on H, then the collection of all subspaces M of H such that T maps M into itself forms a complete lattice, denoted by Lat (T), under the inclusion ordering. It is presently impossible to determine, in general, the lattice-theoretic structure of Lat (T). (This is not surprising, since we cannot even say whether the possibility $\operatorname{Lat}(T)=\{(0), H\}$ is realizable.) There are a few operators T, however, for which the structure of Lat (T) is known, and Sarason's article is devoted to a discussion of such operators and their associated invariant subspace lattices. The presentation is extremely lucid, and one of the interesting features of the exposition is the interplay between operator theory and classical analysis that is so often found in Sarason's work.

The second article in this volume is concerned with weighted shift operators. Interest focuses on this class of operators because it is a particularly simple class to define. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be an orthonormal basis for H, and let $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence of complex numbers (the weight sequence). It is easy to see that there exists a unique bounded operator T_{α} on H such that $T_{\alpha} e_{n}=$ $\alpha_{n} e_{n+1}$ for every nonnegative integer n, and that the adjoint operaior T_{α}^{*} is determined by the equations $T_{\alpha}^{*} e_{0}=0$ and $T_{\alpha}^{*} e_{n}=\overline{\alpha_{n-1}} e_{n-1}, n>0$. The operators T_{α} and T_{α}^{*} are typical examples of forward and backward weighted
unilateral shifts, respectively. A different type of weighted shift is obtained by considering an orthonormal bases $\left\{f_{n}\right\}_{n=-\infty}^{\infty}$ for H indexed by the set of all integers, and an associated (bounded) weight sequence $\beta=\left\{\beta_{n}\right\}_{n=-\infty}^{\infty}$. In this case, the unique bounded operator T_{β} on H that satisfies the equation $T_{\beta} f_{n}=$ $\beta_{n} f_{n+1}$ for all integers n is a typical forward weighted bilateral shift, and a typical backward weighted bilateral shift can be defined analogously. Allen Shields has taken essentially all of the information presently known about weighted shift operators (with scalar weights) and incorporated it into his comprehensive article. A central theme of the exposition is the interplay between weighted shift operators and analytic function theory, and, as an added bonus for the reader, the article contains a list of thirty-two interesting research problems.

The third article in this volume is an exposition by Arlen Brown of the theory of spectral multiplicity for normal operators on Hilbert space. The problem treated arises as follows. In general, one wants to know when two operators T_{1} and T_{2} acting on Hilbert spaces K_{1} and K_{2}, respectively, are unitarily equivalent (i.e., when there is an inner product preserving isomorphism φ of K_{1} onto K_{2} such that $\varphi T_{1} \varphi^{-1}=T_{2}$). Unitary equivalence is the analog for operators of the concept of isomorphism for groups, rings, etc. The problem is usually attacked by trying to attach to each operator T in a fixed class of operators an indexed family of objects $\left\{O_{\lambda}(T)\right\}_{\lambda \in \Lambda}$ with the property that two operators T_{1} and T_{2} in the class are unitarily equivalent if and only if $O_{\lambda}\left(T_{1}\right)=$ $O_{\lambda}\left(T_{2}\right)$ for all indices λ in Λ. Such a collection $\left\{O_{\lambda}(T)\right\}_{\lambda \in \Lambda}$ is called a complete set of unitary invariants for the class of operators. There are a few classes of operators for which a "reasonable" complete set of unitary invariants is known; in this connection see the bibliography of Brown's article. The theory of spectral multiplicity furnishes a reasonable complete set of unitary invariants for normal operators, and this set of invariants can be obtained in several different ways. One may consider the (commutative) C^{*}-algebra or von Neumann algebra generated by a given normal operator, and study the unitary equivalence problem for such algebras. In this approach, the solution of the unitary equivalence problem for normal operators becomes a corollary of the solution of the problem for commutative C^{*}-algebras or von Neumann algebras. One may also proceed more directly and focus attention on the concept of a spectral measure. It is this last approach that Brown follows, and his clear presentation of this circle of ideas should lead to a better understanding of multiplicity theory by beginners and experts alike.

The fourth article in this volume, by R. G. Douglas, is concerned with canonical models for operators. The central underlying idea here is that given any contraction operator T on H (i.e., any operator T satifying $\|T\| \leqslant 1$), there is
a canonical construction that associates with T an operator M_{T} that is unitarily equivalent to T, called its "canonical model." Thus, one may study T by studying M_{T} instead, and this is one of the themes of the book Harmonic analysis of f^{\prime} operators on Hilbert space, by Sz.-Nagy and Foiaş. Douglas, who has contributed significantly to the geometrization of the theory of canonical models, exposes in his article various important components of this theory, and thereby gives the reader much insight into its successes and failures.

The final article in this volume, written by Allen Shields and myself, is a survey of some invariant-subspace theorems that resulted from the brilliant and elegant method of proof introduced by Victor Lomonosov early in 1973. It would indeed be surprising if further study and refinement of this technique does not lead to additional progress on the invariant subspace problem.

CARL PEARCY
ANN ARBOR, MICHIGAN
DECEMBER 1973
absolutely continuous unitary operator, conjugate space, 64

179
algebra, 88,121
analytic measure, 17
analytic projection, 91
approximate point spectrum, $69,79,83$
Aronszajn-Smith technique, 228
Bergman space $86,102,111,115,120$
Beurling, A., 3, 21, 63, 102, 111
bilateral shift, 20, 29, 31, 51, 176
bilateral weighted shift, 181
Blaschke factor, 24
Blaschke product
finite, 25
infinite, 25
Boolean algebra, 139
Boolean ring, 139
bounded point evaluation, 73, 76, 79, $80,85,109,110$
Burnside's Theorem, 227
Cesaro means, 90
characteristic operator function, 192
circular symmetry, $52,66,67,72,74,75$
class C.. operators, 180
class C_{0} operators, 188
coefficient multipliers, 91
commutant, 6, 61, 91, 117, 221, 224, 226
compact, 52
complete wandering subspace, 176
completely nonunitary, 168
compression, 165
convolution, 34
Corona conjecture, 78
cycle: see subspace, cyclic
cycle, generalized, 158
cyclic vectors, 92,109
defect operators, 182
dilation, 165
direct integral, 171
direct limit, 156-157
Dirichlet space, 79, 102, 115, 120, 121
double commutant theorem, 10
eigenvalues, 70, 109, 115
eigenvectors, $70,71,74,80$
equivalence (of measures), 134, 138
Fatou's theorem, 22, 27
Fejer kernel, 90, 117
fiber, 78
finite dimensional weighted shift, 56, 110
Fourier transformation, 29, 34
Fuglede's theorem, 10, 11
full range invariant subspace, 178
full subspace, 164
functional calculus, 185
$H^{2}, 20$
$H^{\infty}, 22$
$H^{p}, 28$
$H^{2}(\beta), 58$
$H^{\infty}(\beta), 61$
Hardy-Littlewood maximal theorem, 114

Hardy spaces, 18, 28
Herglotz theorem, 27
Hurwitz theorem, 111
hyperinvariant subspace, 102, 109
$200,221,223,224,225,226$
hyponormal shift, 83, 87, 117
inner function, $21,23,110,111,178$
invariant subspace, 102, 109, 118, 164
invariant subspace problem, $3,221,225$
irreducible invariant subspace, 14
irreducible operator, 4
isometric Banach spaces, 64, 79, 93
isomorphic Banach spaces, 64
isomorphic lattices, 102
Jordan model, 207
kernel function, 24
$L^{2}(\beta), 58$
$L^{\infty}(\beta), 61$
lattice,
attainable, 5
complete, 140
invariant subspace, 4
of measures, 139
Laurent polynomial, 79
Laurent series, 58
Lavrentiev's theorem, 227
Lebesgue decomposition, 139
Lebesgue decomposition (relative to a σ ideal), 141
Lomonosov technique, 221, 222
$M_{z}, 58$
$M_{\varphi}, 62$
matrix (with respect to an orthogonal basis), 61,62
maximal subalgebra, 31,63
maximum ideal space, $78,94,110$,
measure algebra, 8
measure ring, 138
minimal, 166
minimal function, $m_{T}, 188$
multiplicity
of a stack, 147, 149
uniform, 152
multiplicity function, 137, 150, 153, 155
multiplicity theory, 131, 136
multiplication operator, $6,11,58,62,172$
multiplicity $\mu_{T}, 208$
multiplicity function $\eta(\lambda), 173$
normal, 83
numerical range, 72
numerical radius, 72, 73
operator,
multiplication, 6, 11, 16, 37
normal, 6
position, 134
translation, 30
unitary, 14
Volterra, 5, 33, 37
orthogonal basis, 57, 62
power bounded, 55
power dilation, 169
power series, 57
principal ideal (of measures), 138, 139,
$140,142,145,153,154$
pure invariant subspace, 174
purely contractive, 192
quasi-analytic, 103, 109
quasi-invertible, 198
quasi nilpotent operator, 104, 225
quasi similar, 200, 225
Radon-Nikodym Theorem, 142
range function, 174
reducing subspace, $4,6,116,164$
reflexive algebra, 10, 31
reflexive operator, 104
regular factorization, 203
reproducing kernel, 73
Riesz Theorem, 17
σ-ideal (of measures), 139 ff .
scalar spectral measure, 173
Schauder-Tychonoff Theorem, 222, 223, 225
Schur, 117
semi-invariant subspace, 169
separating (family linear functionals), 60
shift,
bilateral, 20, 29, 31, 176
unilateral, $3,16,20,177$
weighted, 5,51
similar shifts, $54,60,87,108$,
singular function, 27
spatially isomorphic lattices, 102
spectral measure, 132 ff .
of a normal operator, 133
standard, 134, 136, 137, 142, 145
$146,147,151,154,157$.
unitary equivalence of, 133-134, 146, 150
spectral radius, 66
spectral theorem, 133
spectrum, 66
stack (of subspaces), 147 ff .
strictly cyclic (algebra, operator, vector), 86, 88, 93.
strong operator topology, 76, 88, 90 , 93, 226
strongly strictly cyclic, 98,118
subnormal shift, 83, 117
subspace, cyclic, 135 ff .
support of inner function, 196
$T^{(n)}, 168$
$\sim, 188$
Titchmarsh theorem, 36
trace class, 117
transitive algebra, 221,222, 224, 226
unicellular shift, 104
unilateral shift, $3,16,20,177$
unitary dilation, 14,165
unitary function, 175
unitary semigroup, 19, 29
unitarily equivalent shifts, $51,53,59$
upper semicontinuous, 66
vector, cyclic, $109,135,154$
von Neumann's inequality, $75,81,82$, 167
wandering subspace, 16,175
wandering vector, 16
weak operator topology, $64,76,79,83$,

78, 79, 92, 118

