Topics in Operator Theory

Edited by Carl Pearcy

American Mathematical Society
Topics in Operator Theory
Topics in Operator Theory

Edited by
Carl Pearcy

American Mathematical Society
Providence, Rhode Island
The articles in this volume were originally commissioned for the MAA STUDIES series, but were transferred by mutual agreement of the Association and the Society to MATHEMATICAL SURVEYS.

2000 Mathematics Subject Classification. Primary 47-XX.

Library of Congress Cataloging in Publication Data

Pearcy, C. 1935—
Topics in operator theory.

(Mathematical surveys, no. 13)
Includes bibliographies.
1. Linear operators. I. Title. II. Series:
American Mathematical Society. Mathematical surveys,
no. 13.
QA329.2.P4 515'.72 74-8254
ISBN 0-8218-1513-X ISSN 0076-5576

© Copyright 1974 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.
Second printing, with addendum, 1979.
The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

10 9 8 7 6 5 4 3 06 05 04 03 02 01
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>I. Invariant subspaces</td>
<td>1</td>
</tr>
<tr>
<td>by Donald Sarason</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. Some immediate observations</td>
<td>4</td>
</tr>
<tr>
<td>3. Reducing subspaces of normal operators</td>
<td>6</td>
</tr>
<tr>
<td>4. Invariant subspaces and operator algebras</td>
<td>10</td>
</tr>
<tr>
<td>5. Unitary operators</td>
<td>14</td>
</tr>
<tr>
<td>6. The bilateral shift</td>
<td>20</td>
</tr>
<tr>
<td>7. Maximal subalgebras</td>
<td>31</td>
</tr>
<tr>
<td>8. The Volterra operator</td>
<td>33</td>
</tr>
<tr>
<td>9. The Volterra operator plus multiplication by x</td>
<td>37</td>
</tr>
<tr>
<td>Addendum (1978)</td>
<td>44</td>
</tr>
<tr>
<td>Bibliography</td>
<td>45</td>
</tr>
<tr>
<td>II. Weighted shift operators and analytic function theory</td>
<td>49</td>
</tr>
<tr>
<td>by Allen L. Shields</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>51</td>
</tr>
<tr>
<td>2. Elementary properties</td>
<td>51</td>
</tr>
<tr>
<td>3. Weighted sequence spaces</td>
<td>57</td>
</tr>
<tr>
<td>4. The commutant</td>
<td>61</td>
</tr>
<tr>
<td>5. The spectrum</td>
<td>66</td>
</tr>
<tr>
<td>6. Analytic structure</td>
<td>73</td>
</tr>
<tr>
<td>7. Hyponormal and subnormal shifts</td>
<td>83</td>
</tr>
<tr>
<td>8. Algebras generated by shifts</td>
<td>88</td>
</tr>
<tr>
<td>9. Strictly cyclic shifts</td>
<td>92</td>
</tr>
<tr>
<td>10. Invariant subspaces</td>
<td>102</td>
</tr>
<tr>
<td>11. Cyclic vectors</td>
<td>109</td>
</tr>
<tr>
<td>12. Notes and comments</td>
<td>116</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Addendum (1978) ... 122a
Bibliography ... 123
Supplemental Bibliography (1978) 128a

III. A version of multiplicity theory 129
 by Arlen Brown
 Introduction .. 131
 1. The standard spectral measure 133
 2. Cyclic subspaces .. 135
 3. Multiplicity: The problem 136
 4. The algebra of finite measures 137
 5. σ-ideals of measures .. 139
 6. Cycles and measures .. 142
 7. σ-ideals and subspaces ... 144
 8. Multiplicity: The solution 147
 9. Uniform multiplicity one 152
 10. The separable case ... 153
 11. The L₂-space of a σ-ideal 156
 Bibliography .. 160

IV. Canonical models .. 161
 by R. G. Douglas
 Introduction .. 163
 1. Canonical models and unitary dilations 164
 2. Unitary operators and invariant subspaces 170
 3. Absolute continuity and the functional calculus 179
 4. Characteristic operator functions 191
 5. Contractions in class C₀ and Jordan models 205
 6. Related and more general models 212
 Bibliography .. 215

V. A survey of the Lomonosov technique in the theory of invariant subspaces ... 219
 by Carl Pearcy and Allen L. Shields
 Addendum (1978) .. 228
 Bibliography .. 229

Index .. 231
PREFACE

The articles in this volume are concerned with various aspects of the theory of bounded linear operators on Hilbert space. This area of mathematical research is presently experiencing a period of intense excitement, due, no doubt, to the fact that during the past year several remarkable advances have been made on hard problems in the field. One particular problem on which considerable progress has been made is the "invariant subspace problem." This is the question whether every (bounded, linear) operator T on a separable, infinite-dimensional, complex Hilbert space H maps some (closed) subspace different from (0) and H into itself. It is therefore highly appropriate that the first and last of the five expository articles in this volume deal with invariant subspaces.

The main theme of the first article, by Donald Sarason, may be summarized as follows. If T is a bounded linear operator on H, then the collection of all subspaces M of H such that T maps M into itself forms a complete lattice, denoted by $\text{Lat}(T)$, under the inclusion ordering. It is presently impossible to determine, in general, the lattice-theoretic structure of $\text{Lat}(T)$. (This is not surprising, since we cannot even say whether the possibility $\text{Lat}(T) = \{(0), H\}$ is realizable.) There are a few operators T, however, for which the structure of $\text{Lat}(T)$ is known, and Sarason's article is devoted to a discussion of such operators and their associated invariant subspace lattices. The presentation is extremely lucid, and one of the interesting features of the exposition is the interplay between operator theory and classical analysis that is so often found in Sarason's work.

The second article in this volume is concerned with weighted shift operators. Interest focuses on this class of operators because it is a particularly simple class to define. Let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis for H, and let $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ be a bounded sequence of complex numbers (the weight sequence). It is easy to see that there exists a unique bounded operator T_α on H such that $T_\alpha e_n = \alpha_n e_{n+1}$ for every nonnegative integer n, and that the adjoint operator T_α^* is determined by the equations $T_\alpha^* e_0 = 0$ and $T_\alpha^* e_n = \overline{\alpha_{n-1}} e_{n-1}, n > 0$. The operators T_α and T_α^* are typical examples of forward and backward weighted
unilateral shifts, respectively. A different type of weighted shift is obtained by considering an orthonormal bases \(\{f_n\}_{n=-\infty}^{\infty} \) for \(\mathcal{H} \) indexed by the set of all integers, and an associated (bounded) weight sequence \(\beta = \{\beta_n\}_{n=-\infty}^{\infty} \). In this case, the unique bounded operator \(T_{\beta} \) on \(\mathcal{H} \) that satisfies the equation \(T_{\beta}f_n = \beta_n f_{n+1} \) for all integers \(n \) is a typical forward weighted bilateral shift, and a typical backward weighted bilateral shift can be defined analogously. Allen Shields has taken essentially all of the information presently known about weighted shift operators (with scalar weights) and incorporated it into his comprehensive article. A central theme of the exposition is the interplay between weighted shift operators and analytic function theory, and, as an added bonus for the reader, the article contains a list of thirty-two interesting research problems.

The third article in this volume is an exposition by Arlen Brown of the theory of spectral multiplicity for normal operators on Hilbert space. The problem treated arises as follows. In general, one wants to know when two operators \(T_1 \) and \(T_2 \) acting on Hilbert spaces \(K_1 \) and \(K_2 \), respectively, are unitarily equivalent (i.e., when there is an inner product preserving isomorphism \(\varphi \) of \(K_1 \) onto \(K_2 \) such that \(\varphi T_1 \varphi^{-1} = T_2 \)). Unitary equivalence is the analog for operators of the concept of isomorphism for groups, rings, etc. The problem is usually attacked by trying to attach to each operator \(T \) in a fixed class of operators an indexed family of objects \(\{O_\lambda(T)\}_{\lambda \in \Lambda} \) with the property that two operators \(T_1 \) and \(T_2 \) in the class are unitarily equivalent if and only if \(O_\lambda(T_1) = O_\lambda(T_2) \) for all indices \(\lambda \) in \(\Lambda \). Such a collection \(\{O_\lambda(T)\}_{\lambda \in \Lambda} \) is called a complete set of unitary invariants for the class of operators. There are a few classes of operators for which a "reasonable" complete set of unitary invariants is known; in this connection see the bibliography of Brown's article. The theory of spectral multiplicity furnishes a reasonable complete set of unitary invariants for normal operators, and this set of invariants can be obtained in several different ways. One may consider the (commutative) \(C^* \)-algebra or von Neumann algebra generated by a given normal operator, and study the unitary equivalence problem for such algebras. In this approach, the solution of the unitary equivalence problem for normal operators becomes a corollary of the solution of the problem for commutative \(C^* \)-algebras or von Neumann algebras. One may also proceed more directly and focus attention on the concept of a spectral measure. It is this last approach that Brown follows, and his clear presentation of this circle of ideas should lead to a better understanding of multiplicity theory by beginners and experts alike.

The fourth article in this volume, by R. G. Douglas, is concerned with canonical models for operators. The central underlying idea here is that given any contraction operator \(T \) on \(\mathcal{H} \) (i.e., any operator \(T \) satisfying \(\|T\| \leq 1 \)), there is
a canonical construction that associates with T an operator M_T that is unitarily equivalent to T, called its "canonical model." Thus, one may study T by studying M_T instead, and this is one of the themes of the book *Harmonic analysis of operators on Hilbert space*, by Sz.-Nagy and Foiaş. Douglas, who has contributed significantly to the geometrization of the theory of canonical models, exposes in his article various important components of this theory, and thereby gives the reader much insight into its successes and failures.

The final article in this volume, written by Allen Shields and myself, is a survey of some invariant-subspace theorems that resulted from the brilliant and elegant method of proof introduced by Victor Lomonosov early in 1973. It would indeed be surprising if further study and refinement of this technique does not lead to additional progress on the invariant subspace problem.

CARL PEARCY

ANN ARBOR, MICHIGAN
DECEMBER 1973
INDEX
absolutely continuous unitary operator, 179
algebra, 88, 121
analytic measure, 17
analytic projection, 91
approximate point spectrum, 69, 79, 83
Aronszajn-Smith technique, 228
Bergman space 86, 102, 111, 115, 120
Beurling, A., 3, 21, 63, 102, 111
bilateral shift, 20, 29, 31, 51, 176
bilateral weighted shift, 181
Blaschke factor, 24
Blaschke product
 finite, 25
 infinite, 25
Boolean algebra, 139
Boolean ring, 139
bounded point evaluation, 73, 76, 79, 80, 85, 109, 110
Burnside’s Theorem, 227
Cesaro means, 90
characteristic operator function, 192
circular symmetry, 52, 66, 67, 72, 74, 75
class C operators, 180
class C0 operators, 188
coefficient multipliers, 91
commutant, 6, 61, 91, 117, 221, 224, 226
compact, 52
complete wandering subspace, 176
completely nonunitary, 168
compression, 165

conjugate space, 64
convolution, 34
Corona conjecture, 78
cycle: see subspace, cyclic
cycle, generalized, 158
cycic vectors, 92, 109
defect operators, 182
dilation, 165
direct integral, 171
direct limit, 156–157
Dirichlet space, 79, 102, 115, 120, 121
double commutant theorem, 10
eigenvalues, 70, 109, 115
eigenvectors, 70, 71, 74, 80
equivalence (of measures), 134, 138
Fatou’s theorem, 22, 27
Fejer kernel, 90, 117
fiber, 78
finite dimensional weighted shift, 56, 110
Fourier transformation, 29, 34
Fuglede’s theorem, 10, 11
full range invariant subspace, 178
full subspace, 164
functional calculus, 185
H2, 20
H∞, 22
Hp, 28
H2(β), 58
H∞(β), 61
Hardy-Littlewood maximal theorem, 114

233
Hardy spaces, 18, 28
Herglotz theorem, 27
Hurwitz theorem, 111
hyperinvariant subspace, 102, 109
 200, 221, 223, 224, 225, 226
hyponormal shift, 83, 87, 117
inner function, 21, 23, 110, 111, 178
invariant subspace, 102, 109, 118, 164
invariant subspace problem, 3, 221, 225
irreducible invariant subspace, 14
irreducible operator, 4
isometric Banach spaces, 64, 79, 93
isomorphic Banach spaces, 64
isomorphic lattices, 102
Jordan model, 207
kernel function, 24
$L^2(\beta)$, 58
$L^\infty(\beta)$, 61
lattice,
 attainable, 5
 complete, 140
 invariant subspace, 4
 of measures, 139
Laurent polynomial, 79
Laurent series, 58
Lavrentiev's theorem, 227
Lebesgue decomposition, 139
Lebesgue decomposition (relative to a σ-
 ideal), 141
Lomonosov technique, 221, 222
M_z, 58
M_ψ, 62
matrix (with respect to an orthogonal
 basis), 61, 62
maximal subalgebra, 31, 63
maximum ideal space, 78, 94, 110,
 measure algebra, 8
measure ring, 138
minimal, 166
minimal function, m_T, 188
multiplicity
 of a stack, 147, 149
uniform, 152
multiplicity function, 137, 150, 153, 155
multiplicity theory, 131, 136
multiplication operator, 6, 11, 58, 62, 172
multiplicity μ_T, 208
multiplicity function $\eta(\lambda)$, 173
normal, 83
numerical range, 72
numerical radius, 72, 73
operator,
 multiplication, 6, 11, 16, 37
 normal, 6
 position, 134
 translation, 30
 unitary, 14
 Volterra, 5, 33, 37
orthogonal basis, 57, 62
power bounded, 55
power dilation, 169
power series, 57
principal ideal (of measures), 138, 139,
 140, 142, 145, 153, 154
pure invariant subspace, 174
purely contractive, 192
quasi-analytic, 103, 109
quasi-invertible, 198
quasi nilpotent operator, 104, 225
quasi similar, 200, 225
Radon-Nikodym Theorem, 142
range function, 174
reducing subspace, 4, 6, 116, 164
reflexive algebra, 10, 31
reflexive operator, 104
regular factorization, 203
reproducing kernel, 73
Riesz Theorem, 17
0-ideal (of measures), 139 ff.
scalar spectral measure, 173
Schauder-Tychonoff Theorem, 222, 223, 225
Schur, 117
semi-invariant subspace, 169
separating (family linear functionals), 60
shift,
 bilateral, 20, 29, 31, 176
 unilateral, 3, 16, 20, 177
 weighted, 5, 51
similar shifts, 54, 60, 87, 108,
singular function, 27
spatially isomorphic lattices, 102
spectral measure, 132 ff.
 of a normal operator, 133
 standard, 134, 136, 137, 142, 145
 146, 147, 151, 154, 157.
 unitary equivalence of, 133–134,
 146, 150
spectral radius, 66
spectral theorem, 133
spectrum, 66
stack (of subspaces), 147 ff.
strictly cyclic (algebra, operator, vector), 78, 79, 92, 118
strong operator topology, 76, 88, 90, 93, 226
strongly strictly cyclic, 98, 118
subnormal shift, 83, 117
subspace, cyclic, 135 ff.
support of inner function, 196
$\mathcal{T}^{(n)}$, 168
\sim, 188
Titchmarsh theorem, 36
trace class, 117
transitive algebra, 221, 222, 224, 226
 unicellular shift, 104
 unilateral shift, 3, 16, 20, 177
 unitary dilation, 14, 165
 unitary function, 175
 unitary semigroup, 19, 29
 unitarily equivalent shifts, 51, 53, 59
 upper semicontinuous, 66
vector, cyclic, 109, 135, 154
von Neumann's inequality, 75, 81, 82, 167
wandering subspace, 16, 175
wandering vector, 16
weak operator topology, 64, 76, 79, 83, 86, 88, 93.