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PREFACE 

My goal in these lectures is the isomorphism theory of symplectic groups over 
integral domains as illustrated by the theorem 

PSp„(o) = PSp^o,) <=> n = nx and o a o, 

for dimensions > 4. This is a sequel to my Lectures on Linear Groups where 
there was a similar objective with the linear groups in mind. Once again I will 
start from scratch assuming only basic facts from a first course in algebra plus a 
minimal number of references to the Linear Lectures. The simplicity of PSp„(F) 
will be proved. My approach to the isomorphism theory will be more geometric 
and more general than the CDC approach that has been in use for the last ten 
years and that I used in the Linear Lectures. This geometric approach will be 
instrumental in extending the theory from subgroups of PSp„ (n > 6), where it is 
known, to subgroups of PTSp„ (n > 4), where it is new(1). There will be an 
extensive investigation and several new results^) on the exceptional behavior of 
subgroups of PTSp4 in characteristic 2. 

These notes are taken from lectures given at the University of Notre Dame 
during the school year 1974-1975. I would like to express my thanks to Alex 
Hahn, Kok-Wee Phan and Warren Wong for several stimulating discussions. 

O. T. O'Meara 

Notre Dame, Indiana 
March 1976 

(l)The research aspects of these notes were supported by National Science Foundation grant 
MPS74-06446 A01. 
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PREREQUISITES AND NOTATION 

We assume a knowledge of the basic facts about sets, groups, fields and vector 
spaces. 

If X and Y are sets, then pow X will denote the set of all subsets of X; X c Y 
will denote strict inclusion; X — Y will denote the difference set; X -» Y will 
denote a surjection, X >— Y an injection, X>-+ Y a bijection, and X -+- Y an 
arbitrary mapping. If/: X -*- Y is a mapping and Z is a subset of A', i.e., Z is 
an element or point in pow X, then fZ is the subset {fz\z E Z } of F; this 
provides a natural extension of / : X -+- Y to / : pow X -+- pow Y, namely the 
one obtained by sending Z to fZ for all Z in pow X; i f / i s respectively injective, 
surjective, bijective, then so is its extension to the power sets. 

If X is any additive group, in particular, if A' is a field or a vector space, then 
X will denote the set of nonzero elements of A"; if A" is a field, then X is to be 
regarded as a multiplicative group. Use F^ for the finite field of q elements. By a 
line, plane, hyperplane, in a finite ^-dimensional vector space we mean a 
subspace of dimension 1, 2, n — 1, respectively. 

V will always denote an /j-dimensional vector space over a (commutative) 
field F with 0 < n < oo. After the appropriate definitions have been made (in 
fact, starting with Chapter 2) it will be assumed that V is also a nonzero regular 
alternating space, i.e., that V is provided with a regular alternating form q: V X V 
-+- F with 2 < n < oo. And Vx, Fx, nx, qx will denote a second such situation. 

These lectures on the symplectic group are a sequel to: 

O. T. O'MEARA, Lectures on linear groups, CBMS Regional 
Conf. Ser. in Math., no. 22, Amer. Math. Soc, Providence, R.I., 
1974, 87 pp. 

which will be referred to as the Linear Lectures. In general we will try to keep 
things self-contained. Our general policy will be to redevelop concepts and 
restate propositions needed from the Linear Lectures, but not to rework proofs. 
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