Contributions to the Theory of Transcendental Numbers

Gregory V. Chudnovsky
Contributions to the

THEORY OF

TRANSCENDENTAL NUMBERS
Contributions to the

THEORY OF
TRANSCENDENTAL NUMBERS

BY

GREGORY V. CHUDNOVSKY

AMERICAN MATHEMATICAL SOCIETY
PROVIDENCE, RHODE ISLAND
Portions of this volume were translated
from the Russian by G. A. Kandall

1980 Mathematics Subject Classification. Primary 10F35, 10F37.

Library of Congress Cataloging in Publication Data
Chudnovsky, G. (Gregory), 1952—
Contributions to the theory of transcendental numbers.
(Mathematical surveys and monographs; no. 19)
Bibliography: p.
Includes index.
1. Numbers, Transcendental. I. Title. II. Series.
QA247.5.C48 1984 512'.73 83-15728
ISBN 0-8218-1500-8

Copying and Reprinting. Individual readers of this publication, and nonprofit libraries acting for
them, are permitted to make fair use of the material, such as to copy an article for use in teaching or
research. Permission is granted to quote brief passages from this publication in reviews provided the
customary acknowledgement of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
(including abstracts) is permitted only under license from the American Mathematical Society.
Requests for such permission should be addressed to the Executive Director, American Mathematical
Society, P. O. Box 6248, Providence, Rhode Island 02940.

The appearance of the code on the first page of a chapter in this volume indicates the copyright
owner's consent for copying beyond that permitted by Sections 107 or 108 of the U. S. Copyright Law,
provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to Copyright Clearance
Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other
kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for
creating new collective works or for resale.

Copyright © 1984 by the American Mathematical Society
Printed in the United States of America
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Algebraic Independence of Values of Exponential and Elliptic Functions</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Some Analytic Methods in the Theory of Transcendental Numbers</td>
<td>27</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Baker's Method in the Theory of Transcendental Numbers</td>
<td>123</td>
</tr>
<tr>
<td>Chapter 3</td>
<td></td>
</tr>
<tr>
<td>On the Way to Schanuel's Conjecture</td>
<td>145</td>
</tr>
<tr>
<td>Chapter 4</td>
<td></td>
</tr>
<tr>
<td>Criteria of Algebraic Independence of Several Numbers</td>
<td>177</td>
</tr>
<tr>
<td>Chapter 5</td>
<td></td>
</tr>
<tr>
<td>Methods of the Theory of Transcendental Numbers, Diophantine Approximations and Solutions of Diophantine Equations</td>
<td>217</td>
</tr>
<tr>
<td>Chapter 6</td>
<td></td>
</tr>
<tr>
<td>Some Diophantine Problems</td>
<td>265</td>
</tr>
<tr>
<td>Chapter 7</td>
<td></td>
</tr>
<tr>
<td>Transcendences Arising from Exponential and Elliptic Functions</td>
<td>297</td>
</tr>
<tr>
<td>Chapter 8</td>
<td></td>
</tr>
<tr>
<td>Measure of the Algebraic Independence of Periods and Quasi-Periods of Elliptic Curves</td>
<td>355</td>
</tr>
<tr>
<td>Chapter 9</td>
<td></td>
</tr>
<tr>
<td>Another Method for Investigating the Arithmetic Nature of Values of Functions of a Complex Variable</td>
<td>383</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>The Proof of Extremality of Certain Manifolds</td>
<td>421</td>
</tr>
<tr>
<td>By A. I. Vinogradov and G. V. Chudnovsky</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>449</td>
</tr>
</tbody>
</table>
To My Parents
PREFACE

Transcendental number theory, which began its development in the time of Euler, is particularly attracted to classical constants of analysis, especially to those connected with the exponential function. The irrationality and transcendence proofs of π and e, achieved by the successive efforts of Euler, Lambert, Hermite and Lindemann mark the spectacular beginning of transcendental number theory. Hilbert’s seventh problem (or, as Gel’fond [1] put it, the Euler-Hilbert problem) of the transcendence of \(a^\beta \) for algebraic \(\alpha \neq 0, 1 \) and algebraic irrational \(\beta \), was solved partially by Gel’fond and Kuzmin (1929) and completely by Gel’fond and Schneider (1934). These results mark a mature state of transcendental number theory, with the Gel’fond-Schneider method as its main instrument for studying the algebraic independence of values of functions satisfying algebraic differential (and functional) equations. In modern form, transcendental number theory and related studies of diophantine approximations exploit a combination of various auxiliary algebraic techniques with analytic approximation and interpolation methods traced back to the works of Hermite, Siegel, Gel’fond and Schneider and with important multidimensional generalizations introduced by Baker. We refer the reader to the excellent book of Baker [2] for an overall picture of the field. Progress in this field over the last decade has been connected with the introduction of new functional and algebraic techniques from different fields of mathematics, including mathematical physics. This interaction with the outside world has not yet fully developed and applications of transcendental number theory are still scarce; though one amazing example of the absence of particle production for a particular \(\sigma \)-model that is conditional on the transcendence result of Gel’fond [1] was presented by Lüscher [3].

This volume consists of a collection of papers devoted primarily to transcendental number theory and diophantine approximations written by the author since 1970. Most of the materials included in this volume are English translations of Russian manuscripts of the author, written in 1970 (Chapter 6), 1974 (Chapters 1 and 2 and parts of Chapter 5), 1974–1977 (Chapters 3, 9, Appendix and parts
of Chapter 7). These papers and other papers included in this volume were available to specialists in manuscript form, but this is the first time that they have been collected together and published.

Though the earlier papers have been preserved in the form in which they were prepared initially, the volume is organized in such a way as to reflect recent progress and to allow readers to follow recent developments in the field. As a guide to the volume we have included an expanded and updated text of the author’s address to the 1978 International Mathematical Congress as an Introductory paper. We also made an effort to interrelate different directions of the research, and some papers in the volume were updated to include cross-references and to unify the exposition, though for the sake of completeness some repetitions still remain.

The Introductory paper surveys the progress in transcendental number theory with particular emphasis on transcendence, algebraic independence and measures of the algebraic independence of numbers connected with exponential and elliptic functions. Special sections of the Introduction are devoted to period relations for Abelian varieties of CM-type, the author’s results on the Schanuel conjecture, measures of algebraic independence of periods and quasi-periods of elliptic curves, etc. Proofs of the appropriate results are presented in different papers (chapters) of this volume.

Chapter 1 deals with the proofs of the author’s 1974 results on the Schanuel conjecture, which show, essentially, that the number of algebraically independent elements in the set S for complex numbers of the form $\{e^{a_i/b_j}, \{\alpha_i, e^{a_i/b_j}\}, \{\alpha_i, \beta_j, e^{a_i/b_j}\}$ ($1 \leq i \leq N, 1 \leq j \leq M$) grows logarithmically with $\min(N, M)$. The author has improved his results since then (now we know that in a set S of the form above there are not less than $|S|/(M+N)$ algebraically independent elements). However, the methods of Chapter 1 are still novel and introduce a variety of useful auxiliary algebraic techniques to deal with specializations of algebraic varieties over fields of finite degrees of transcendence, especially in the cases, when the degrees and sizes of the coefficients of equations defining algebraic varieties grow independently. The techniques of Chapter 1 also serve as a prelude to a different elementary technique used to prove more powerful results (see, especially, Chapters 2, 4, 7 and 8).

While the analytic methods of Chapter 1 are based on the Gel'fond-Schneider method, Chapter 2 applies Baker’s analytic methods to the problem of algebraic independence. The results proved in Chapter 2 were first announced in 1974 [4]. Baker’s method, developed in Chapter 4, is useful later (cf. Chapters 5 and 7). To suggest the complexity of the problems under consideration, we mention one result of Chapter 2, that there are at least two algebraically independent numbers among π, $\pi^{\sqrt{D}}$, $e^{i\pi \sqrt{D}}$. Still, we do not know whether π and e^{π} are algebraically independent, or even, whether $\pi/\ln \pi$ is rational.

Chapter 3 on “colored sequences” is based on two 1975 papers of the author which seem to have vanished in one of the East European magazines. Chapter 3 and Chapter 4, which immediately follow, deal with the criterion of the algebraic
independence of two or more numbers. The starting point of all these studies is
the apparent impossibility of extending the well-known Gel'fond [1] criterion of
the transcendence of a single number \(\theta \) to the case of the algebraic independence
of numbers \(\theta_1, \ldots, \theta_n \) for \(n > 1 \). Gel'fond's criterion (or its subsequent modifi-
cations) states that it is impossible for a transcendental number \(\theta \) to have a
"dense" sequence of algebraic approximations that are good: say, \(|P(\theta)| < H(P)^{-Cd(P)}\) for infinitely many \(P(x) \in \mathbb{Z}[x] \) and a sufficiently large \(C > 0 \).
Though a straightforward generalization of this criterion to \(n > 1 \) numbers is
impossible, various results that are important for applications are presented in
Chapters 3 and 4. Chapter 3 deals mainly with the case, when the algebraic
independence of several numbers depends on the measure of transcendence of
each of them. Chapter 4 presents an attractive and simple criterion of the
algebraic independence of two numbers in terms of a "dense" system of poly-
nomials in two variables with rational integer coefficients, assuming small values
at these numbers. This criterion and its \(n \)-dimensional generalization are the best
possible, and constitute the necessary algebraic part in the proof of the algebraic
independence of various numbers connected with exponential, elliptic and Abelian
functions. See particularly the discussion of §6, Chapter 4 on analytic methods in
the algebraic independence proofs.

Chapter 5 is devoted to diophantine approximations. It is in this chapter that
we use Siegel's 1929 [5] method in the theory of diophantine approximations,
which is based on the study of linear differential equations. In Siegel's method
one recognizes important features of Hermite's 1873 construction [6] of
approximations to exponential functions. Siegel's method was later further de-
veloped in the theory of \(E \)-functions. At the same time Siegel's (and Hermite's) work
was generalized in the theory of Hermite-Padé approximations initiated by
Mahler in 1935 (see his paper [7], published in 1968). It turns out that the
combination of the author's conjugate auxiliary function method [8], explained in
detail in Chapter 9, and Siegel's method gives a new best possible result on
diophantine approximations of numbers generated by values of \(E \)-functions at
rational points. Chapter 5 is devoted to an exposition of such results. First, in §1
of Chapter 5, we present a different approach to the Thue-Siegel theorem on
(noneffective) rational approximations to algebraic numbers. This exposition
follows the author's 1974 preprint [9] and uses the Gel'fond-Baker method. We
also show how an alternative use of linear differential equations gives much better
bounds on constants than those known from Baker's theory of linear forms in
logarithms of algebraic numbers. Our results are applied to bound the number of
solutions of Thue's diophantine equations. In §2 we describe the essence of
Siegel's method [5] and in §§3, 4 we prove our main results on the best possible
bounds of the measures of diophantine approximations of arbitrary numbers
from the fields generated over \(\mathbb{Q} \) by values of exponential and other \(E \)-functions,
satisfying linear differential equations over \(\mathbb{Q}(x) \), at rational points. The results
proved here are based on the author's technique of \(G \)-invariance explained in
Chapter 9, and we recommend the reader to get acquainted with Chapter 9,
§§0–4, before reading §§3, 4 of Chapter 5. The results of Chapter 5 were recently significantly extended by the author to a larger class of linear forms in values of E-functions and G-functions (including linear forms in algebraic numbers) in the direction of the effectivization of analogs of Roth's and Schmidt's theorems.

Chapter 6 is a translation of the author's paper of 1970 on diophantine sets, and represents an expanded version of his 1970 article [13].

Chapter 7 is devoted mainly to the transcendence and algebraic independence of numbers connected with elliptic and exponential functions. It contains a survey of the author's results prior to 1981 (in §1) and various methods of proofs of these results in §§2–5. Among these results are the algebraic independence of π/ω, η/ω for a period ω and a quasi-period $\eta = 2\xi(\omega/2)$ of an elliptic curve defined over $\overline{\mathbb{Q}}$; the algebraic independence of π and ω, and of π/ω and $e^{i\pi\sqrt{D}}$ for a period ω of an elliptic curve with a complex multiplication by \sqrt{D}. In Chapter 7 we also present a discussion of properties of L-functions of elliptic curves and the Birch-Swinnerton-Dyer conjecture used to bound heights of integer points on elliptic curves (see §1, Introductory paper). We discuss proofs of the algebraic independence for values of elliptic (and exponential) functions in §§7–9. §§10 and 11 of Chapter 7 are devoted to proofs of the author's generalization of the Lindemann-Weierstrass theorem for arbitrary Abelian CM-varieties. We also present analogs of the Lindemann-Weierstrass theorem for arbitrary systems of functions satisfying differential equations and the laws of addition. These results were first announced in [10] and in the elliptic case were presented in [11].

In Chapter 8 we give the bound on the measure of the algebraic independence of π/ω and η/ω, which is close to the best possible. Another important feature of this result is in its dependence of height of "H^C" form. This result implies, e.g. an "H^C" form of the measure of diophantine approximations for numbers such as $\Gamma(1/3)$, $\Gamma(1/4)$, etc. The proof of Theorem 1.1 in Chapter 8 is obviously extended to other cases of algebraically independent numbers connected with elliptic functions studied by the author (see §4 of the Introductory paper).

We leave beyond the scope of this book various results of the author on the measures of diophantine approximations of classical constants of analysis based on Padé-type approximation techniques. Some of these results are touched upon in [12].

Chapter 9 presents a group of the author's results on a generalization of the Straus-Schneider theorem on the number of complex z such that a given meromorphic function f assumes, together with all its derivatives, rational integer values at z. Our exposition is based on unpublished manuscripts of 1977–1978 discussing various one and multidimensional generalizations of these theorems and intersects with [8]. Chapter 9 could serve as a good introduction to Chapter 5.

As an appendix we included a paper on the extremality of certain multidimensional manifolds prepared by A. I. Vinogradov and the author in 1976.*

* This paper was initially prepared for a Festschrift for the 85th birthday of I. M. Vinogradov.
This book was prepared through the generous effort of the American Mathematical Society and with the help of D. V. Chudnovsky. The author is deeply thankful to the Society and to its Editorial Staff for their patience during the preparation of this volume which lasted several long years. Unfortunately the author’s state of health did not contribute positively towards the completion of this project. The author specially thanks Professor W. J. LeVeque for his kindness and encouragement, Dr. B. Silver and Mr. M. Carcieri for their care and help and Dr. G. Kandall for his translations. The author is indebted to Professor L. Bers for his help. This book is dedicated to the author’s parents.

REFERENCES

1. A. O. Gel’fond, Transcendental and algebraic numbers (Moscow, 1952); Dover, New York, 1960.
INDEX

Algebraic independence, 12, 199–205
 of $\alpha_i, \beta_j, e^{\alpha_i \beta_j}$, 55, 82
Algebraic independence of values of elliptic functions, 6–11, 14, 333, 341, 355–356
Algebraic points of elliptic curves, 2
 algebraic independence of, 6–11, 305, 309, 313, 316–317, 320, 355
 measures of algebraic independence of, 15–23
 transcendence of, 299, 355
Algebraic powers of algebraic numbers, 12
 algebraic independence of, 13, 47–57, 134–136
Baker’s method, 123
 algebraic independence by, 134, 136
Baker’s theorem, 123, 299
Birch-Swinnerton-Dyer conjecture, 4, 321
Colored sequences, 145, 151, 188
Criterion of transcendence, 147, 181–182, 204
 of algebraic independence, 82, 147, 177, 179, 187, 199
 of transcendence type, 167–168, 178–180
Euler’s problem, 281
Exponents of algebraic numbers
 measure of algebraic independence, 251
Extremal manifolds, 421
E-functions, 254
 measures of transcendence, linear independence, 16, 236, 254
Gelfond-Schneider’s method, 49, 200, 217
Group ring $\mathbb{Z}[G]$, 238, 399
(G, C)-functions, 359
G-invariant (conjugate) auxiliary functions, 238, 387
Height, 29, 30
Hermite interpolation formula, 416
Integer points on algebraic curves, 3
 on elliptic curves, 3–5, 304
Integer solutions of Thue equations, 231
Integer-valued derivatives of meromorphic functions, 14, 383
Strauss-Schneider theorem, 417
 generalizations of, 383
 multidimensional generalizations of, 313, 356, 384, 413
Kummer’s extensions, 126
Lindemann-Weierstrass theorem for elliptic functions, 10, 341
 measures of algebraic independence, 22, 237
 for Abelian functions, 10, 348
Linear independence of algebraic points of elliptic functions, 2
Abelian functions, 2
Liouville bounds, 31, 364
L-functions of
 elliptic curves, 321–322
 Abelian varieties, 321
Measures of algebraic independence
 Dirichlet’s bound, 14, 146
 type of transcendence of numbers
 $\pi/\omega, \eta/\omega, 18, 313, 356$
 $\zeta(u) - \eta u/\omega, \eta/\omega, 19, 318, 381$
 $\pi/\omega, e^{\pi i \beta}, 19$
 $u, \zeta(u), 19, 22, 320$
 $e^{\alpha_1}, \ldots, e^{\alpha_n}, 16$
 $p(\alpha_1), \ldots, p(\alpha_n), 22, 237$
 normal bounds, 20, 356
Measures of algebraic independence
 of $\alpha_i, \beta_j, e^{\alpha_i \beta_j}$, 82
Measures of linear independence, 2–4
Measures of transcendence
 of e, 41
 of e^z, 46, 253
 of values of exponential function, 251
Minimal approximating forms, 234

449
Pell’s sequences, 267
Periods and quasi-periods of elliptic curves,
1, 356–363
 transcendence of, 299
 algebraic independence of, 6–11, 302, 305, 309
 measures of algebraic independence of,
 15–23, 313, 355
Periods and quasi-periods of CM-varieties,
 8–10
 algebraic independence of, 10, 11, 308
 transcendence of, 21
 measures of transcendence of, 21

Random walks, 411
Resultants, 58, 61

Schanuel conjecture, 11, 27
 Ax’s theorem, 27
Schneider-Lang theorem, 298
Schwarz’s lemma, 40, 204, 228
 multidimensional case of, 412
Semidecidrminant (of polynomial), 35, 63
Seminorm, 185
Semiaresultant, 69, 211
Siegel’s lemma, 41, 243, 325–327
Size, 29, 30
Symmetric functions
 theorem of, 60

Thue-Siegel theorem, 229
Tijdeman’s lemma, 40, 111, 330
Transcendence degree (of a field), 50
Transcendence measure, 48
 type, 47
Transcendence of eigenvalues, 8
Type, 29–30, 186
 \mathcal{E}-type, 77

Values of B-function
 irrationality of, 5
 transcendence of, 21
 measures of transcendence of, 21
Values of Γ-function
 transcendence of, 8, 10
 measures of transcendence, 21, 22, 371
 measures of irrationality, 21
Values of exponential functions
 algebraic independence of, 21, 47–57, 123, 328
Values of exponential and elliptic functions
 algebraic independence of, 14, 301, 313, 328, 333
 measures of transcendence, 16
 measures of algebraic independence, 17,
 19, 300, 313–316

Weierstrass elliptic functions $\wp(z), \zeta(z), \sigma(z)$, 1