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Preface 

As its title indicates this book is not meant to be an encyclopedic presentation 
of the present state of degree theory. Likewise, the list of references is not meant 
to be a complete bibliography. The choice of subjects treated is determined 
partly by the fact that the book is written from the point of view of an analyst, 
partly by the desire to throw light on the theory from various angles, and partly 
the choice is subjective. 

A detailed description of the subjects treated is contained in §10 of the follow
ing introduction. At this point we mention, together with relevant references, 
some subject matter belonging to degree theory which is not treated in this book. 

(a) The Leray-Schauder degree theory in Banach spaces may be extended to 
linear convex topological spaces as already noticed by Leray in [35]. A complete 
self-contained treatment may be found in Nagumo's 1951 paper [43]. 

(b) Already, in his 1912 paper [9], Brouwer established degree theory for 
certain finite-dimensional spaces which are not linear. For later developments 
in this direction and for bibliographies, see, e.g., the books by Alexandroff-Hopf 
[2], by Hurewicz-Wallmann [29], and by Milnor [39]. In their 1970 paper [20] 
Elworthy and Tromba established a degree theory in certain infinite-dimensional 
manifolds. See also the systematic exposition by Borisovich-Zvyagin-Sapronov 
[6]. 

(c) There are various degree theories for mappings which are not of the type 
treated by Leray and Schauder: a theory by Browder and Nussbaum on "inter
twined" maps [11] and a theory of "A-proper" maps by Browder and Petryshyn 
[12] in which the degree is not integer-valued but a subset of the integers. See 
also [10]. Moreover, the method used in the Fenske paper [21] mentioned in §8 of 
the following introduction applies also to mappings which are "a-contractions." 
Various mathematicians considered degree theory for multiple-valued maps. A 
survey of these generalizations and further bibliographical data may be found in 
the book [37] by Lloyd. 

(d) Some important theorems based on degree theory (e.g., those contained 
in §§2-3 of Chapter 5 and parts of Chapters 8 and 9 of this book) and some gen
eralizations thereof can be derived by the use of cohomology theory in infinite-
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dimensional spaces. See the paper by Geba and Granas [22], in particular Chap
ter IX, and the book by Granas [25], in particular Chapter 11. 

(e) The axiomatic treatment of degree theory by Amann and Weiss [3]. 
(f) The "coincidence degree theory" of Mawhin [38]. 
(g) For supplementary reading and further references we mention books by the 

following authors: Krasnoselskii [31], 1956, J. Cronin [14], 1964, J. T. Schwartz 
[51], 1965, K. Deimling [15], 1974, E. Zeidler [54], 1976, F. Browder [10], 1976, 
G. Eisenack-C. Fenske [19], 1978, N. G. Lloyd [37], 1978. We also mention 
the paper [52], 1980 by H. W. Siegbert which contains an interesting exposition 
of the history of finite-dimensional degree theory from Gauss via Kronecker to 
Brouwer. 

(h) Ever since it was established by Leray and Schauder [36], degree theory in 
Banach spaces has been an important tool for the treatment of boundary value 
problems (including periodicity problems) for ordinary and partial differential 
equations, for integral equations, and for eigenvalue and bifurcation problems. 
These applications to analysis are not treated in the present book, but the reader 
will find a number of them discussed in many of the books quoted in part (g) 
of this preface. See, e.g., Chapters III-VI of [31], Chapters II and IV of [14], 
and Chapter 9 of [37]. The Cronin book [14] discusses, in particular, papers 
up to 1962 using the uCesari method." For the role of degree theory in the 
further development of this method, now usually referred to as the "Alternative 
Method," the reader may consult the bibliography on pp. 232-234 in Nonlinear 
Phenomena in Mathematical Science, ed. V. Lakshmikantham, Academic Press, 
1982. 

We finish this preface with a word on the organization of this book. In addition 
to the introduction the book consists of nine chapters. Each chapter (except 
Chapter 1) is divided into sections and each section into subsections. (The 
notation "1.2" in Chapter 3 means subsection 1.2 in that chapter; "(1.2)" refers 
to a formula in that chapter. However §1.2 refers to §2 in Chapter 1.) Each 
chapter is followed by notes containing some of the proofs and historical remarks. 
Finally, there are two Appendixes A and B. 

My thanks go to my colleagues and friends Professors Lamberto Cesari, 
Charles Dolph, and R. Kannan for many encouraging conversations. 

My thanks also go to Mrs. Wanita Rasey who, with great patience, converted 
an often not easily decipherable handwritten script into a readable typescript. 

I am obliged to the editorial board of the Mathematical Surveys and Mono
graphs for reviewing the typescript and to the editorial staff of the American 
Mathematical Society, in particular to Ms. Mary C. Lane, Lenore C. Stanoch, 
and Holly Pappas for their cooperation and labor in transforming the manuscript 
into a book. 



APPENDIX A 

The Linear Homotopy Theorem 

§1. Motivation for the theorem and the method of proof 

1.1. Let E be a Banach space, and let 

l(x) = x- L{x) (1.1) 

be a nonsingular L.-S. map, E —• E. We want to define an index j(l) which 
indicates how often E is covered by 1(E). Since / is a nonsingular L.-S. map, it 
maps, according to §§1.11 and 1.12, E onto E in a one-to-one fashion. Therefore 
we should define j(l) as a number of absolute value 1. In order to decide for which 
I to define j(l) as +1 and for which as —1, we consider the finite-dimensional 
case. 

Let E — En be an oriented space of finite dimension n (see subsections 1.21 
and 1.22 in Chapter 6 for the concept of orientation). It is then natural to define 
j(l) as -f 1 if Z preserves the orientation (as does, e.g., the identity map J) and 
as —1 otherwise. By the sections just quoted, this is equivalent to defining 

i fde t l>0 , , . 
i fdeU<0, { } 

where det I denotes the determinant of /. (Note that det / ^ 0 since I is supposed 
to be nonsingular.) Now definition (1.2) in the form stated cannot be used in 
general Banach spaces since it depends on determinants; however, it can be 
reformulated in a way to become meaningful for Banach spaces. This is possible 
on account of the following facts (a) and (b) which are well known in linear 
algebra, being a consequence of the existence of the Jordan normal form for 
nxn matrices (see, e.g., [26, §58 and §77]): (a) if L has real eigenvalues greater 
than 1, say Ai > A2 > • • • > Ar > 1, and if for p = 1, . . . , r, fxp = /i(Ap) is the 
generalized multiplicity of Ap, i.e., the dimension of the subspace Ep of En which 
consists of those x G En for which 

(A,J - L)mx = 6 

for some positive integer m, then 

signdet/ = ( - 1 ) ^ = ^ ' ; (1.3) 

«<>-{!! 

199 
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(b) if L has no real eigenvalues greater than 1, then 

sign de t /= +1. (1.4) 

It follows from (1.3) and (1.4) that definition (1.2) is equivalent to 

j(l) = J ( " 1 ) ^ = 1 ^ in case (a), ( L 5 ) 
[ + 1 in case (b). 

As is well known and as will be seen in the following sections, the right member 
of (1.5) makes sense for an arbitrary Banach space E if / is a nonsingular linear 
L.-S. map E -> E. We note that Definition 1.6 in Chapter 2 appears as a 
theorem in the original Leray-Schauder theory (see [36, II. 11]). 

In §2 of this appendix we recall background material from the spectral theory 
of linear operators M, referring for proofs mainly to the presentation given in [18, 
Chapter VII]. Since in general the spectrum of M contains complex numbers, 
we deal here with a complex Banach space Z. In order to apply the theory to 
the given real Banach space £", we have to "complexify" J5, i.e., embed it into a 
complex Banach space Z. This is done in §3. §4 discusses the index j(I) in E as 
defined by (1.5) and also its definition for the complexification Z of E. Finally, 
in §5, the linear homotopy theorem (cf. subsection 1.3 in Chapter 2) is proved. 

§2. Background material from the spectral theory 
in a complex Banach space Z 

2.1. DEFINITION. Let Z be a complex Banach space, let M be a linear 
bounded operator on Z, and let J denote the identity map on Z. Then the 
set of complex numbers A for which the inverse R\{M) of XI — M exists as a 
bounded operator Z —> Z is called the resolvent set of M and will be denoted by 
p(M). The complement a{M) of p(M) in the A-plane is called the spectrum of 
M. <T(M) is closed and bounded. A subset <7o(M) of a(M) is called a spectral 
set of M if it is open and closed with respect to <r(M) [18, pp. 566, 567, 572]. 

2.2. For fixed M the domain of R\(M) as a function of A is the set />(M), 
and its range is a subset of the family of bounded linear operators on Z. This 
family is a Banach space with the linear operations defined in the obvious way 
and with the norm defined [18, pp. 475, 477] by 

\\M\\ = sup ||M(*)||. (2.1) 

This Banach space will be denoted by Zi, and for M fixed we consider R\(M) 
as a map p(M) —> Z\. The topology of Z\ induced by the norm (2.1) is called 
the uniform operator topology. 

2.3. An example for a spectral subset of the spectrum a(M) is <r(M) itself, 
and so is every isolated point of <J(M). 

2.4. LEMMA. p(M) is open, and a(M) is a nonempty closed bounded set 
R\(M) as a function of A is analytic at each A G p{M), i.e., at such A the 
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derivative of R\(M) with respect to X exists. Obviously 

converges if 

Moreover for such X 

£iiMiriA|-(»+i) 
n=0 

|A| > ||M||. (2.2) 

n=0 

For a proof of this lemma see [18, pp. 566, 567]. 

2.5. LEMMA. Let A be a closed not necessarily bounded subset of p(M). 
Then R\(M) is bounded on A. 

PROOF. On the bounded closed set {A | |A| < ||M|| + 1} the boundedness of 
R\(M) follows from its analyticity. But on the set {A | |A| > ||M|| +1} it follows 
from (2.3). 

2.6. DEFINITION. 7{M) denotes the family of all complex-valued functions 
/ which are defined and analytic in some open neighborhood U of a(M). (U 
may depend on /.) 

2.7. Let <7o be a spectral set of M, and let Vb be an open set in the complex 
A-plane containing <TQ but no point of a — <JQ where a — a(M). Let / £ 7{M) 
and let Uf be the domain of definition of / . Let To and Ti be two rectifiable 
Jordan curves lying in Vb H Uf oriented in the counterclockwise sense and such 
that (To lies in the open bounded sets whose boundaries are To and Ti. Then 

/ /(/i)i?M(M)d/x= / f{p)R^M)d^ (2.4) 

We note that the integrands in (2.4) are operator-valued. For the definition 
of such integrals and for the proof of the "Cauchy theorem" (2.4), we refer the 
reader to [18, pp. 224-227]. 

2.8. DEFINITION. For / e 7(M) we define f(M) by setting 

W) = ±J fMR^MdvL, (2.5) 

where T is a rectifiable Jordan curve of the following properties: (i) a(M) lies 
in the bounded open domain whose boundary is T; (ii) T is contained in the 
domain Uf of definition for / ; (iii) T is oriented in the counterclockwise sense. 
The uniqueness of Definition 2.5 follows from Lemma 2.7. 

2.9. LEMMA. Let r be a rectifiable Jordan curve satisfying conditions (i), 
(ii) and (iii) of subsection 2.8. Then 

M = ±-.fnRtl(M)dn, (2.6) 
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'-tti^Md* (2-7) 
//, moreover, f and g are elements of 7(M) with domains Uf and Ug resp. 

and if, in addition to the above requirements, T GUfC\Ug, then 

f(M) • g{M) = 5 ^ j f f^)g(n)R^M) d/i. (2.8) 

For the proof we refer the reader to the proof of Theorem 10, p. 468 in [18], 
which contains the assertions of the present lemma. 

2.10. DEFINITION. A bounded linear map P : Z -> Z is called a projection 
if 

P 2 = P. (2.9) 

2.11. LEMMA. Let (To be a spectral set of M. Let TQ be as in Lemma 2.7. 
Then the operator PaQ defined by 

Pa° 2mJTo 
—. f RJM)dii (2.10) 

is a projection. 

PROOF. Let <TQ = a - ao. By the definition of spectral sets, there exist 
bounded open sets VQ,VQ,UO,UQ such that CTQ C VQ C VO C UQ, CFQ C VQ C 
V0 C UQ with UQ and U0 disjoint and such that VQ = 8VQ and r* = dV* are 
rectifiable Jordan curves. Let T = To U T*. 

Then (2.8) holds if we set 

/(,)-»(,) = {J; Ull ("I) 
But with this choice of / and g we see from (2.10) that the right member of (2.8) 
equals Pao since /(//) = g(fi) = 0 for /J, € TQ, and taking account also of (2.5), 
we see that f{M) — g(M) = Pao. Thus the left member of (2.8) equals P%0. 

2.12. LEMMA. Let cr0 and o\ be two disjoint spectral sets for M. Let TQ 
and Per0 be defined as in subsection 2.11, and let Ti and Pax be defined corre
spondingly with respect to a\. Then 

Pao • Pai = Pax • PCT0 = 6X (2.12) 

where 0\x = 0 for every x E E. 

PROOF. Since CFQ,OI, and 02 = cr — (a\ U 02) are closed bounded sets, there 
exist for i = 0,1,2 bounded open sets Vi, £/; such that <7i C Vi C V* C Ui with 
the sets U\,U2, U3 being pairwise disjoint and such that I \ = dVi is a rectifiable 
Jordan curve which we assume to be oriented in the counterclockwise sense. If 
we set 

for fx e U\, 
0 for / iE[ / 0 UC/ 2 , 

, . (1 for /x G C/0, , > / 1 
/ ( / i ) = \ 0 h r ^ I / i U ^ ^ ) = \ 0 
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then with T = Ti U T2 U T3 

and application of (2.8) yields the assertion (2.12) since /(/z) • g(fi) = 0 for all 

2.13. LEMMA. Let ao be a spectral set of M, let Pao be the projection (2.10), 
and let ZQ be the range of Pao, i.e., Z$ = PaoZ. Then MZo C ZQ and GQ is the 
spectrum of the restriction of M to Z$. 

For a proof see [18, pp. 574, 575]. 

2.14. LEMMA. The restriction Mao of M to Z0 

Mao = / fiR^M) dp 

where To is as in subsection 2.7. 

PROOF. Let r be as in Lemma 2.9, and let Vb and V be the bounded open 
sets whose boundaries are TQ and T resp. Then M is given by (2.6), i.e., by 
(2.5) with /(/i) = p. Now z = PGQ(z) if and only if z E Z0 = PGQZ. Therefore 
M(z) = MP(To(z) for z G ZQ. But Pao is given by (2.10) or what is the same 

Pao = ±-.f^{n)R»{M)dn, (2.14) 

with g(fi) as in (2.11). The assertion (2.13) follows now from (2.5) and (2.14) on 
application of (2.8). 

2.15. So far we assumed of the linear operator M only boundedness or what 
is the same continuity. In the remainder of this section we require complete 
continuity, i.e., we make the additional assumption that for any bounded set 
P C E the closure of M(/3) is compact. The definitions and assertions stated 
below are classical. 

Proofs may be found, e.g., in [18, p. 577ff.]. 
2.16. The spectrum cr(M) of a completely continuous linear operator M on E 

is at most countable. If a(M) contains infinitely many points, then 0 is the only 
accumulation point of cr(M). It follows that each Ao G a(M) which is different 
from 0 is a spectral set ao of M. For the projection P„0 defined by (2.10) we 
write: 

PAO = 2 ^ / MW dm. (2.15) 
For To we may and will take a circle with center Ao and radius smaller than 
the distance of Ao from the rest of a(M). To is supposed to be oriented in the 
counterclockwise sense. We recall that the points of a(M) are also referred to 
as eigenvalues of M. 

— P(r0Z is given by 

(2.13) 
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2.17. Let A0 € a(M) and A0 ^ 0. Then 

PXoZ = {z£Z\ (A0/ - M)n = 0} (2.16) 

for some positive integer n. The dimension U(\Q) of the linear subspace P\QZ of 
Z is finite and is called the generalized multiplicity of Ao as an eigenvalue of M. 

2.18. Let Ao £ a(M) and Ao ^ 0. Then the equation 

\oz-M{z) = 0 (2.17) 

has nontrivial solutions (i.e., solutions z ^ 0) called eigenelements of M to the 
eigenvalue Ao- These eigenelements obviously form a linear subspace of E. The 
dimension r(Ao) of this subspace satisfies the inequality 1 < r(Ao) < ^(Ao) and 
is called the multiplicity of Ao as an eigenvalue of M. 

2.19. LEMMA. Let M be a completely continuous linear map Z —> Z and 
suppose that the linear map m — I — M mapping Z onto Z is one-to-one. Then 
the inverse n = m~1 exists and is of the form ra(£) = £ — N(£), where N is 
completely continuous on Z. 

PROOF. By assumption m i s a linear, continuous, and therefore bounded, 
one-to-one map of Z onto Z. By a well-known theorem (see, e.g., [18, p. 57]) 
these properties imply that the linear map n — mT1 is bounded. Now if £ = 
z — M(z), then n(£) = z = f + M{z) = £ + M{n{£)). Since n is bounded, 
i.e., continuous, and M is completely continuous, the map N(£) = —M(n(£)) is 
completely continuous. 

§3. The complexification Z of a real Banach space E 

3.1. The construction of Z from E is analogous to the construction of complex 
numbers as ordered pairs of real numbers: the elements z of Z are ordered pairs 
(x,y) of points of the real Banach space E. If z% = (x;,y;), i = 1,2, are two 
elements of Z, then their sum is defined by z\ + z<i = [x\ + X2,i/i + 2/2)? and if 
c = a + ifjy a, 0 real, is a complex number, then cz\ is defined by 

czi = (axx - pyuayi + pxi). (3.1) 

Finally if as usual || • || denotes the norm in E, we set for the point z = (x,y) £ Z 

\\z\\i = sup| |xcos0 + 2/sin</)||. (3.2) 
<t> 

3.2. In the case that E is the real line, then Z is the complex plane. The 
reader may verify that then ||^||i is the absolute value of the complex number z. 

3.3. The number ||2||i defined by (3.2) is a norm, i.e., for points 2,z\,Z2 in 
Z and complex number c 

N l i > 0 (3.3) 
with the equality holding if and only if z = 0, the zero element of Z, and 

lki + z2||<lki|| + INI, (3.4) 
||c*||i = |c | . | |* | | . (3.5) 
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3.4. With the norm ||^||i the linear space Z is complete and thus a Banach 
space. 

The verification of the assertions contained in subsections 3.3 and 3.4 is of 
course based on the corresponding properties of the Banach space E of which Z 
is the complexification. We leave this verification to the reader. 

3.5. It is easily verified from our definitions that ||(x,0i)||i = ||x||. Thus the 
linear one-to-one map E into Z given by 

x->(x,0) (3.6) 

is norm preserving. Identifying x £ E with (x, 0) E Z, we consider E as a subset 
of Z. This identification also allows us to write ||^|| instead of ||̂ r||x without 
ambiguity. 

3.6. Prom the multiplication rule (2.1) we see that (0, y) = i(y, 0) for any y G 
E where as usual i = (0,1), the imaginary unit of the complex plane. Therefore 
* — {xiV) = (xi0) + (0>2/) = (#>0) + i{y)0), and by our above identification we 
see that every z € Z may be written uniquely in the form 

z = x + iy, xeE, yeE. (3.7) 

3.7. For later use we note the inequality 

MINI + IMD ^ 11*11 ^ 11*11 + Hvll iovz = x + iy. (3.8) 
The right part of this inequality is a restatement of the triangle inequal

ity (3.4). To prove the left part we note that ||x|| = ||xcos0 + ysin0|| < 
sup^ ||xcos0 + y sin <̂ || = ||^|| by (3.2). In the corresponding way we see that 
||y||<||*||. Thus ||*|| + II2/H <2||*||. 

3.8. DEFINITION. Let L be a linear bounded operator E -* E. Then the 
map M:Z —> Z defined for z = x + iy by 

M{z) = L{x) + iL(y) (3.9) 

is called the complex extension of L. 

3.9. LEMMA, (i) M is linear] (ii) M is bounded; (hi) M is completely con
tinuous if and only if L is completely continuous; (iv) if L is continuous, then 
m = I — M is nonsingular if and only if I — I — L is not singular (I denotes the 
identity map in the respective space); (v) m(x) = 0 has a solution z ^ 0 if and 
only ifl{x) = 0 has a solution x ^ 0; (vi) m is not singular (i.e., m(Z) = Z) if 
and only if m is one-to-one, i.e., if z = 0 is the only root ofm(z) = 0. 

PROOF. The proof of (i) consists of an obvious verification. 
Proof of (ii). Let fi be a bound for L. Then by (3.9), (3.4), and (3.8) 

||M(*)|| < \\L(x)\\ + \\L(y)\\ < M||x|| + Hz/ID < 2,i||*||. 

Proof of (hi). Suppose L is completely continuous. Then, by (ii), M is con
tinuous and it remains to show that if zn = xn + iyn where xn and yn are 
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bounded sequences in E, then the M{zni) converge for some subsequence zn. 
of the zn. Now by (3.8) the boundedness of the zn implies the boundedness of 
the xn and yn. It therefore follows from the complete continuity of L that for 
some subsequence ni of the integers the L{xni) and L(yni) converge. But then 
for zni = xni + iyni the sequence M(zni) = L(xni) + iL(yni) converges. The 
converse is obvious since L is a restriction of M to E. 

Proof of (iv): If z = x -f iy, f = £ + iry, with re, y, £, 77 elements of E, then the 
equation m(z) = £ is equivalent to the couple of equations l(x) = £, Z(y) = 77. 
This obviously implies that I maps E onto E if and only if m maps Z onto Z. We 
obtain a proof of assertion (v) if in the proof of (iv) we set f = £ = rj = 6. Finally 
assertion (vi) follows from assertions (iv) and (v) in conjunction with part (iv) of 
Lemma 12 in Chapter 1, the latter being valid also for complex Banach spaces. 

3.10. DEFINITION. With E considered as subset of Z (cf. subsection 3.5), 
the elements of E are called the real elements of Z. If z = x + iy with x, y real, 
the element ~z — x — iy is called conjugate to z and the map z ^ ~z is called a 
conjugation. A subspace Z\ of Z is called invariant under conjugation if z € Z\ 
implies that ~z G Z\. 

3.11. LEMMA. Let M be a bounded linear map Z —> Z. Then M is the 
complex extension of a linear bounded map L:E —• E if and only if for all z G Z 

M(z)=lSd(z). (3.10) 

PROOF. The necessity is obvious from Definition 3.8. Then let M be a linear 
bounded map Z —> Z satisfying (3.10). Now for each X G £ , M(X) is an element 
of Z. Therefore 

M{x) = L1(x) + iL2{x), (3.11) 

where L\{x) and Lt2(x) are elements of E. 
It will be sufficient to show that £2(2) = #5 for then M will be the complex 

extension of L\. Now by (3.11) for z — x -f iy 

M{z) = M(x) + tM(y) = Li(x) - L2(y) + i(L2(x) + L^y)) . (3.12) 

This holds for all z G Z. Therefore 

M(z) = Lx(x) + L2(y) + i(L2(x) - L^y)) . (3.13) 

On the other hand, we see from (3.12) that 

M{z) = Lx(x) - L2(y) - i(L2(x) + L^y)). (3.14) 

By assumption (3.10) the left members of (3.13) and (3.14) are equal. Comparing 
the imaginary parts of the latter equalities, we see that L2(x) = -L2(x), i.e., 
L2{x) = 0 as we wanted to prove. 
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3.12. LEMMA. Let Z\ be a linear subspace of Z and let E\ be the set of real 
elements in Z\. It is asserted: 

(i) if Z\ is invariant under conjugation, then for each z — x + iy G Z\ the 
elements x and y belong to E\\ 

(ii) if, besides satisfying the assumption of (i), Z\ is finite dimensional, then 
there exists a base for Z\ which consists of elements of E\\ 

(iii) a finite-dimensional subspace Z\ of Z is invariant under conjugation if 
and only if there exists a projection P: Z onto Z\, such that 

P{z) = P(z) forallzeZ. (3.15) 

PROOF. (i) If z = x4-iy E Z\[x,y real), then by assumption ~z = x — iy E Zi. 
Consequently x = (z + z)/2 and y = (z - z)/2i lie in Z\ f) E = E\. 

Proof of (ii). E\ is obviously a linear subspace of the real space E. 
Moreover, if &i, 62, • • • > br are linearly independent elements of this subspace, 

they are also linearly independent as elements of Z\. For if 
r 

with Cj = aj + i/3j, aj,(3j real, then 
r r 

and thus 
r r 

3=1 J = l 

Therefore aj = ji3r = 0, j" = 1,2,..., r, on account of the independence of the bj 
as elements of E\. Thus Cj = aj 4- i/3j = 0. This proves the independence of the 
bj as elements of Z\. It follows that the subspace E\ of E is finite dimensional 
since Z\ is finite dimensional. Then let 61 , . . . , bn be a base for E±. Since the bj 
are independent also as elements of Zi, it remains to show that they span Z\. 
Now let z = x + iy G Zi. Then there exist real numbers aj, /3j such that 

x = Y,ocjbj, » = 5^/?Ai (3*16) 

and thus 

^ = x + iy = J2(aJ + ^ ) 6 i -
i = i 

Proo/ 0/ (iii). The coefficients aj in the first sum in (3.16) are obviously 
linear in x for x in the finite-dimensional subspace Ei of E. They are therefore 
also continuous (see, e.g., [18, p. 245]). Consequently, by the Hahn-Banach 
theorem, these bounded linear functions aj = a3;(x) can be extended to bounded 
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linear functions A3 (x) defined for all x G E. We now define for j = 1,2,..., n 
continuous linear functional Cj on Z by setting for z = x + iy 

Cj(z)=Aj(x) + iAj(y)- (3-17) 
Then 

C,-(2) = C,-(*) (3.18) 
since the Aj(x) are real-valued. We now set 

P(*) = itc3iz)bj9 '(3.19) 

where the bj form a real base for Z\. We then see from (3.18) that (3.15) is 
satisfied. We now show that P is a projection, i.e., that (2.9) is satisfied. Since 
the bj are real, we see from (3.19) and (3.17) that 

P*(z) = P(P(z)) = £bjCj [Y^CMbA ^b^CiWCfri). (3.20) 
j=i V/=i / i=i /=i 

Since 6/ G Ei, Cj(bi) = Aj(6/) = a?(&z). But ay(6/) = 0 if j ^ /, and 1 for j = / 
as is seen from (3.16) with x = bi. Therefore 

and we see from (3.20) and (3.19) that 

P2{z) = Y,b0Cj{z) = P{z). 
i=i 

This finishes the proof that the invariance of Z\ under conjugation implies the 
existence of a projection P satisfying (3.15). 

Conversely if such projection P exists, then for z G Z\ we see that z = P(z), 
and therefore by (3.15) that ~z — P(z) = P(z) which shows that z G Z\. 

§4. On the index j of linear nonsingular L.-S. maps 
on complex and real Banach spaces 

4.1. DEFINITION. Let Z be a complex Banach space. Let 

m{z) = z-M{z) (4.1) 

be a nonsingular L.-S. map Z -> Z. Then with £(A) denoting the real part of 
the complex number A, the index j(m) of m is defined as follows: if M has no 
eigenvalues A with £(A) > 1 we set j(m) = 1. If M does have eigenalues A with 
£(A) > 1, we denote them by Ai, A2,..., As and define 

i(m) = ( - l )E ; = l - . , (4.2) 

where U{ — ^(A2) is the generalized multiplicity of Â  as an eigenvalue of M 
(see subsection 2.17 for the definition of "generalized multiplicity," and see §1 
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for a motivation for the definition of i (m)). Note that by subsection 2.16 the 
number of eigenvalues A of M with Z(X) > 1 is finite and by subsection 2.17 the 
generalized multiplicity by v(\) of an eigenvalue A of M is finite. 

4.2. DEFINITION. Let E be a real Banach space, and let 

l(x) = x- L(x) (4.3) 

be a nonsingular L.-S. map E —• E. An eigenvalue Ao of L is then a real number 
such that for some point i G B different from 0 

L(x) = A0x. (4.4) 

If Z is the complexification of E and M the complex extension of L, it is clear 
from §3 that Ao is an eigenvalue of L if and only if Ao is a real eigenvalue of 
M. We define the generalized multiplicity of an eigenvalue Ao i=- 0 of L as the 
dimension /x(Ao) of the space 

EXo = {xeE\(\0I-L)nx = 0} (4.5) 

for some integer n > 1. /i(Ao) is finite, for it is clear that /i(Ao) < ^(Ao), the 
generalized multiplicity of Ao as an eigenvalue of M (see subsection 2.17; actually 
M^o) = y(^o) as w e will s e e in subsection 4.11). 

4.3. DEFINITION. Let I and L be as in subsection 4.2. We define the index 
j{l) to be 1 if L has no eigenvalues > 1. If L has eigenvalues > 1, we denote 
them by Ai > A2 > • * • > A5 and define the index j(l) by 

j(l) = (-l)K=^, (4.6) 

where \i9 = /z(Ap), p — 1,2,... ,5. Note that this definition agrees with (1.5), 
which was shown to agree in the finite-dimensional case with (1.2). Note also 
that A = 1 is not an eigenvalue of L since I is not singular. 

4.4. DEFINITION. A linear map / of the real Banach space E into itself is 
said to be type I~ if it can be constructed as follows: let E1 be a one-dimensional 
subspace of E and let E2 be a complementary subspace such that every x G E 
can be written in the form (cf. Lemma 4 of Chapter 1) 

x = xi+x2, x1eE1,x2EE2. (4.7) 

Then / maps x = x\ + x2 into — x\ + x2 (cf. §8 of the introduction). Maps of 
type I~ in a complex Banach space Z are defined correspondingly. 

Note that l(x) = x — 2xi, i.e., l(x) is of the form (4.3) with L(x) = 2x\. Since 
x\ lies in the one-dimensional space E1, L(x) is completely continuous. Thus / 
is an L.-S. map. Since obviously / maps E onto J£, the map / is not singular. 
Thus j(l) is defined for a map I of type I~. 

4.5. LEMMA. 
. / n f + 1 if I = I, the identity map, ,. 0. 

J{1) = \ - 1 if lis of type I-. ( 4-8 ) 
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PROOF. If / = JT then the L(x) in (4.3) equals 6 for all x. Therefore (4.4) 
for x ^ 6 is satisfied only with Ao = 0. Thus L has no eigenvalues > 1 which 
by Definition 4.3 proves the first part of assertion (4.8). Suppose now / is of 
the I~ type. Then with the notation used in (4.7), l(x) = —x\ + X2 = x — 2xi, 
i.e., L(x) = 2x\ by (4.3) and the eigenvalue equation (4.4) reads 2x\ = \$x = 
\o{x\ + x2). This implies X2 = 6 and Ao = 2. Thus 2 is the only eigenvalue of 
L, and 

j(l) = (-1)^1 (4.9) 

Here fi(2) is the dimension of the space given by (4.5) with Ao = 2 and L(x) = 
2xi. Now for 2 = 1,2 let Pi be the projection x —• Xi (cf. (4.7)). Then XQI-L = 
2 ( P I + P 2 ) - 2 P I = 2P2. Thus, by (4.5), E2 consists of those x for which P2

nx = 0 
for some integer n > 1. But for these integers P2 = P2 since P2 is a projection, 
and we see that E2 = {x G E \ P2{x) = 6} = E1. Thus ^(2) = dimE1 = 1. 
This together with (4.9) proves the second part of the assertion (4.8). 

Since L.-S. homotopy (see subsection 1.2 of Chapter 2) is transitive, it follows 
from Lemma 4.5 that the linear homotopy theorem (stated in subsection 1.3 of 
Chapter 2) is equivalent to the following one. 

4.6. THEOREM. Let lo and l\ be two linear nonsingular L.-S. maps E —• E. 
Then lo and l\ are linearly L.-S. homotopic (see Definition 1.2 in Chapter 2) if 
and only if 

J(lo)=j(h)- (4-10) 

Now for questions of continuity it is preferable to deal with the complexifica-
tion Z of E and the complex extension M of the operator L given by (4.3). For 
if M changes continuously, a real eigenvalue of M may become complex. But in 
this case the eigenvalue of L as an operator on E "disappears" since the concept 
of a complex eigenvalue makes no sense in the real space E. We therefore state 
the following theorem whose proof will be given in §5. 

4.7. THEOREM. Let lo and l\ be as in Theorem 4.6. Let Z be the complexi-
fication of E, and for i = 0,1 let Mi be the complex extension of Li = I — k on 
E, and let rrii(z) = z — Mi(z). It is asserted that the equality 

j{rn0) = i (mi ) (4.11) 

(see Definition 4.1) holds if and only if there exists an L.-S. linear homotopy 
m(x,t) — z — M(z,t), 0 < t < 1, between mo(z) = m(^,0) and mi(z) = m(z, 1) 
which satisfies for z £ Z and t € [0,1] 

Mfct) = M(z,t). (4.12) 

The remainder of §4 is devoted to showing 

4.8. THEOREM. Theorems 4.6 and 4.7 are equivalent 

The proof of this theorem requires some lemmas. 
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4.9. LEMMA. Let E and Z be as in Theorems 4.7 and 4.8. Let L be a 
continuous linear map E —• E, and let M be its complex extension. Then (i) the 
spectrum a(M) of M is symmetric with respect to the real axis of the complex 
X-plane, and (ii) for A G p(M) 

Rj(M)(z) = Rx(M)(z) (4.13) 

(see Definition 2.1). 

PROOF, (i) a(M) and the resolvent set p(M) are disjoint subsets of the 
A-plane whose union is the whole A-plane. Therefore assertion (i) is equivalent 
to the assertion that p(M) is symmetric to the real A-axis. Let Ao E p{M). 

We have to prove 
Ao E p(M). (4.14) 

Now by the definition of R\(M) 

(\0I - M)RXo(M)(z) = z (4.15) 

for all zeZ. But by (3.10) for u E Z 

(\0I-M)(u) = (A0J - M)(u). 

Applying this relation with u = R\0(M)(z) we see from (4.15) that 

(X0I-M)RXo(M)(z) = z. 

Replacing z here by ~z we see that 

(X0I - M)RXo(M)(z) = z 

for all z € Z. This shows that 

S(z) = RXo(M)(z) (4.16) 

is a right inverse of (Ao/ — M). But interchanging the factors in (4.15) we 
conclude that S(z) is also a left inverse of Ao/ - M. Thus S is an inverse of 
Ao/ ~ M. Since S is bounded, the assertion (4.14) follows by definition of p(M). 

Proof of (ii). By definition, RJQ(M) is the inverse of Xol — M. Therefore by 
(4-16) ° 

RJo(M)(z) = S(z) = RXo(M)(z). 
This proves assertion (ii). 

4.10. LEMMA. Let E,Z,L,M be as in Lemma 4.9. Let Ao be an isolated 
point of the spectrum a(M) of M such that by Lemma 4.9 Ao is also an isolated 
point of a(M). Let Co be a counterclockwise-oriented circle with center Ao and 
radius ro where ro is such that the closure of the circular disk B(Xo,ro) contains 
no point of a(M) other than Ao. Let c'0 be the counterclockwise-oriented circle 
with center XQ and radius ro- Let P\Q and Pj be the linear operators defined by 

PA° = h jco
 R»{M) d"' p * o = h lo

 Rti{M) dti- (4-17) 



212 THE LINEAR HOMOTOPY THEOREM 

Then the ranges Z\0 = P\0Z and ZJQ = Pj Z are conjugate to each other, 
i.e., if z varies over Z\0, then ~z varies over Z^ . 

PROOF. AO and Ao are spectral sets (see subsections 2.1 and 2.3). Therefore, 
by subsection 2.11, P\0 and Pj are projections. We will show first our lemma 
follows from the relation 

PJo(z) = PXo(z) for all * € Z . (4.18) 
Indeed, since P\0 is a projection, z € Z\0 — P\QZ if and only if z = P\0(z) 
or ~z — P\Q(z), or, by (4.18), ~z = Pj (2). But since Pj is a projection, the 
last equality is a necesary and sufficient condition for z to be an element of 

Ao Ao' 

Thus for the proof of our lemma it remains to verify (4.18). For this purpose 
we set // = Ao + roe1^ and A = /Z = Ao + roe~l<f> such that d/j, = ir^e1^ d<f) and 
d\ = -irQe-i4> d(j>. We then see from (4.17) and (4.13) that 

r2ir -l /»27r 

P-x 

1 f2* 1 f2* 
- J Rx(M)(z)r0e-i* d(j) = ___J Rx(M){z)(-ir0e-«) d<j> 2TT 

= "2^f / Rx{M){z)M = ^;Je Rx(M)(z)dX = PXo(z). 

This proves (4.18), and thus our lemma. 

4.11. COROLLARY TO LEMMA 4.10. (i) The spaces ZXo andZ^Q have the 
same dimension; thus ẑ (Ao) = V(XQ) (cf subsection 2.17). 

(ii) If Ao is real, then Z\0 is invariant under conjugation, 
(iii) J/Ao is real, then the generalized multiplicity v(\o) of Ao as an eigenvalue 

of M equals the generalized multiplicity //(Ao) of Ao as an eigenvalue of L (cf 
subsections 2.17 and 4.2). 

PROOF. Assertions (i) and (ii) are obvious consequences of Lemma 4.10. As 
to assertion (iii) we noted already in subsection 4.2 that fi(Xo) < ^(Ao). It 
remains to prove that 

"(Ao) < M(Ao). (4.19) 
Now it follows from assertion (ii) of our corollary and Lemma 3.12 that Z\Q = 
P\0Z has a base 6i, 62,..., 6r consisting of elements of E. Then 

r = i/(A0), 
since r and V(\Q) both equal the dimension of Z\Q (cf. subsection 2.17). Since 
each bj G Z\0, we have (also by subsection 2.17) 

(Ao/ - M)nbj = 0, i = 1,2,..., i/(Ao) (4.20) 

for some n. But by definition (3.9) of the extension M of L, we see that M{bj) = 
L(bj) since bj 6 E. Thus by (4.20) (X0I - L)nbj = 0, j = 1,2,..., i/(A0). The 
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asserted inequality (4.19) now follows from the definition of /i(Ao) given in 4.2 
since Ao is real. 

4.12. LEMMA. We use the notation of Lemma 4.10. We assume now that 
the linear map Z(x) = x — L(x) is a nonsingular L.-S. map E —• E. Let m(z) be 
its complex extension. Then 

j(m)=j(l). (4.21) 

PROOF. By Lemma 3.9 the nonsingularity of I implies that m(z) = z — M(z) 
is a nonsingular L.-S. map Z —* Z. Thus both members of (4.21) are defined. 
To prove their equality we note first: if Ao is a complex eigenvalue of M, then 
so is Ao (see Lemma 4.9), and U(XQ) = V{XQ) by part (i) of Corollary 4.11. Thus 
K^o) + v{Xo) is an even number. Therefore in Definition 4.1 (see in particular 
(4.2)) we may omit those V{ = v(\i) for which A{ is complex. But for a real 
eigenvalue At of M we know from part (i) of the corollary 4.11 that v(\%) = /x(A;), 
and the definition of j(l) in subsection 4.3 (see in particular (4.6)) shows that 
j(m)=j(l). 

4.13. We are now ready to prove Theorem 4.8. In the present section we 
show that Theorem 4.7 implies Theorem 4.6. 

(a) Suppose (4.10) is satisfied. We have to show that IQ and Zi are linearly 
L.-S. homotopic. Let mo and mi be the complex extensions of IQ and l\ resp. 
Then, by Lemma 4.12, the equality (4.10) implies (4.11). Therefore, by Theorem 
4.7 there exists a homotopy 771(2, t) — z—M(z, i) of the properties asserted in that 
theorem. But by Lemma 3.11 the relation (4.12) implies that for each t £ [0,1] 
the map M(z, t) is the complex extension of a bounded linear map L(x, t):E —* E 
which by Lemma 3.9 is completely continuous and such that Z(x, t) = x — L(x, t) 
is nonsingular. This Z(x,£) gives the desired homotopy between IQ and Zi. 

(b) Assume now that IQ and h are linearly L.-S. homotopic. We have to prove 
(4.10). By assumption there exists a linear L.-S. homotopy Z(x,£) = x - L(x,t) 
connecting Zo with l\. For each t € [0,1] let m(x, t) = z - M(z, t) be the complex 
extension of l(x,t). Then m(z,t) is an L.-S. homotopy connecting 7710(2) = 
771(2,0) with mi = 771(2,1) which by Lemma 3.11 satisfies (4.12). The assertion 
(4.10) follows now from Theorem 4.7 in conjunction with Lemma 4.12. 

4.14. In this section we show that Theorem 4.6 implies Theorem 4.7. 
(a) For i = 0,1 let mi(z) = z — M{(z) be a linear nonsingular L.-S. map 

Z —• Z which is the complex extension of the linear nonsingular L.-S. map 
k(x) = x-Li(x): E -> E, and suppose that (4.11) holds. Now by Lemma 4.12 the 
relation (4.11) implies (4.10). Consequently by Theorem 4.6 there exists a linear 
L.-S. homotopy Z(x, t) = x—L(x, t) connecting Zo = Z(x, 0) with Zi = Z(x, 1). Then 
the complex extension 771(2, t) = z — M(z, t) of Z(x, t) is a linear L.-S. homotopy 
which connects mo with mi and which, by Lemma 3.11, satisfies (4.12). 

(b) Again, for i = 0,1, let mi{z) = z - M{(z) be a nonsingular linear L.-S. 
map Z —• Z which is the extension of a linear nonsingular L.-S. map Z;(x) = 
x — Li(x):E —• E. Suppose now there exists a linear L.-S. homotopy which 
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connects mo with m\ and satisfies (4.12). From the latter relation and from 
Lemma 3.11 we conclude that there exists a linear L.-S. homotopy which connects 
lo and l\ and that therefore by Theorem 4.6, j(lo) = j(h)- The asserted relation 
(4.11) follows now from Lemma 4.12. 

§5. Proof of the linear homotopy theorem 

5.1. The linear homotopy theorem (see subsection 1.3 of Chapter 2) is, as 
already stated in the last paragraph of subsection 4.5, equivalent to Theorem 4.6, 
which in turn, by Theorem 4.8, is equivalent to Theorem 4.7. It is thus sufficient 
to prove Theorem 4.7. We start by proving that if a homotopy mt{z) = m(x, t) 
of the properties stated in that theorem exists, then (4.11) is true. To do this 
we will show that j(m,t) is constant for t G [0,1]. Since j(mt) is integer-valued 
it will be sufficient to prove the "continuity" of that number or, more precisely, 
to prove the following theorem. 

5.2. THEOREM. Let Z be the complexification of the real Banach space E, 
and let mo(z) = z — MQ(Z) be the complex extension of the nonsingular linear 
L.-S. map IQ(X) = x — LQ(X) mapping E into E. Then there exists a positive 
number SQ of the following property: ifm(z) = z — M(z) is the complex extension 
of a linear nonsingular L.-S. map l:E —• E and if 

\\m - mo|| = \\M - Moll < e < £o, (5.1) 

then 
j ( m ) = i ( m o ) . (5.2) 

For the proof we need the following well-known elementary lemma. 

5.3. LEMMA. Let Z be an arbitrary complex Banach space, and let no be 
a bounded linear map Z —• Z which has a bounded everywhere-defined inverse 
UQ1. Then every linear bounded map n: Z —> Z satisfying 

H n - n o l M l n ^ i r 1 (5-3) 
has a bounded everywhere-defined inverse. (As the following proof shows, the 
lemma is also valid in a real Banach space E.) 

PROOF. Suppose first that no = / . Then the assumption (5.3) reads 

| | n - / | | < l , (5.4) 

from which it easily follows that 
oo 

m = £(J-n)» (5.5) 

converges (with (I - n)° = / ) . Moreover, writing n = I - (I - n), one sees that 
nn\ = n\n — / , and thus n\ = n _ 1 . 

In the general case we see from (5.3) that 

||J - n^" 1n\\ = \\UQ 1(n0 - n)|| < ||n^" 1\\ ||n0 - n|| < 1. (5.6) 
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Thus (5.4) is satisfied if n is replaced by UQ 1n. Thus n<i = (TIQ 1n)~1 exists 
and {n2rtQ1)n = ^ (n j^n) = J. This shows that ^ri^1 is a left inverse of n. 
Similarly, we see from the inequality \\I — nn^1!) < 1, which is proved the same 
way as (5.6), that n has a left inverse. But the existence of a left and a right 
inverse proves the existence of a unique inverse. 

5.4. PROOF OF THEOREM 5.2. We distinguish two cases: (A) M0 has no 
eigenvalues A with real part Z(X) > 1; (B) Mo does have such eigenvalues. 

Proof in case (A). We define the subset A = A (Mo) of the A-plane by A = 
{A | R(X) > 1}. Then A is a closed subset of p(Mo). Therefore by Lemma 2.5 
there exists a positive number //o such that 

||J2A(Af0)|| < W>/2 for A € A. (5.7) 

We now claim that if M is a linear completely continuous map Z —> Z satisfying 

||M-Afo|| < ^C/io/2)"1, (5.8) 

then 
A C p{M). (5.9) 

Indeed if no(z) = Xz — MQ(Z) and n(z) = Xz - M(z) with A G A, then by (5.8), 
by (5.7), and by the definition of R\ 

\\n - no|| = ||M - Mo|| < (MO/2)"1 < ||72A(iW0)II"1 = K " T 1 - (5.10) 

But by Lemma 5.3 this inequality implies that n'1 = R\(M) exists, as a bounded 
operator, i.e., that A G p(M) as asserted. 

It is now easy to see that (5.8) implies the asserted equality (5.2). Indeed 
i(mo) = 1 by Definition 4.1. But by definition of A we see from (5.9) that no 
eigenvalue A of M has a real part > 1. Thus, again by Definition 4.1, j(m) = 1. 

Proof in case (B). tr(Mo) is closed and bounded (see subsection 2.1). Moreover 
by Lemma 3.9 Mo is completely continuous and therefore (see subsection 2.16) 
zero is the only accumulation point of a(M). It follows that <r(Mo) contains 
only a finite number of points A with R(X) > 1. Moreover, if we denote them by 
A§, A§,..., Aj, then there exists a positive number r of the following properties: 
if for i = 1,2,..., s, di is the open circular disk with center Â  and radius r, then 
(a) Â  is the only eigenvalue of Mo in the closed disk d»; (b) the di are disjoint; 
(c) for those i for which R(X®) > 1 the disk di is contained in the open half plane 
£(A) > 1; (d) for those i for which Â  is not real the disk d% does not intersect 
the real axis; (e) for those A G cr(Mo) for which £(A) < 1 we have £(A) < 1 - r; 
(f) 0 < r < 1. In our present case (B) we define 

s 

A = A(M0) = {A | je(A) > 1 - r} - ( J dj. (5.11) 
3=1 

Then A is a closed subset of p(Mo). As in case (A) we conclude from this the 
existence of a positive /io such that (5.7) holds and for completely continuous 
linear M satisfying (5.8) the inclusion (5.9) holds. 
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To prove that (5.1) with small enough eo implies the assertion (5.2), we choose 
our notation in such a way that A?, A§,..., A° are real and A$?+1, A^+2? • • • > ^2 a r e 

complex, 0 < r < s ( r = 0 means that there are no real numbers among the A°, 
and r = s that all of them are real; in any case s > 1 by assumption). Since Mo 
is the complex extension of a completely continuous operator LQ\ E —• E1 we see 
from Lemma 4.9 and the corollary to Lemma 4.11 that if A is one of the complex 
eigenvalues A^+1,...,Ag ofMo, then so is A and ^°(A) = ^°(A), where ^°(A) 
denotes the generalized multiplicity of A as an eigenvalue of Mo. Consequently 
by definition (4.2) of j(m) 

j(mo) = ( - 1 ) ^ "(A?), (5.12) 
where it is understood that the sum stands for zero if r = 0. Suppose now that 
M is the complex extension of a linear completely continuous operator L:E —» E 
and that M satisfies (5.8). Then (5.9) is true and therefore by definition (5.11) 
of A 

, ( M ) n { A | ^ ( A ) > l - r } c U ^ = U r f i + U dr 
.7 = 1 j=l j=r+l 

Now by property (d) of the radius r of the disks dj, these disks do not intersect 
the real axis for j = r + 1,. . . , s. Thus the eigenvalues of M contained in these 
disks are complex, and the argument used to establish (5.12) shows that 

i(m) = (-l)£"M, 
where the sum is extended over those eigenvalues A of M which lie in one of the 
dj for j = 1,2,..., r and where v(X) denotes the generalized multiplicity of A as 
an eigenvalue of M. Thus if A ,̂ A2,..., A£. are those eigenvalues of M which lie 
in dj for j = 1,2,..., r, then 

j(m) = ( -1)£ ; = 1 £ £ i "M\ (5.13) 

Comparison of (5.12) with (5.13) shows that our assertion (5.2) will be proved 
once it is shown that 

"(A?) = X>W), i = l,2,...,r. (5.14) 
1 = 1 

We recall that here the multiplicity v at the left refers to Mo while the z/s at 
the right refer to M. 

Now by subsection 2.17 and (2.15) 

i/(Aj) = dim J*Z, j = l ,2, . . . ,r , (5.15) 
where 

P? = ^-ijadRli{M0)dn (5.16) 

with the circle ddj oriented in the counterclockwise sense. In the same way we 
see that 

i/(Af') = dimi?, » = l,2,...,ry, (5.17) 
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where 

* " 55/.« *<*>*• (518) 

and where d\ is a circular disk with center A;- and a radius so small that the 
closures ĉ  are disjoint and lie in dj. 

The assertion (5.14) now reads 

dimP?Z = ]TdimP/Z, j = 1,2,...,r. (5.19) 

If we set 
Pj = ^-J MM)<fc, j = l,2,...,r, (5.20) 

we see from the "Cauchy theorem" (2.4) that 

P\Z) = Y^P{Z (5.21) 
i=l 

and from this equality together with Lemma 2.12 that P^Z is the direct sum of 
the spaces P{ Z, P$ Z , . . . , P/.Z, and that therefore 

dim PjZ = Y^ dim P/Z. (5.22) 
i = i 

Thus the assertion (5.19) may be written as 

dim i f Z = dim P'Z, j = 1,2,..., r. (5.23) 

We will prove that if /io is as in (5.7), if S\ = (/zo/2)-1 (cf. (5.8)), if 

e2 = ao2 . min p^H" 1 , (5.24) 
j = l ,2 , . . . ,r J 

and if 
£0 = min(ei/2, s2), (5.25) 

then (5.1) implies (5.23) (and thus (5.2)). For the proof we need two lemmas; the 
first is related to Lemma 5.3 while the second is due to J. Schwartz [50, p. 424]. 

5.5. LEMMA. Let no(z) be as in Lemma 5.3,. and let n be a linear bounded 
map Z —• Z satisfying 

| | n -n 0 | |< (2 | |no 1 | | ) - 1 . (5.26) 

Then n - 1 exists and satisfies 

| |n_1 - no 1\\ < 2\\UQ 1\\2\\n - n0||. (5.27) 

5.6. LEMMA. Let Qo and Q\ be projections Z —• Z. Suppose that 

HQi-Qoll < IllOoir1. (5.28) 
Then the dimension 6Q of QQZ equals the dimension 8i of Q\Z. 
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5.7. We postpone the proof of the two preceding lemmas and prove that (5.1) 
implies (5.23). Let no(z) — \iz - MQ{Z) and n(z) = \xz - M{z). Then by (5.8) 
and (5.7) 

\\n(z) - n0(z)\\ = \\M(z) - M0(z)\\ < \{n0/2)^ 
<i||i2M(M0)| |-1 = i||n0-1||-1, 

i.e., (5.26) is satisfied. Therefore by Lemma 5.5 the inequality (5.27) holds: 

||J^(M) - #M(Mo)|| < 2||JRM(M0)||2||M - M0||. 

Thus by (5.1), (5.25) and (5.24) 

WR^M) - #M(Mo)|| < 2||i2M(M0)||Vo2 . min \\Pf\\-\ 

and by (5.7) 
| | ^ ( M ) - J2„(M0)|| < \ .=min J l ^ l l " 1 - (5-29) 

But by (5.20) and (5.16) 

Z7r \\Jddj I) 

- ^ / * lijR"(M)" ^(Mo)l iH^I#• 
Therefore by (5.29) (recalling that 0 < r < 1) we see that \\P*'-Pf\\ < \ \\P?H"1. 
But by Lemma 5.6 this inequality implies the assertion (5.23). 

It remains to prove Lemmas 5.5 and 5.6. 
5.8. PROOF OF LEMMA 5.5. That the inequality (5.26) implies the exis

tence of n"1 follows from Lemma 5.3. Moreover it follows easily from the proof 
for that lemma (see in particular (5.5) and (5.6)) that 

oo 

n - 1no = ( n ^ n ) - 1 = ^ ( - f - % ln)J 

or 
oo 

i=o 
Thus 

oo oo 

n"1 - TIQ1 = ] T ( I - n^nYriQ1 = (I - n^n) J ^ ( J - n^ln)kn^1. 
3 = 1 fc=0 

Therefore 

1 - n^11| < Uno11| • ||/ - n^nll • £ ||7 - n^nf 
fc=0 

_ ll»^1 l | - | | / -n^1n|l < K x | | 2 | | n o - n | | 
1 - H J - n ^ n l l - l - H n o 1 ! ! - | | n 0 - n | | 
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This inequality together with the assumption (5.26) proves the assertion 
(5.27). 

5.9. PROOF OF LEMMA 5.6. We will establish the inequalities 

?oQi||\ 
?iQo|| J I I Q i - Q i — ^ 1 ' ( 5-30) 

and then show that they imply our lemma. Since Q§ = Qo we see that 

IIQo -Q0Q1W = WQoiQo -Qi)\\ < IIQoll • IIQo -Qill-
By assumption (5.28) this inequality implies the first of the two inequalities 
(5.30). To prove the second one, we note that ||Qo|| > 1 since Qo is the identity 
on its range QQZ. Using this and again the assumption (5.28), we see that 

IIQill = IIQo + Qi - Qoll < IIQoll + ||Qi - Qoll 
< HQoll + i/(2||Q0||)< IIQoll + HQ0II/2. 

Thus 
||Qi||<2||Qo||. (5.31) 

Since Q\ = Q\ we see that 

IIQi - Q1Q0II = ||Qi(Qi - Qo)ll < IIQill • IIQi - Qoll-
But if follows from (5.31) and from (5.28) that here the right member is less 
than 1. This proves the second of the equalities (5.30). 

To derive the lemma from (5.30), we set ZQ = QoZ, Z\ — QiZ, and denote 
by (QoQi)o the restriction of Q0Q1 to ZQ. Then (QoQi)o maps ZQ —• ZQ, while 
Qo restricted to ZQ is the identity on ZQ. Therefore the first of the inequal
ities (5.30) implies by Lemma 5.3 that (QoQi)o has an inverse on ZQ. Thus 
ZQ C range of(QoQi)o C range of Q0Q1 C range of Qi, and ZQ C Q\Z = Z\. 
Therefore £0 = dimZo < 8\ = dimZi. In a similar way one derives from the 
second of the inequalities (5.30) that 61 < 6Q. Thus 61 = 6Q as asserted. 

5.10. We finished the proof that the equality (4.11) is necessary for the exis
tence of the homotopy described in Theorem 4.7. We now turn to the sufficiency 
proof. We recall that A = 1 is not an eigenvalue of the complex extension MQ 
of LQ since mo = / - MQ is not singular. We consider first the special case 
that MQ has no real eigenvalues > 1. In this case it follows from Lemma 4.12 
and Definition 4.3 that y(rao) = J'(IQ) = 1 = j(I). Therefore in the special case 
considered we have to prove 

5.11. LEMMA. Let MQ satisfy the assumption of Theorem 4.7. In addition 
it is assumed that MQ has no real eigenvalues X > 1. Then there exists a linear 
L.-S. homotopy which connects mo with I and which satisfies (4.12). 

PROOF. For t € [0,1] we set m{z,t) = z - (1 - t)M0{z). That M(z,t) = 
(1 — t)MQ(z) satisfies (4.12) is clear from Lemma 3.11. It remains to show 
that mt(z) = m(Z)t) is nonsingular for all t G [0,1]. For t = 0 and t = 1 
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the nonsingulaxity is obvious since ra(z,0) = mo(z) and ra(z, 1) = J. Suppose 
then mtQ(z) to be singular for some to in the open interval (0,1). Then ZQ — 
(1 - to)Mo(zo) = ZQ for some ZQ ^ 0, or M(ZQ) = XoZo with Ao = (1 - £o)_1 > 1-
This contradicts our assumption that Mo has no real eigenvalues > 1. 

5.12. We suppose now that Mo has real eigenvalues greater than 1. We 
denote them by Ai > A2 > • • • > A5. Let 00 = 00(Mo) be their union, and let 
0"i = 0*1 (Mo) be the complement of 00 in <r(Mo): 

<r(Mo)=<70Ucri. (5.32) 

Let 
Po = P*o> Pi=P*i (5.33) 

be the projections defined in Lemma 2.11 (cf. also subsection 2.12), and let 

Zo = PoZ, Zx = PXZ. (5.34) 

Then as will be shown in subsection 5.13 

Z = Z0 + Zx (direct sum) (5.35) 

with Zo being finite-dimensional. Corresponding to the decomposition (5.34) we 
set 

M§ = P0Mo, M0
1 = PiM0. (5.36) 

We will show that 

(see subsection 5.15) and that cr0 is the spectrum of M§ and o\ the spectrum 
of MQ (see subsection 5.16). Thus MQ has no real eigenvalues > 1, and Lemma 
5.11 may be applied to mf

Q = h — MQ , where I\ denotes the identity map on Z\. 
Discussion of the "finite-dimensional" part Mff of Mo will begin in subsection 
5.20. 

5.13. PROOF OF (5.35). Let VQ and V\ be open sets in the A-plane con
taining <Jo and <JI resp. with Vo and Vi disjoint. Let To = dVo and Ti = dVi, 
where To and Ti are supposed to be rectifiable Jordan curves oriented in the 
counterclockwise sense. Then by subsections 2.11 and 2.12, by (5.33) and by 
Lemma 2.9 

I==Po + Pl = ±.f R^MQ)d/i, To + Tx. (5.38) 

This shows that every z E Z can be represented by 

z = ZQ 4- zu ZQ G ZQ, Z\ e Zi. (5.39) 

The uniqueness of this representation follows from (2.12). 
To establish (5.37) we prove the following lemma. 
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5.14. L E M M A . 

M0° = - L / ^ ( M o ) dfjL = M0Po, (5.40) 

M ° 1 = 2 ^ / »MMo)dtx = M0Pu (5.41) 

wAere M§ and MQ are the operators defined in (5.36). Moreover, for z E Z, 

M0(z) = M°(zo) + MZ(z), (5.42) 

M0°(z!) = 6, M£(z0) = 0, (5.43) 

with zo,zi as in (5.39). 

P R O O F . Let _ 

f(u) = \1 f o r " € } > 

where VQ and Vi are as in subsection 5.13. Then by (2.10) and (5.33) 

and from (5.32) and Lemma 2.9 we see that 

M0 = — nR»(M0) d^ 

Therefore from (2.8) with g(/j) = /i on F 0 u F i 

P0M0 = M0Po = 5 ^ / firivR^Mo) d»=7±-.[ fxR^Mo) d». (5.44) 

By definition (5.36) this equality proves (5.40). Assertion (5.41) is proved cor
respondingly. 

To prove (5.42) we note that by (5.39) and (5.34) 

M0(z) = M0{zo + zx) = M0{z0) + M0(zi) 
= M0{P0z) + Mo(Pi*) = M0P0(zo) + Af0Pi(2fi). 

By (5.40) and (5.41) this proves (5.42). Finally by (5.36), (5.44), and (2.12) 

M0
0(*i) = P0M0(z1) = MoPo(zi) = MoPoPi(z) = 0. 

This proves the first of the relations (5.43). The second one follows similarly. 
5.15. PROOF OF (5.37). Since P0M0 = M0P0 by (5.44) and since P i M 0 = 

MQPI is established the same way, 

(P0Mo(z)\ (M0Po(z)\ 

Therefore by the direct decomposition (5.39) 

Mo[Z) ~ [MoPtizo) MoP^zx))-



222 THE LINEAR HOMOTOPY THEOREM 

This relation proves (5.37) as we see from (5.40), (5.41), and (5.43). 
5.16. Proof that GO is the spectrum ofM$ andoi is the spectrum of MQ. It 

follows from (5.42) and (5.43) that, restricted to Zo, Mo = M§, and, restricted 
to Zi, Mo = MQ. Our assertion now follows from subsection 2.13. 

This finishes the proof of the assertions contained in subsection 5.12. We next 
prove 

5.17. LEMMA, (i) ZQ and Z\ are invariant under conjugation (see Definition 
3.10); (ii) Zo is finite dimensional 

PROOF, (i) Let Ay, j = 1,2,. . . , s , be as in subsection 5.12. Let dj be a 
circular disk with center Xj of radius so small that the closures dj are disjoint 
and lie in Vb (cf- subsection 5.13). Let the boundary ddj of dj be oriented in the 
counterclockwise sense, and let 

Gi = 5 ^ / M^o) dp, j = 1,2,..., s. (5.45) 
2?" Jddj 

Since the Xj are the only eigenvalues of Mo in Vb, it follows from the Cauchy 
theorem 2.7 and from 5.12 that 

s 

and 
3 

ZQ = P0Z = J 2 ^ Z ' (5-47) 
3 = 1 

Since each Xj is a spectral set for Mo, each Qj is a projection by Lemma 2.11, 
and by the Corollary 4.11 to Lemma 4.10 each of the spaces QjZ is invariant 
under conjugation since Xj is real. Thus we see from (5.47) that ZQ is invariant 
under conjugation. Since Z also is invariant under conjugation, being the com-
plexification of a real Banach space E, it now follows that Z\ also is invariant 
under conjugation. 

(ii) By Lemma 2.12 QiQj = 0 for i ^ j . It follows that the decomposition 
(5.47) is direct. Therefore 

s 

dimZo = y^dimQjZp. 

But by 2.17 the dimension of QJZQ is the finite number v(Xj). Thus 
s 

dimZ0 = £V(Ay). (5.48) 
3 = 1 

5.18. Let Jo and I\ be the identity maps on ZQ and Z\ resp., and let, as 
always, I denote the identity map on Z. Then 

m0 = I-M0(m} °1), (5.49) 
\ 0 ml 
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where 
rag = J0 - AfJ, ml = h - Ml. (5.50) 

This is an immediate consequence of (5.37). 

5.19. LEMMA. There exists an L.-S. homotopy mQ(zi,i) = z\ — Mg(^i,t) , 
Z\ E Z\, t £ [0,1], connecting raj with I\ and satisfying 

PROOF. The lemma will be proved once it is shown that MQ satisfies the 
assumption made in Theorem 5.11 for Mo. That is, we have to verify: (i) Z\ is 
the complexification of a real Banach space E\\ (ii)rao = Ji — MQ and I\ are 
the complex extensions of linear nonsingular L.-S. maps on E\\ (iii) Mf has no 
real eigenvalues > 1. Now (i) follows from the fact that Z\ is invariant under 
conjugation (Lemma 5.17). The assertion of (ii), that I\ is the complex extension 
of the identity on E\, is obvious. To prove that MQ is the complex extension of 
a linear continuous map LQ on Ei, it is by Lemma 3.11 sufficient to prove the 
relation 

M0
1(I) = A ^ ) , ZGZL (5.51) 

But this relation follows from the fact that MQ(Z) = MQ(Z) for z E Zi, by (5.41) 
and that MQ{Z) — MQ(Z) since Mo is by assumption the extension of a linear 
continuous map on E. That LQ is completely continuous follows from Lemma 
3.9 since MQ(Z) = Mo(2) is completely continuous by assumption. Finally, that 
IQ = I\ - LQ is nonsingular follows also from Lemma 3.9 since otherwise, by that 
lemma, raj and therefore rao would be singular. Finally that assertion (iii) is 
true was already noticed in the lines directly following (5.37). 

5.20. Our next goal is to prove that rao = / — Mo is L.-S. homotopic (with 
a homotopy satisfying (4.12)) to either I or to a map of type I~ (see Definition 
4.4). It follows from subsection 5.19 and (5.49) that rao is L.-S. homotopic (with 
the condition (4.12)) to 

rag = Jo - M0°. (5.52) 

It will therefore be sufficient to prove the corresponding assertion for the map 
rag which maps the finite-dimensional space ZQ onto ZQ (cf. Lemma 5.17). Our 
first step in this direction will be to prove 

5.21. LEMMA. There exists a real base &i, &2> • • • > &N of ZQ such that 

<(bj) = -bj, j = l,2,...,N, (5.53) 

where N is the dimension of ZQ (cf (5.48)). 

PROOF. AS shown in the proof of part (ii) of Lemma 5.17 the decomposition 
of ZQ given by (5.47) is direct. Therefore a basis for ZQ is obtained by putting 

ra0 
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together the bases for each of the spaces QJZQ, j = 1,2,..., s. But by subsection 
2.17 and by assertion (iii) of Corollary 4.11 

dimQj-Zo = v{*j) = M(AJ)- (5-54) 
Now let Ao be one of the Ay, and let Qo be the corresponding Qj. QoZo is 
invariant under conjugation (see Corollary 4.11). It follows that QoZo is the 
complexification of a real Banach space Eo of the same dimension, and every 
base of Eo is a real base of ZQ (cf. Lemma 3.12). Therefore if LQ is the linear map 
Eo —> Eo of which the map M® (restricted to QOZQ) is the complex extension, 
it will for the proof of our lemma be sufficient to show that there exists a base 
&i > • • • » bN0 of Eo such that 

/0(6i) = - 6 i , i = l,2,...,iVo, (5.55) 

where 
l0{x) = x-L0(x), xeE0. (5.56) 

Let rti be the "index of nilpotency" of the map QoZo —> QoZo given by 

Âo = -Wo ~ £o> (5.57) 

i.e., the smallest positive integer n for which (4.5) holds for all x G QoZo- Then 
by a well-known theorem of linear algebra (see, e.g., [26, p. Ill]) there exist 
integers r, ri2, ri3, . . . , nr and elements /?i, /?2,..., /?r such that ni > ri2 > • • • > 
n r and such that the elements 

(5.58) 
form a base for EQ, while 

JSA-JXSA = ••• = !£& = *. (5-59) 
Thus E0 is the direct sum of spaces Eop with bases 

#=&, # = /AO0V..,/JB' = O V (5-60) 
We then see from (5.58) that 

1A„# = #> * A 0 # = $ , • • • , hoW1 = 0;p, (5-61) 

while by (5.59) 
rtfl=0. (5.62) 

But from (5.56) and (5.57) 

/O = ( 1 - A 0 ) / O + /AO, 

and therefore from (5.61), (5.62), 

J 0 # = (1 - A0)# + # , • • •, Jo/3?'-1 = (1 - A o ) ^ - 1 + / £ ' , 

/o/?^ = ( l - A 0 ) ^ . (5.63) 
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We now define for x G EQP and t G [0,1] a homotopy lt = Z(x, t) by setting 

Itft = [(1 - A0)(l -1) + ( - l ) t ]# + (1 - *)/3|, 

: , , (5-64) 
lift'-1 = {(1 - A0)(l -1 ) + {-l)t\fi>-1 + (1 - * ) # ' , 

ltft>> = {(l-\0)(l-t) + (-l)t}ft>. 

Obviously (5.63) and (5.64) agree for t = 0, while for t = 1 by (5.64) 

h0i = -Pi, j = l ,2, . . . ,np . (5.65) 
Recalling that Ao > 1 we see that [(1 — Ao)(l — t) + (—1)£] is the linear convex 
combination of the points —1 and 1 — Ao < 0, and therefore does not contain the 
point 0. This shows that lt is not singular for all t G [0,1]. Thus lo and Zi are 
homotopic and (5.65) proves our lemma 

5.22. We will now prove the assertion stated in subsection 5.20 as our "next 
goal." By subsection 5.20 and Lemma 5.21 this assertion obviously follows from 
the following lemma. 

5.23. LEMMA. Let Zo be a complex Banach space of finite dimension N 
which is the complexification of a real Banach space EQ . Let m§ be a nonsingular 
linear map Zo —> ZQ. Suppose there exists a real base &i, &2> • • • > 6JV in ^o for 
which (5.54) holds. Then m§ is L.-S. homotopic $/(4.12) holds to the identity I 
if N is even and to a map of type I" if N is odd. 

PROOF. If N is even, we set N = 2p and define mg(x, t) for t G [0,1] and for 
i = l ,2 , . . . ,pby 

mg(&2t-i, t) = &2i-i cos(l - t)ir - b2i sin(l - t)n, 
(5.66) mo(^2i, i) = &2i-i sin(l - i)7r + b2i cos(l - £)7r. 

Then mo(z,0) = ra§(z) by (5.54), while m^{z^ 1) sends bj into 6̂  for j = 
1,2, ...,iV, i.e., rao(2,1) is the identity map. Moreover m^z^t) is not singu
lar, the determinant of (5.66) being 1. 

If N is odd, we change our notation by denoting the given base of Zo by 
6o, b\,..., &jv- We then set mo(6o, t) = -&o, while m%(bj, t) for j = 1,2,..., N = 
2p is given by (5.66). We thus obtain a nonsingular homotopy m^z, t) connecting 
the map m§(^) given by m^bj) = —bj for j = 0 ,1 , . . . , N with the map given by 
ra§(&o, 1) = -"ko> m§(bj, 1) = bj, j — 1,2,...,N. The latter map is by definition 
of the I" type. 

5.23. We thus proved the assertion of subsection 5.20. It is clear that the 
identity map i" on Z is not homotopic to a map m of type I~ since for such m 
the equality j(m) = j(I) would hold (see 5.10). But by (4.21) and Lemma 4.5 
this leads to the contradiction 4-1 = — 1. Thus to finish the proof of Theorem 
4.7 it remains to prove that two maps of the J~~ type are L.-S. homotopic. 
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(5.69) 

5.24. LEMMA. Let mo(z) = z — MQ(Z) and M\(z) = z — M\(z) be linear 
L.-S. maps Z —> Z of type I~ which are complex extensions of the real maps Zo 
and h resp. Then there exists an L.-S. homotopy m(z, t) = z—M(z, t) connecting 
mo with mi and satisfying the condition (4.12). 

PROOF. Again let E denote the real Banach space of which Z is the com-
plexification. IQ and h are then L.-S. linear maps E —> E of type I". It is easily 
seen that it will be sufficient to show that Zo and l\ are L.-S. homotopic. 

By Definition 4.4 there exists for %' = 0,1 a direct decomposition E — E\ + E^ 
where E\ is a one-dimensional subspace, and there exists a corresponding unique 
representation for x G E 

x = x\ 4- x\, x[ G E\, x\ G E\, 

such that 
l0(x) = - z? + x% = x - 2x?, h{x) = x - 2x\. (5.67) 

Now let e° and e1 be unit elements in E® and E{ resp.: 

11̂ 11 = 1̂ 11 = 1. (5.68) 
Then by (5.67) 

Zo(e°) = -e° , hie1) = -e\ 
l0(x) = x - 2a(a;)e0, h(x) = x- 2fi{x)e1, 

where a and /3 are real-valued continuous functional on E satisfying 

a(e°) = ^(e1) = 1. (5.70) 

For the proof that the maps (5.69) are L.-S. homotopic, we distinguish three 
cases: 

(A)e° = e1; 
(B)e° = - e

1 ; 
(C) e° and e1 are linearly independent. 
Case (A). We set 

lt{x) = (1 - t)a(x) + t/3(x), t e [0,1], (5.71) 

and 
lt{x) = x- 2lt{x)e°. (5.72) 

It is clear that for t = 0 and t = 1 this definition agrees with the one given by 
(5.69). It remains to verify that lt is nonsingular for each t G [0,1]. If this were 
not true, then lj(x) — 0 for some t G [0,1] and x G E different from 0, i.e., by 
(5.72), x = ae° for some real a ^ 0. Since lj is linear, we see that %(e°) = 0, and 
therefore from (5.72) that e°(l - 2^(e0)) = 0. Thus 

2lT(e°) = 1. (5.72a) 

But since e° = e1 by assumption, we see from (5.70) and (5.71) that 7^(e°) = 
(1 - t)a(e°) + t/^e1) = 1 in contradiction to (5.72a). 
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Case (B). This case reduces to case (A) since, by (5.69), h(x) = x - 2/3(x)e° 
with /3(x) = /?(-x), and since /3(e°) = /3(-e°) = /3(ex) = 1. 

Case (C). Let E<i be the two-dimensional subspace of E spanned by e° and 
e1, and let E$ be a complementary subspace to E2 such that every x E E has 
the unique representation 

x = x2 + x3, x2 G £2, x3 G £3. (5.73) 

Now let ft be the rotation in E2 determined by 

ft(e°) = e°cos(tir/2) + e1 sin(t7r/2), 
V n 1 0 < t < l . 5.74 

ft(e1) = -e°sin(t7r/2) + e1cos(ftr/2). "" ~ 
We note that 

r1{e°) = e1. (5.75) 
We extend ft to a map rt on E by setting, for x G £" and t G [0,1], 

rt(x) = x -P 2 (x ) + ft(P2(x)), (5.76) 

where P2 is the projection x = X2 + X3 -+ X2 (cf. (5.73)). This is indeed an 
extension of ft since x = P2(z) for x G #2- (5.76) is obviously an L.-S. map. To 
show that it is nonsingular we will prove that r^"1 exists: let y = rt(x). Since 
P2

2 = P2 and since rt(P2(x)) G £2, we see from (5.76) that P2(y) = ft(P2(x)), 
and since ft obviously has an inverse, it follows that 

P2(x) = u\P2{y)). (5.77) 

On the other hand, if P3 is the projection x = X2 + X3 —• x3, we see from (5.76) 
that P3(x) = P3(y). Thus by (5.77) x = P2(x) + P3(x) = ft~1(P2(2/)) + ft(y) 
which shows that the inverse r^1 exists. We therefore may define for x G E and 
*€[0,1] 

/(x,t) = x - 2a(rt-1(z))rt(e°) (5.78) 
with a as in (5.69). Then 

l(x,0) = lo{x), (5.79) 
since ro is the identity map. Moreover by (5.75) 

Z(x, 1) = x - 2a(rj-1(*))e1 = x - 2ax(x)e1, (5.80) 

where 
ai(x) = a(r1-1(x)). (5.81) 

To show that ZQ(X) and Z(x, 1) are L.-S. homotopic we have, because of (5.80), 
only to show that Z(x, t) is not singular. If this were not true, then by (5.78) 

x = 2a(rt-1(x))rt(e°) (5.82) 

for some x G E with x ^ 0 and some t G [0,1]. Thus x = art{e°) with a 7̂  
0. Substitution in (5.82) and cancelling a shows that 1 = 2a(r^1rt(eo)) = 
2a(e°) which contradicts (5.70). Now we want to prove that lo and l\ (see (5.69) 
and (5.70)) are L.-S. homotopic. Since we just proved that IQ and /(•, 1) are 
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L.-S. homotopic, it remains to show that h and /(•, 1) are L.-S. homotopic. But 
comparing (5.80) with the definition (5.69) of h we see that we are in case (A) 
provided that 

a i(e1) = l. (5.83) 
Now by (5.81), (5.75) and (5.70), a^e1) = a ^ V ) ) = a(*T V ) ) = <*(e°) = 1. 

This finishes the proof of the linear homotopy theorem. 

§6. Two multiplication theorems for the indices 

6.1. THEOREM. Let E be a real Banach space, and lo and h be two nonsin-
gular L.-S. maps E —> E. Then 

J(loh) = j(k) • j(h)- (6-1) 
PROOF. Let J be the identity map on E and let /"" be a fixed L.-S. map of 

type I~ on E. Then by Lemma 4.5 
j(l) = +1, j(l-) = - 1 . (6.2) 

By the linear homotopy theorem each of the maps IQ and h is L.-S. homotopic 
to exactly one of the maps J and l~. Denoting L.-S. homotopy by the symbol 
"~" there are four cases: 

(6.3) 

Then 
loh ~ I • I = I in case (i), 
IQII ~ I -1~ = l~ in case (ii), 
loh ~ l~I ~l~ in case (iii), 
loh ~ l~l~ = I in case (iv). 

By Theorem 4.6 and by (6.2) this implies 
j(loh) = +1 in case (i), 
3(loh) = - 1 in case (ii), 

(6.4) 
3{loh) = - 1 in case (iii), 
j{loh) = +1 in case (iv). 

On the other hand we see from (6.3), from Theorem 4.6 and from (6.2) that 

j(l0) = 1, j(h) = 1 in case (i), 
i(fo) = l, i( ' i) = —1 in case (ii), 
j(lo) = - 1 , j{h) = +1 in case (iii), 
j{lo) = - 1 , j(h) = - 1 in case (iv). 

Comparison of (6.4) with (6.5) makes the assertion (6.1) evident. 

(i) 
(") 
(iii) 
(iv) 

lo ~ / , 
lo ~ 7 , 
lo ~ l~i 
lo ~ l~i 

h~l; 
h~l~ 
h~I; 
h~l~ 
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6.2. THEOREM. Let I be a nonsingular L.-S. map E —• E. LetE = E± + E2 
such that every h£ E has the unique representation 

h = hx + h2, hi G Eu h2 E E2. (6.6) 

Let l\ and l2 be the restrictions of I to E\ and E2 resp., and suppose that 

Then 
3(l)= 3(h)'3(h). (6-8) 

PROOF. It is clear that l\ and l2 are linear nonsingular L.-S. maps E\ —• E 
and E —• E2 resp. Thus the right member of (6.8) is defined. Now let 

where I\ and I2 are the identity maps on E\ and E2 resp. Then I = m\m2. 
Therefore, by Theorem 6.1, j{l) = 3{mi) • ^ (^2) . It remains to verify that 

i (*i)=i(™i)> i ( f e )= j (m2) . (6.10) 

By Definition 4.3 of the index j , it will for the proof of the first of these equalities 
be sufficient to show: 

(i) a real number A ^ 0 is an eigenvalue of Mi = J — mi if and only if A is an 
eigenvalue of Li = i i — Zi; 

(ii) for such an eigenvalue A ^ 0 

/*Ji(A) = Mm»(A), (6.11) 

where /if x (A) and / i m i (A) denote the generalized multiplicity of A as an eigenvalue 
of Li and Mi resp. (see Definition 4.2). 

Proof of (i). Let A ̂  0 be an eigenvalue of Mi = I — mi. Then there exists 
an h ^ 0 such that {I -mi)h = Xh or by (6.9) and (6.6) such that 

Lihi = A/11 (6.12) 

and 0h2 = A/i2- This implies h2 = 0 since A 7̂  0. Thus h = hi, and (6.12) shows 
that A is an eigenvalue of Li . The converse follows even more easily. 

Proof of (ii). Let A ^ 0 be an eigenvalue of Li and therefore, by (i), an 
eigenvalue of Mi = J — mi . By (6.9) 

XI - Mi = 

and for any positive integer n 
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Prom this, from (6.6) and from A ^ 0 it follows that for h G E, {XI - Mi)nh = 9 
if and only if (Aii - L\)nhi = 9 and h2 = 9. This implies (6.11) by Definition 
4.2, and therefore, by Definition 4.3, proves the first of our assertions (6.10). 
The second one is proved correspondingly. 

6.3. COROLLARY TO THEOREM 6.2. LetE,E1,E2,h,huh2 be as in The
orem 6.2, and for i = 1,2 let iri be the projection h = hi + h2 —> h{. Let m be 
a nonsingular L.-S. map E —• E. Let mi denote the restriction of Trim to Ei, 
and let m2 denote the restriction ofiT2m to E2. We assume 

7r2m(Ei) = 9. (6.13) 

Then 
j(m) = j (mi ) • i (m 2 ) . (6.14) 

PROOF. Let mi2(h2) = 7Tim(h2). Then 

We note first that m2 is nonsingular, for otherwise m2(h2) = 0 for some h2 ̂  9. 
Then m(h) = 0 for /i = /12 since then hi = 9 and 77112(̂ 2) = 7rira(/i2) = #• This 
contradicts the assumed nonsingularity of m. Similarly one sees that mi is not 
singular. 

Now let for t <E [0,1] 

mtih)=(mi(hi) tmi2(h2)\ 
y 9 m2{h2) J 

We prove that for each t this map is not singular by showing that for arbitrary 
k € E the equation 

m\h) = k (6.17) 

has a solution. Now if k = ki + k2 with fci G .E ,̂ then by (6.16) the equation 
(6.17) is equivalent to 

m i ( / i i ) + £77112(^2) = fci, m(/i2) = k2. 

Since mi and m2 are nonsingular, this system obviously has a solution. We thus 
see from (6.16) and (6.15) that m = m1 is L.-S. homotopic to the map 

mo=(m1(h1) 6 \ 
\ 0 m2(h2)J 

Consequently by Theorem 4.6, j{m) = j(m°). But j(m°) = j(m\) • j{m,2) by 
Theorem 6.2. This proves the assertion (6.14). 



APPENDIX B 

Proof of the Sard-Smale Theorem 4.4 of Chapter 2 

1. THE THEOREM OF SARD. Let Rn and Rm be real Euclidean spaces 
of finite dimension n and m resp. Let U be an open subset of Rn, and let 
f E Cr(U): U —• i?m, where r is a positive integer satisfying 

r > max(0,n — ra). (1) 

Then the set of critical values of f (see Definition 17 in Chapter 1) is of Lebesgue 
measure 0. 

For a proof of and further literature on Sard's theorem we refer the reader to 
[1, §15]. 

2. COROLLARY TO SARD'S THEOREM. Let En and Em be {real) Banach 
spaces of finite dimension n and m resp. Let U be a bounded open set in En and 
f E Cr(fi) (cf §1.16) where r is a positive integer satisfying (1). Then the set of 
points in Em which are regular values for f (see §1.17) is dense in Em. 

This is an obvious consequence of Theorem 1 since on the one hand a subset 
of Rm of measure 0 contains no open set and therefore its complement contains 
a point in every open subset of Rm and is thus dense in i?m, while on the other 
hand every finite-dimensional Banach space is linearly isomorphic to a Euclidean 
space of the same dimension (see, e.g., [18, p. 245]). 

3. The proof given below for the Sard-Smale theorem is an adaptation to the 
simpler Banach space case of the proof given in [1, §16] for Smale's generalization 
of Sard's theorem to certain Banach manifolds. Using the preceding corollary 
we will prove a "local version" of the Sard-Smale theorem in Lemma 4 for maps 
of a very special form. The lemma in §5 will allow us to show that the local 
theorem holds also for the more general maps treated in §6. The latter result 
implies the Sard-Smale theorem as shown in §7. 

4. LEMMA. Let Tli,K, and K* be Banach spaces, where K is finite dimen
sional and where 

dimlT = d i m K - p , (2) 

231 
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with p being a positive integer. Let U and E be the Banach spaces defined as the 
direct products 

n = rii+x, s = nx+x* (3) 
(cf. §1.3). Let V be a bounded open subset ofU. Let ip be a C8-map V —• E 
where s is an integer satisfying 

8>p+l. (4) 

We suppose moreover that the map -0: V —• W = ip(V) is of the special form 

^(f) = ft+x(f), (5) 
w/iere 

? = ft + fc, f i en i , fc€lf, (6) 
and wAere #ie map x : ^ ~^ ^ * ^ completely continuous. 

Now if f ° is a point o/ V, t/ien tftere eziste an open neighborhood VQ of f° 
suc/i t/iat 

V0 C F 0 C V (7) 
and suc/i £fta£ #ie set R{^0) of those points of E which are regular values for the 
restriction ^0 of ip to VQ is dense and open. 

PROOF. Let ?° = fi + fc°, ff G IIi, k° e if. Since £° is an element of 
the open set V, there obviously exist positive numbers S\ and £2 such that the 
"rectangular" neighborhood Vb = Vi x V2 satisfies (7) if 

Vi = {(1 € n a I | | f l - tf || < e i } , V2 = {keK\\\k- fc°|| < e 2 }. (8) 

We will show first that the set R(ipo) of regular values for the restriction ipo of X/J 
to Vb is dense in E. For this purpose we consider an arbitrary point a = f t + k 
in E where fx G IIi and A: G if *. We have to show that every neighborhood N 
of a contains a point which is a regular value for t/>o- Now this is obvious if the 
equation 

^ ( ? ) = * = ? i + E * (9) 
has no solution in Vb since then, by definition, a is a regular value of ipo. Suppose 
now (9) has a solution ft -h fc, f iGVi , fc G V<2. Then by (5) and (9), ft = f 1 and 

X(?1+fc)=r. (10) 
Now for fx G Vi we define a map x<fx: V2 C if into if* by setting 

x?1(*0 = x(?i + fc). (ii) 
Prom (2) and (4) we see that this map satisfies the assumption of the Corollary 
2 (with E™ = if*, En — K). Therefore by that corollary every neighborhood 
iV2 C if * of fc contains a regular value k* for x^ • We will show that for such 
fc* the point a = f x + fc* G E is a regular value for -00- This will obviously prove 
our assertion that every neighborhood N of a = <f x + k contains a regular value 
for tj)Q. Now if the equation 

*?,(*) = ** (12) 
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has no solution k C V2, then the equation 

</>o(c)=?i + fc* (13) 

has no solution f G VQ as is seen from (5) and (11). Thus in this case f x + fc* is 
a regular value for fa. 

Suppose now (12) has a solution k G V2. Then since A:* is a regular value for 
X^, the differential JJx^C^;^)* ft G If, is nonsingular. On the other hand, f = 
?! + fc is the corresponding solution of (13), and with h = A + /c, A G III, K£ K, 
we see from (5) that 

" * < * * > - U ^ A J U ) - <") 
But Dx(?;^) = -Dx?i(fc;^) by (11). This shows that the differential (14) is not 
singular and therefore that $x + k* is a regular value for fa for every solution 
? G Vk x V2 of (13). 

This finishes the proof that R(fa) is dense in E. Now let UQ be a rectangular 
neighborhood of f° whose closure UQ is a subset of VQ. AS follows directly from 
the definition of "regular value," the relation UQ C VQ implies that the set of 
regular values for the restriction XJJ0 °f V* t o ^0 contains the set R(fa) and is 
therefore dense in E. In other words, changing our notation, we can choose the 
rectangular neighborhood VQ of f° satisfying (7) in such a way that R(fa) is 
dense in E. 

To prove our lemma it remains to show that iZ(^o) *s open or, what is the 
same, that its complement, the set S(^0) of singular values for fa, is closed. Now 
it follows directly from the definition of "singular value" that S(fa) =^Q{SI) if 
Si denotes the set of singular points of fa in Vo- But to prove that Si is closed, 
it will be sufficient to show that Si is closed as follows from the special form 
(5) of %j) (cf. the proof of part (ii) of §1.10). The proof that Si is closed is quite 
similar to the proof of part (ii) of Lemma 19 in Chapter 1: let fx, £ 2 , . . . be a 
convergent sequence of points in Si. We have to prove that 

? = lim ^ G S i . 
t—•00 

Since f% G Si C VQ and since Vo is a closed set, we see that 

? € F 0 C V . 

Now if 1 £ Si the differential JD^(? ; h) would not be singular, i.e., $ CV would 
be a regular point for \j). But then, by the continuity of the differential and by 
Lemma 5.3 of Appendix A, all points of some neighborhood of f would be regular 
points for xjj. This contradicts the fact that every neighborhood of £ contains 
infinitely many of the singular points £\ 

5. LEMMA. Let U be a Banach space, let E be a subspace of U of finite 
codimension p, let Z be an open bounded subset of II, and let </> = <j>(z) be an 
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L.-S. map Z —> E. We suppose that <j> G C8(z) for some integer s > 1. Let ZQ 
be a point of Z and 

lo(v) = D<j>(z0;v). (15) 
Moreover, let K denote the kernel oflo, i.e., K = {q G II | lo(rj) = 0}. Then the 
following assertions (i) and (ii) are made: 

(i) K is finite dimensional, and there exists a subspace II i of H such that 

n = U±+K. (16) 

Moreover if R C E is the range of IQ, then there exists a finite-dimensional 
subspace K* of E with the properties: 

(a) E = R+K*; (b) dimK*=dimK-p. (17) 

Thus every y G E has the unique representation 

y = r + k* = 7ri(y) + 7r2(y), reR, k*G K*, (18) 

where 7Ti and 7T2 are the projections y —• r and y -^ k* resp. 

(ii) Let E 6e the direct sr/ra o/IIi and JKT* (see part (ii) o/§1.3): 

E = i i i + i p (19) 

such t/iat eac/i point a G E has t/ie unique representation 
cr = a1+(T2 = *?(*) + 7if (a)> *i € IIi, a2 G I T , (20) 

w;Aere 7rjp and n^ are the projections a -* o\ and a -+ v^ resp. It is asserted: 
there exists a linear L.-S. isomorphism h of E onto E and an L.-S. C8 isomor
phism h\ of some neighborhood UcZcHofzo onto some neighborhood V C II 
of hi(zo) such that the map 

(̂f) = M*r1(f)), fev . (21) 
is of the form (5) where ft ft, £2 and x we as described in the lines following (5). 

PROOF, (i) That K is finite dimensional follows from Lemmas 12 and 18 in 
Chapter 1, and the existence of a II1 satisfying (16) follows from Lemma 4 in 
Chapter 1. Since </> is an L.-S. map whose domain is the subset Z of II and whose 
range lies in the subspace E of II, it may also be considered as an L.-S. map 
Z —• II. Therefore, by Lemma 12 of Chapter 1 there exists a finite-dimensional 
subspace K{ of II such that 

H = R+K{. (22) 
Now E n R = R since R C E. Therefore intersecting both members of (22) 
with E we see that the finite-dimensional space K* — E V\K\ satisfies (17a). 
Since p is the codimension of E in II, comparison of (22) with (17a) shows that 
dimK* = dimtff -p. But by §1.12, dim K{ = dim If. This proves (17b). 

Proof of (ii). We note first that the restriction of IQ to IIi maps IIi onto R. 
Indeed, if r is a given element of i2, there exists by definition of R a z G II such 
that lQ(z) = r. But by (16) 

z = zx + k, z\ G IIi, k G K. (23) 
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Since lo(k) = 0 by definition of if, we see that lo(z\) = r. Thus IQ as a map 
IIi —> i2 is a nonsingular L.-S. map ITi onto R. It follows from the argument 
given for the proof of part (v) of §1.12 that this map has an inverse m: i2 —>• III 
which is a nonsingular L.-S. map. Now every y E E has the decomposition (18). 
If for r = iri(y)i k* = ^{y) we define 

h(y) = m{r) + k*, (24) 

we obtain a map of E onto the space S defined by (19). Since ra(r) is linear and 
L.-S. and since K* is finite dimensional, it follows that h is a linear nonsingular 
L.-S. map. 

Using the decomposition (16) we set for z = z\ -f k E Z, z\ E III, fc E K, 

hi{z) = miri<l>{z) + k. (25) 

Since cj)(z) E E, it follows from (18) that 7Ti<l>(z) E R. Therefore the first term of 
the right member of (25) is an element of IIi, and hi(z) E II by (16). Moreover 
since (f) and m are L.-S. mappings and since K is finite dimensional, we see from 
(25) that h\ is an L.-S. map. 

We prove next that h\ maps some open neighborhood U of z$ onto some open 
neighborhood V of hi(zo) and that h^1 E CS(V). For this purpose it will by 
the inversion theorem in §1.21 be sufficient to show that the differential of hi at 
ZQ is the identity map on II, i.e., that 

Dh1{z0;v) = ri (26) 

for all 
T) = m + * e n, ?/i E iii , « G if (27) 

(cf. (16)). Now since m and 7Ti are linear, we see from (25) that 

Dhx (z; rj) = m^D^z; rj) + K (28) 

for all z E Z. But for z = ZQ we see from (15) and from (27) that D(j)(zo;rj) == 
Z0(T7) = i0(^i) since KEK and, therefore, Z0(^) = 0. Since JR is the range of Zo, we 
see from (18) that it\D<t>(zQ,rj) = 7TiZo(??i) = loivi)- But Zo(*?i) is the restriction 
of Zo to IIi and, by definition, m is its inverse. Therefore miriD(f)(zo;r)) = 
mZ0(r?i) = Vi- T i l us by (28) D/ii(z0;f?) = Vi + «, which by (27) proves (26). 

Then let J7 and V be sets of the properties stated above. We set 

( = hi(z). (29) 

If z varies over U, then f varies over V. Since f G II we may write f = ft 4- &> 
SI € n i , fc € if (cf. (16)). Then by (25) and (20) 

ft = TTMTI<£(Z) G IIi, ft = fc € K. (30) 

Now if 
^ ) = ^ r 1 ( f ) , f € V , (31) 

then with 2 = ftj"1^) by (24), (18) and (30) 

ip($) = h(j>(z) = mnrfiz) + n2(f>{z) = ft + 'K^K1^). 
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With x(f) = /7T2^^r1(^) this equality shows that -0 is of the asserted form (5). 
Obviously x(f) is bounded and lies in K*. Since K* is finite dimensional, we see 
that % is completely continuous. Thus assertion (ii) of Lemma 4 is proved. 

6. LEMMA. With the notation used in Lemma 5 we suppose that the as-
sumptions of that lemma are satisfied. In addition we strengthen the assumption 
that </> ECS(Z) with s > 1 by requiring that 

8>p+l. (32) 

It is asserted that corresponding to each point ZQ £ Z there exists an open set 
Uo which in addition to satisfying 

z0eUoCU0cZ (33) 

has the following property: if </)0 is the restriction of <j) to Uo, then the set i?(</>0) 
of points in E which are regular values for (f>0 is dense and open. 

PROOF. It follows from Lemma 5 together with the assumption (32) that all 
assumptions of Lemma 4 are satisfied. Consequently, the point 

?° = / n ( 2 b ) e n (34) 

has an open neighborhood Vb with the properties asserted in that lemma. We 
claim that then the set 

Uo = h^(VQ) (35) 
has the properties asserted in the present lemma. In the first place UQ is open 
and Uo = ^i"1(^o) as follows from Theorem 2.3 in Chapter 5. Next the following 
two assertions hold: 

(a) for yo G E the equation <j){z) = yo has a solution z€.Uo'\i and only if for 
0"o = h(yo) G £ the equation ip($) = &o has a solution f G Vo; 

(b) for zo G Uo the differential D</>(ZQ]') is not singular if and only if the 
differential £),0(^i(^o); *) is not singular. 

(a) follows directly from the relation (21) between ^ and <j> and the properties 
of h and h\. 

(b) holds for the same reasons in conjunction with the chain rule. But (a) 
and (b) together imply that R(<I>Q) = h~1R(ip0)' 

Now R(^Q) is dense and open by Lemma 4. Therefore h~lR(ip0) is dense and 
open since h'1 is a linear one-to-one L.-S. map E onto E. 

7. Proof of the Sard-Smale theorem 4.4 of Chapter 2. Let yo be an arbitrary 
point of E. We have to prove that every neighborhood (in E) of yo contains a 
regular value for </>. Now if the equation 

<Kz) = Vo, yoeE-<j)(dZ), (36) 

has no solution, then, by definition, yo is a regular value for (j) and every neigh
borhood of 2/0 contains a regular value, e.g., yo-

Suppose now that the set Co of roots of (36) is not empty. Co is compact by 
Lemma 10 in Chapter 1, and every ZQ has a neighborhood UQ of the property 
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asserted in Lemma 6. As ZQ varies over Co, these neighborhoods form an open 
covering of this compact set. Consequently there exists a finite subcovering, say, 
C/o1,U§, ...,£/£ such that (cf. (33)) for i = 1,2,... ,q 

WoCUicZ; C0cU = f^W0. (37) 
i=l 

If fa is the restriction of (j) to U%
0, then by Lemma 6 the set R{fa) of regular 

values for fa is dense and open in E. Consequently by Baire's density theorem 
(see e.g. [2; p. 108, Theorem V']) the set 

A = f| R(fa) (38) 

is dense in E, and therefore in every neighborhood of yo- We show next the 
existence of an open neighborhood JVo of yo such that 

(/>-1{No)cU. (39) 

Indeed, otherwise, there would exist a sequence of positive numbers bv converging 
to 0, of points yv G -B(yo, 6v), and of points xv such that 

<t>M = y^^ a^ez, (40) 
but 

xv i U. (41) 
Now since the yv converge to yo and since </> is an L.-S. map, it is easy to see 
that a subsequence of the xv converges to a point xo which by (40) satisfies 
(f>(xo) = 2/o, i.e., 

xoe^1{vo) = C0. (42) 
But by (41) 

xo i U (43) 
since U is open. But by (42) and (37), xo € Co C U which contradicts (43). 

Then let NQ be a neighborhood of yo satisfying (39), and let Ai = A n No. 
Ai is not empty since A is dense and iVo open in E. We now show that every 
point yi of Ai is a regular value for <j>. If the equation 

4>{z) = Vl (44) 
has no solutions, there is nothing to prove. But if it has a solution, then every 
solution lies in U by (39), and therefore, by (37), in some of the sets J7Q, say for 
i = 1,2,..., qi with i < q\ < q. Consider now for such i a solution z G Ufa. Then 
<j)(z) = 4>i{z) = yi G A = f|jLi R(<l>j) C R{<j>i), and D(j){z\ h) is not singular. 

This finishes the proof that every point of NQ D A is a regular value for 0, and 
therefore it finishes the proof of the Sard-Smale theorem since an NQ satisfying 
(39) can be chosen as a subset of a given neighborhood of yo-
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