<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The problem of moments,</td>
<td>J. A. Shohat and J. D. Tamarkin</td>
</tr>
<tr>
<td>2</td>
<td>The theory of rings,</td>
<td>N. Jacobson</td>
</tr>
<tr>
<td>3</td>
<td>Geometry of polynomials,</td>
<td>M. Marden</td>
</tr>
<tr>
<td>4</td>
<td>The theory of valuations,</td>
<td>O. F. G. Schilling</td>
</tr>
<tr>
<td>5</td>
<td>The kernel function and conformal mapping,</td>
<td>S. Bergman</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to the theory of algebraic functions of one variable,</td>
<td>C. C. Chevalley</td>
</tr>
<tr>
<td>7.1</td>
<td>The algebraic theory of semigroups, Volume I,</td>
<td>A. H. Clifford and G. B. Preston</td>
</tr>
<tr>
<td>7.2</td>
<td>The algebraic theory of semigroups, Volume II,</td>
<td>A. H. Clifford and G. B. Preston</td>
</tr>
<tr>
<td>8</td>
<td>Discontinuous groups and automorphic functions,</td>
<td>J. Lehner</td>
</tr>
<tr>
<td>9</td>
<td>Linear approximation,</td>
<td>Arthur Sard</td>
</tr>
<tr>
<td>10</td>
<td>An introduction to the analytic theory of numbers,</td>
<td>R. Ayoub</td>
</tr>
<tr>
<td>11</td>
<td>Fixed points and topological degree in nonlinear analysis,</td>
<td>J. Cronin</td>
</tr>
<tr>
<td>12</td>
<td>Uniform spaces,</td>
<td>J. R. Isbell</td>
</tr>
<tr>
<td>13</td>
<td>Topics in operator theory,</td>
<td>A. Brown, R. G. Douglas, C. Pearcy, D. Sarason, A. L. Shields; C. Pearcy, Editor</td>
</tr>
<tr>
<td>14</td>
<td>Geometric asymptotics,</td>
<td>V. Guillemin and S. Sternberg</td>
</tr>
<tr>
<td>15</td>
<td>Vector measures,</td>
<td>J. Diestel and J. J. Uhl, Jr.</td>
</tr>
<tr>
<td>16</td>
<td>Symplectic groups,</td>
<td>O. Timothy O'Meara</td>
</tr>
<tr>
<td>17</td>
<td>Approximation by polynomials with integral coefficients,</td>
<td>Le Baron O. Ferguson</td>
</tr>
<tr>
<td>18</td>
<td>Essentials of Brownian motion and diffusion,</td>
<td>Frank B. Knight</td>
</tr>
<tr>
<td>19</td>
<td>Contributions to the theory of transcendental numbers,</td>
<td>Gregory V. Chudnovsky</td>
</tr>
<tr>
<td>20</td>
<td>Partially ordered abelian groups with interpolation,</td>
<td>Kenneth R. Goodearl</td>
</tr>
<tr>
<td>21</td>
<td>The Bieberbach conjecture: Proceedings of the symposium on the</td>
<td>Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors</td>
</tr>
<tr>
<td>22</td>
<td>Noncommutative harmonic analysis,</td>
<td>Michael E. Taylor</td>
</tr>
<tr>
<td>23</td>
<td>Introduction to various aspects of degree theory in Banach spaces,</td>
<td>E. H. Rothe</td>
</tr>
<tr>
<td>24</td>
<td>Noetherian rings and their applications,</td>
<td>Lance W. Small, Editor</td>
</tr>
<tr>
<td>25</td>
<td>Asymptotic behavior of dissipative systems,</td>
<td>Jack K. Hale</td>
</tr>
<tr>
<td>26</td>
<td>Operator theory and arithmetic in H^∞,</td>
<td>Hari Bercovici</td>
</tr>
<tr>
<td>27</td>
<td>Basic hypergeometric series and applications,</td>
<td>Nathan J. Fine</td>
</tr>
</tbody>
</table>
DIRECT AND INVERSE SCATTERING ON THE LINE

RICHARD BEALS
PERCY DEIFT
CARLOS TOMEI
Library of Congress Cataloging-in-Publication Data

Beals, Richard, 1938–
Direct and inverse scattering on the line/Richard Beals, Percy Deift, and Carlos Tomei.
p. cm. — (Mathematical surveys and monographs)
Bibliography: p.
ISBN 0-8218-1530-X (alk. paper)

QA329.B43 1988
515.7′24—dc19 88-14487
CIP

AMS softcover ISBN: 978-1-4704-2054-3

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink® service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.

© 1988 by the American Mathematical Society. All rights reserved.
Reprinted by the American Mathematical Society, 2015
Printed in the United States of America.
The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
In memory of our parents

Robert Beals
Philip Deift
Rose Deift
Enrico Tomei
Contents

Preface xiii
Introduction 1

Part I. The Forward Problem

1. Distinguished Solutions 7
 A strategy to obtain the matrix fundamental solution ψ

2. Fundamental Matrices 9
 The set Σ and the associated ordering in a sector
 The fundamental matrices m and \hat{m}: definition and uniqueness

2 bis. The Second Order Case 13
 Jost functions and scattering data
 Relation to the fundamental matrices of §2

3. Fundamental Tensors 17
 The fundamental tensors $f_k(x, z) = m_1 \wedge m_2 \wedge \cdots \wedge m_k$ and
 $g_k(x, z) = m_k \wedge m_{k+1} \wedge \cdots \wedge m_n$
 Volterra equations, existence and uniqueness in an open sector Ω;
 smoothness and extendability to $\overline{\Omega}\setminus 0$

4. Behavior of Fundamental Tensors as $|x| \to \infty$; the Functions Δ_k 21
 Asymptotics of f_k as $x \to +\infty$ and of g_k as $x \to -\infty$
 The functions Δ_k: existence, analyticity in Ω, and extendability
 to $\overline{\Omega}$; integral representations
5. Behavior of Fundamental Tensors as $z \to \infty$
 - Asymptotics of f_k and g_k as $z \to \infty$
 - Asymptotics of Δ_k as $z \to \infty$

6. Behavior of Fundamental Tensors as $z \to 0$
 - Asymptotics of f_k and g_k as $z \to 0$
 - Asymptotics of Δ_k as $z \to 0$

7. Construction of Fundamental Matrices
 - Decomposition of $f_k(g_k)$ into m_j's (\tilde{m}_j's)
 - The relation between the poles of m_k and the zeros of Δ_{k-1}
 - The residue of m at a pole

8. Global Properties of Fundamental Matrices; the Transition Matrix δ
 - Relation between m and \tilde{m}: the matrix δ
 - Asymptotics of m as $z \to \infty$ and as $z \to 0$
 - Asymptotics of $\frac{\partial}{\partial z} \psi(x,0)$ as $x \to \pm \infty$

9. Symmetries of Fundamental Matrices
 - The α-symmetry of m, \tilde{m}, and Δ_k
 - The relation between $m_L^\gamma(x,z)$ and $m_L(x,z)$

10. The Green’s Function for L
 - The Green’s kernel expressed in terms of the normalized eigenfunctions of L and L^*

11. Generic Operators and Scattering Data
 - Definition of genericity
 - Definition of scattering data
 - Injectivity of the map between generic operators and scattering data

12. Algebraic Properties of Scattering Data
 - The α-symmetry of v
 - The block structure of v on Σ
 - Diagonal entries of v in terms of δ
 - Integral representation of the entries of v

13. Analytic Properties of Scattering Data
Smoothness and decay properties of v on Σ

Properties of the asymptotic expansion of v at $z = 0$

14. Scattering Data for \tilde{m}; Determination of \tilde{v} from v
 Definition of \tilde{v} and its relation to v
 Obtaining δ from v as the solution of a factorization problem

15. Scattering Data for L^*
 Relations between v_L and v_{L^*} and between Δ_L and Δ_{L^*}

16. Generic Selfadjoint Operators and Scattering Data
 Definition of generic selfadjoint operator
 Δ_k and v arising from selfadjoint operators
 Forbidden regions

17. The Green’s Function Revisited
 The Green’s function in the selfadjoint case
 Derivation of the analyticity properties and the jump relations across $\sigma(L)$ from the algebraic properties of v

18. Genericity at $z = 0$
 Obtaining generic behavior of Δ_k’s at $z = 0$ by perturbation

19. Genericity at $z \neq 0$
 Ensuring by perturbation that Δ_k has only simple zeros in a sector Ω and no roots on $\partial \Omega$
 Ensuring by perturbation in the selfadjoint case that only allowable zeros occur on $\partial \Omega$

20. Summary of Properties of Scattering Data
 Definition of generic scattering data, and some immediate consequences

Part II. The Inverse Problem

21. Normalized Eigenfunctions for Odd Order Inverse Data
 Strategy for solving the inverse problem
 Definition of the normalized eigenfunctions μ
 Statement of basic inverse theorem
22. The Vanishing Lemma 86
 Null vectors and their triviality
 Uniqueness of normalized eigenfunctions

23. The Cauchy Operator 87
 Basic properties of the Cauchy transform in $H^1(\Sigma)$

24. Equations for the Inverse Problem 91
 The extension of μ to $(\Sigma \setminus 0) \cup \mathbb{Z}$
 The integral equation for μ
 Uniqueness of the solution of the integral equation

25. Factorization of v near $z = 0$ and Property (20.6) 98

26. Reduction to a Fredholm Equation 104
 Construction of a parametrix for the integral equation for
 $\mu(x, \cdot)$ using the factorization in §25
 The change of variables $\mu \mapsto \mu^#$

27. Existence of $h^#$ 114
 Solution of the integral equation for $h^# - \mu^# - 1$ for negative x

28. Properties of $h^#$ 117
 Continuous extension of $\mu(x, \cdot)$ to the boundary of a sector
 Asymptotics of $\mu(x, \cdot)$ as $x \to 0$
 Smoothness with respect to x

29. Properties of $\mu^#(x, z)$ and $\mu(x, z)$ as $z \to \infty$ and as $x \to -\infty$ 123
 Asymptotics of $\mu(x, z)$ and $\mu^#(x, z)$ as $z \to \infty$
 Decay of the coefficients in the expansions as $x \to -\infty$
 Decay of the x-derivatives of μ and $\mu^#$ as $x \to -\infty$

30. Proof of the Basic Inverse Theorem 127
 Existence of an operator L for which μ solves the generalized
 eigenvalue problem

31. The Scalar Factorization Problem for δ 130
 Existence of δ: explicit formula in terms of v

32. The Inverse Problem at $x = +\infty$ and the bijectivity of the
 map $L \mapsto S(L) = (Z(L), v(L))$ 134
CONTENTS

Existence of the normalized eigenfunctions $\tilde{\mu}$ at $x = +\infty$

Relation of $\tilde{\mu}$ to μ

Selfadjointness of L

Bijectivity of the scattering map (odd order case)

33. The Even Order Case 137

Modification of the inverse procedure to include negative spectrum

34. The Second Order Problem 143

Reduction of the inverse procedure to classical Faddeev-Marchenko theory; nongeneric data

Part III. Applications

35. Flows 149

The Cauchy problem for the Gelfand-Dikii evolutions

Well-posed and ill-posed problems; the geometry of phase space

36. Eigenfunction Expansions and Classical Scattering Theory 162

Spectral decomposition of L and the quantum mechanical wave operators in terms of bounded eigenfunctions

The scattering operator in terms of $v(L)$

37. Inserting and Removing Poles 170

Algebraic procedure to insert and remove poles of Δ_k while leaving the rest of the scattering data unchanged

Bäcklund transformations for the Gelfand-Dikii evolutions

38. Matrix Factorization and First Order Systems 181

Scattering data for ordinary differential operators viewed as scattering data for first order systems

Algebraic nature of the correspondence between operators and their associated first order systems

Nonuniqueness of the inverse problem for operators with coefficients in $L^1(\mathbb{R})$

The matrix factorization problem

Flows on systems induced by the Gelfand-Dikii hierarchy: modified KdV and others
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A. Rational approximation</td>
<td>197</td>
</tr>
<tr>
<td>Appendix B. Some formulas</td>
<td>201</td>
</tr>
<tr>
<td>References</td>
<td>203</td>
</tr>
<tr>
<td>Notation Index</td>
<td>207</td>
</tr>
<tr>
<td>Index</td>
<td>209</td>
</tr>
</tbody>
</table>
Preface

This monograph deals with the theory of linear ordinary differential operators of arbitrary order. Unlike treatments which focus on spectral theory, our treatment centers on the construction of special eigenfunctions (generalized Jost solutions) and on the inverse problem: the problem of reconstructing the operator from (minimal) data associated to the special eigenfunctions. In the second order case this program includes spectral theory and is equivalent to quantum mechanical scattering theory; the essential analysis involves only the bounded eigenfunctions. For higher order operators, although bounded eigenfunctions are again sufficient for spectral theory and quantum scattering theory, they are far from sufficient for a successful inverse theory.

The inverse theory which we develop is motivated by its applications to nonlinear wave equations in the spirit of KdV, although we feel that it is also of intrinsic interest for the theory of ordinary differential equations. Applications to spectral theory and quantum mechanical scattering theory, in addition to nonlinear wave equations, are included.
APPENDIX A

Rational approximation

Here we prove the following result used in §26.

PROPOSITION A.1 (cf. [BC1, Appendix A.2]). Let \(\theta(z) \) be a smooth, complex-valued function on \(\Sigma_k \) and on \(\Sigma_{k+1} \) (i.e., \(\theta \in C^\infty(\Sigma_k \cup \Sigma_{k+1}) \) and \(\lim_{z \to 0, z \in \Sigma_k} (d^{m'} \theta/dz^{m'}) (z), \lim_{z \to 0, z \in \Sigma_{k+1}} (d^{m''} \theta/dz^{m''}) (z) \) exist for all \(m', m'' \geq 0 \)) and suppose that

\[
(A.2) \quad \lim_{z \to 0} \frac{d^j \theta}{dz^j} (z) = 0 = \lim_{z \to 0} \frac{d^j \theta}{dz^j} (z), \quad 0 \leq j \leq N - 1,
\]

for some positive integer \(N \), and that

\[
(A.3) \quad \frac{d^j \theta}{dz^j} (z) = O(|z|^{-(K+1)}) \quad \text{as} \quad z \to \infty, \quad z \in \Sigma_k \cup \Sigma_{k+1},
\]

for some positive integer \(K \) and all \(j \geq 0 \). Then, given \(\eta > 0 \), there exists a rational function \(\chi(z) \), nonsingular on \(\Sigma_k \cup \Sigma_{k+1} \), such that

\[
(A.4) \quad \lim_{z \to 0} \frac{d^j \chi}{dz^j} (z) = 0, \quad 0 \leq j \leq N - 1,
\]

and

\[
(A.5) \quad \rho(z)^K \left| \frac{d^j}{dz^j} (\chi(z) - \theta(z)) \right| \leq \eta
\]

for \(z \in \Sigma_k \cup \Sigma_{k+1} \), and for \(0 \leq j \leq N \).

PROOF. Let the bisector of \(\Omega_{k+1} \) point along the direction of \(\dot{w} \), \(|\dot{w}| = 1 \). Set \(\phi(z) = (z + \dot{w})^K \theta(z) \) for \(z \in \Sigma_k \cup \Sigma_{k+1} \). Then \(\phi(z) \) is smooth on \(\Sigma_k \) and on \(\Sigma_{k+1} \),

\[
(A.2)' \quad \lim_{z \to 0} \frac{d^j \phi}{dz^j} (z) = 0 = \lim_{z \to 0} \frac{d^j \phi}{dz^j} (z), \quad 0 \leq j \leq N - 1,
\]

and

\[
(A.3)' \quad \frac{d^j \phi}{dz^j} (z) = O \left(\frac{1}{|z|} \right) \quad \text{as} \quad z \to \infty, \quad z \in \Sigma_k \cup \Sigma_{k+1}
\]

for all \(j \geq 0 \).
For $z \in \Sigma_k \cup \Sigma_{k+1}$ and $\varepsilon > 0$, set

$$\phi_\varepsilon(z) = \int_{\Sigma_{k+1} \cup \Sigma_k} \phi(\zeta) \left(\frac{1}{\zeta - z - \varepsilon \omega} - \frac{1}{\zeta - z + \varepsilon \omega} \right) \frac{d\zeta}{2\pi i},$$

where the integral on Σ_k runs from 0 to ∞ and the integral on Σ_{k+1} runs from ∞ to 0.

Differentiating with respect to z and using (A.2)', we obtain

$$\frac{d^j \phi_\varepsilon}{dz^j}(z) = \int_{\Sigma_{k+1} \cup \Sigma_k} \frac{d^j \phi}{d\zeta^j}(\zeta) \left(\frac{1}{\zeta - z - \varepsilon \omega} - \frac{1}{\zeta - z + \varepsilon \omega} \right) \frac{d\zeta}{2\pi i}$$

for $0 \leq j \leq N$.

Standard computations for the Poisson integral together with (A.3)' and the identity

$$\int_{\Sigma_{k+1} \cup \Sigma_k} \left(\frac{1}{\zeta - z - \varepsilon \omega} - \frac{1}{\zeta - z + \varepsilon \omega} \right) \frac{d\zeta}{2\pi i} = 1$$

now prove that, for sufficiently small positive ε,

$$\sup_{z \in \Sigma_k \cup \Sigma_{k+1}} \left| \frac{d^j \phi_\varepsilon}{dz^j}(z) - \frac{d^j \phi}{dz^j}(z) \right| < \eta$$

for $0 \leq j \leq N$.

Set

$$P(\zeta, z, \varepsilon) = \frac{1}{2\pi i} \left(\frac{1}{\zeta - z - \varepsilon \omega} - \frac{1}{\zeta - z + \varepsilon \omega} \right),$$

and let $\hat{\zeta}_k, \hat{\zeta}_{k+1}$ be unit vectors pointing outward along Σ_k, Σ_{k+1}, respectively. Given m, set

$$\phi_{\varepsilon, m}(z) = \frac{1}{m} \sum_{s=1}^{m^2} \phi\left(\frac{s}{m} \hat{\zeta}_k \right) P\left(\frac{s}{m} \hat{\zeta}_k, z, \varepsilon \right) - \frac{1}{m} \sum_{s=1}^{m^2} \phi\left(\frac{s}{m} \hat{\zeta}_{k+1} \right) P\left(\frac{s}{m} \hat{\zeta}_{k+1}, z, \varepsilon \right).$$
Then, for $0 \leq j \leq N$ and fixed $\varepsilon > 0$,

$$\left| \frac{d^j \phi_{\varepsilon,m}}{dz^j} (z) - \frac{d^j \phi_{\varepsilon}}{dz^j} (z) \right| \leq \left| \int_{\Sigma_k \cup \Sigma_{k+1}} \phi(\zeta) \frac{d^j}{dz^j} P(\zeta, z, \varepsilon) d\zeta \right|

+ \sum_{s=1}^{m^2} \int_{\{(s/m)\zeta_k \}} \left(\phi(\zeta) \frac{d^j}{dz^j} P(\zeta, z, \varepsilon) - \phi\left(\frac{s}{m} \zeta_k\right) \frac{d^j}{dz^j} P\left(\frac{s}{m} \zeta_k, z, \varepsilon\right) \right) d\zeta

+ \sum_{s=1}^{m^2} \int_{\{(s/m)\zeta_k+1 \}} \left(\phi(\zeta) \frac{d^j}{dz^j} P(\zeta, z, \varepsilon) - \phi\left(\frac{s}{m} \zeta_{k+1}\right) \frac{d^j}{dz^j} P\left(\frac{s}{m} \zeta_{k+1}, z, \varepsilon\right) \right) d\zeta

\leq \text{const.} \left(\sup_{|\zeta| > m} \left| \phi(\zeta) \right| \right) \int_{\Sigma_k \cup \Sigma_{k+1}} \frac{1}{((\zeta - z)^2 - \varepsilon_2 \hat{\omega}^2)} d\zeta

+ \sum_{s=1}^{m^2} \frac{1}{2m^2} \left(\sup_{\zeta \in \{(s/m)\zeta_k \}} \left| \frac{d}{d\zeta} \left(\phi(\zeta) \frac{d^j}{dz^j} P(\zeta, z, \varepsilon) \right) \right| \right)

+ \sup_{\zeta \in \{(s/m)\zeta_{k+1} \}} \left| \frac{d}{d\zeta} \left(\phi(\zeta) \frac{d^j}{dz^j} P(\zeta, z, \varepsilon) \right) \right|.

Using (A.3), we find that, for fixed $\varepsilon > 0$,

$$\left| \frac{d^j \phi_{\varepsilon,m}}{dz^j} (z) - \frac{d^j \phi_{\varepsilon}}{dz^j} (z) \right| \leq \text{const.} \left(\sup_{|\zeta| > m} \left| \phi(\zeta) \right| \right)

+ \frac{1}{m} \int_{\Sigma_k \cup \Sigma_{k+1}} \left| d\zeta \right| \frac{1}{((\zeta - z)^2 - \varepsilon_2 \hat{\omega}^2)} < \eta,

\text{for all } z \in \Sigma_k \cup \Sigma_{k+1}, \text{ provided } m \text{ is chosen sufficiently large.}

Finally, set

$$\chi(z) = \frac{1}{(z + \hat{\omega})^K} \left\{ \phi_{\varepsilon,m}(z) - \sum_{j=0}^{N-1} \frac{z^j \frac{d^j \phi_{\varepsilon,m}}{dz^j}(0)}{j!} \right\} / \left[1 - (\gamma z)^N\right],$$

where γ is chosen so that $\chi(z)$ has no singularities on $\Sigma_k \cup \Sigma_{k+1}$.

Clearly $\chi(z)$ is a rational function, $\lim_{z \to 0} (d^j \chi/dz^j) = 0$, $0 \leq j \leq N - 1$, and

$$\rho(z)^K \frac{d^j}{dz^j} (\chi(z) - \theta(z)) = \rho^K(z) \left(\frac{d^j}{dz^j} \left\{ \left[(-\sum_{j=0}^{N-1} \frac{z^j \frac{d^j \phi_{\varepsilon,m}}{dz^j}(0)}{j!})/\left[1 - (\gamma z)^N\right]\right] \right\} \right)

+ \rho^K(z) \left(\frac{d^j}{dz^j} \left[\frac{\phi_{\varepsilon,m}(z) - \phi_{\varepsilon}(z)}{(z + \hat{\omega})^k} \right] \right)

+ \rho^K(z) \left(\frac{d^j}{dz^j} \left[\frac{\phi_{\varepsilon}(z) - \phi(z)}{(z + \hat{\omega})^k} \right] \right).$$
The second and third terms are dominated by η, by (A.8) and (A.9). Moreover, (A.8) and (A.9) also imply that $|\langle d^j \phi_{\varepsilon,m} \rangle d z^j(0)| \leq 2\eta$ for $0 \leq j \leq N - 1$, by (A.2)', so the first term is also dominated by η.

Remark A.10. Requiring (A.3) for all $j \geq 0$ is clearly too much. It is enough that $\vartheta(z)$ be C^{N+1} and that (A.3) hold for $0 \leq j \leq N + 1$.
APPENDIX B

Some Formulas

Here we collect some useful algebraic formulas. When some indication of the derivation is given at the first appearance of the formula, we cite that appearance. Otherwise we give a derivation here.

(B.1) \[\Lambda^{-1}_z J_z \Lambda_z = z J(z); \] see (2.10).
(B.2) \[J(\alpha z) = \alpha^{-1} J(z); \] see (9.3).
(B.3) \[\Lambda_{\alpha z} = \Lambda_z; \] see (9.4).
(B.4) \[R(J_z)^* R = J_z; \] see (9.8).
(B.5) \[R J(z)^* R = J(\tilde{z}); \] see (9.10).
(B.6) \[\Lambda(z)^* \Lambda(z) = n I; \] see (9.12).
(B.7) \[R \Lambda(z) R = \Lambda(\tilde{z}) J(\tilde{z}); \] see (9.13).
(B.8) \[\pi_{j+2} = \pi_j, \quad \pi_{\alpha z} = \pi_z; \] see (12.4).
(B.9) \[\pi_z J_+(z) \pi_z = J_-(z); \]

this is essentially the definition of the period 2 permutation matrix \(\pi_z, z \in \Sigma; \) see Definition 11.11.

(B.10) \[R \pi_z R = \pi_z; \]

in view of (B.8) this need only be established for \(z \in \Sigma_0 = i \mathbb{R}_+ \) and \(z \in \Sigma_1. \) Now the ordering of roots in \(\Omega_{j+n} = -\Omega_j \) is the opposite of the ordering in \(\Omega_j, \) so \(R \pi_0 R = \pi_n \) and \(R \pi_1 R = \pi_{n+1} = \pi_{n-1}, \) as desired.

(B.11) \[R = \pi_j \pi_{j+1} \cdots \pi_{j+n-1} = \pi_{j+n-1} \pi_{j+n-2} \cdots \pi_j; \]

in fact, the product on the right is a permutation matrix which converts (vertical vectors) from the \(\Omega_j \) ordering to the \(\Omega_{j+n} = -\Omega_j \) ordering, which is opposite. The other product is the inverse, and \(R^{-1} = R. \)

The next identity refers to the global order operators introduced in Definition 38.22.

(B.12) \[R \Lambda_g = \Lambda_g J_g; \]

in fact,

\[(R \Lambda_g)_{jk} = (\Lambda_g)_{j-n-1,j} = \alpha^{(n-j)k} \]

\[= \alpha^k = \alpha^{(j-1)k} \alpha^k = (\Lambda_g)_{jk} \alpha^k = (\Lambda_g J_g)_{jk}. \]
Recall that

$$\Pi = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & 0 & 1 \\ 1 & 0 & \cdots & 0 \end{pmatrix} = J_1.$$

(B.13) \hspace{1cm} R\Pi^*R = \Pi; \hspace{0.5cm} \text{take } z = 1 \text{ in (B.5)}.

(B.14) \hspace{1cm} \Pi = \Lambda(z)J(z)\Lambda(z)^{-1};

in fact,

$$[\Pi\Lambda(z)]_{jk} = \Lambda(z)_{j+1,k} = \alpha_k^j = \alpha_k\alpha_k^{j-1}$$

$$= \alpha_k\Lambda(z)_{j,k} = [\Lambda(z)J(z)]_{jk}.$$

(B.15) \hspace{1cm} \Pi = \Lambda_gJ_g\Lambda_g^{-1};

this is essentially the same as the preceding calculation:

$$(\Pi\Lambda_g)_{jk} = (\Lambda_g)_{j+1,k} = \alpha^j = \alpha^{(j-1)k}\alpha^k$$

$$= [\Lambda_gJ_g]_{jk}.$$

Similarly,

(B.16) \hspace{1cm} \Pi = \Lambda_g^{-1}RJ_gR\Lambda_g;

in fact

$$(RA_g\Pi)_{jk} = (\Lambda_g\Pi)_{n-j+1,k} = (\Lambda_g)_{n-j+1,k-1}$$

$$= \alpha^{(n-j)(k-1)} = \alpha^{j(k-1)} = \alpha^j\alpha^{-jk}$$

$$= \alpha^j\alpha^{(n-j)k} = \alpha^j(\Lambda_g)_{n-j+1,k}$$

$$= (JRA_g)_{jk}.$$

Finally, we recall Definition 12.11, which amounts to

(B.17) \hspace{1cm} j \sim j + 1 \hspace{0.5cm} \text{at } z \text{ if } (\pi_x)_{j,j+1} \neq 0.
References

[Da] G. Darboux, La théorie générale des surfaces, Gauthier Villars, Paris, 1889, livre IV, Ch. IX.

REFERENCES

Notation Index

<table>
<thead>
<tr>
<th>Notation</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_k)</td>
<td>(3.16), p. 19</td>
</tr>
<tr>
<td>(f_{kv})</td>
<td>(5.2), p. 22</td>
</tr>
<tr>
<td>(j_{kv})</td>
<td>(6.9), p. 25</td>
</tr>
<tr>
<td>(G_0(n)), (G_e(n)), (G(n))</td>
<td>§20, p. 80</td>
</tr>
<tr>
<td>(G(x,y,z))</td>
<td>(10.1), p. 42</td>
</tr>
<tr>
<td>(G_{comp})</td>
<td>§35, p. 154</td>
</tr>
<tr>
<td>(G'(n))</td>
<td>(35.6), p. 150</td>
</tr>
<tr>
<td>(g_k)</td>
<td>(3.1), p. 17</td>
</tr>
<tr>
<td>(g^*)</td>
<td>(3.16), p. 19</td>
</tr>
<tr>
<td>(g_{kv})</td>
<td>(5.2), p. 22</td>
</tr>
<tr>
<td>(g_{kv})</td>
<td>(6.9), p. 25</td>
</tr>
<tr>
<td>(H_N^{\Sigma_k}), (H_N^{\Sigma})</td>
<td>§21, pp. 84–85</td>
</tr>
<tr>
<td>(H_0^{\Sigma}(\Sigma_e M_n^{(C)}))</td>
<td>(26.9), p. 105</td>
</tr>
<tr>
<td>(h^#(z))</td>
<td>(26.76), p. 112</td>
</tr>
<tr>
<td>(J = J(z))</td>
<td>(2.8), p. 10</td>
</tr>
<tr>
<td>(J_2)</td>
<td>(11.15), p. 45</td>
</tr>
<tr>
<td>(J_z)</td>
<td>(2.2), p. 10</td>
</tr>
<tr>
<td>(L)</td>
<td>(1.1), p. 7</td>
</tr>
<tr>
<td>(L_0)</td>
<td>(1.3), p. 7</td>
</tr>
<tr>
<td>(L_x)</td>
<td>§21, p. 84</td>
</tr>
<tr>
<td>(L_n)</td>
<td>(35.1), p. 149</td>
</tr>
<tr>
<td>(M^{(\nu)}(x,z))</td>
<td>(8.27), p. 37</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(2.13), p. 12; (2.14), p. 12</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(2.14), p. 12</td>
</tr>
<tr>
<td>(m_k = m_1)</td>
<td>(3.1), p. 17</td>
</tr>
<tr>
<td>(m_\nu(x))</td>
<td>(8.5), p. 34</td>
</tr>
<tr>
<td>(m_{\pm}(x))</td>
<td>(8.21), p. 36</td>
</tr>
<tr>
<td>(m_{\pm}(x))</td>
<td>(8.26), p. 37</td>
</tr>
<tr>
<td>(m_{\pm}(x))</td>
<td>(11.14), p. 45</td>
</tr>
<tr>
<td>(P(x))</td>
<td>(24.15), p. 93</td>
</tr>
<tr>
<td>(P_{\pm}(x))</td>
<td>(24.16), p. 93</td>
</tr>
<tr>
<td>(P(x',z))</td>
<td>(24.17), p. 93</td>
</tr>
<tr>
<td>(p_j)</td>
<td>(1.1), p. 7</td>
</tr>
<tr>
<td>(q)</td>
<td>(2.3), p. 10</td>
</tr>
<tr>
<td>(q_k)</td>
<td>(3.18), p. 19</td>
</tr>
<tr>
<td>(\tau_{x}(z))</td>
<td>(26.1), p. 104</td>
</tr>
<tr>
<td>(S)</td>
<td>§32, p. 135</td>
</tr>
<tr>
<td>(S_x)</td>
<td>(21.1), p. 84</td>
</tr>
</tbody>
</table>
T, T_j, §25, p. 99
$u^{(0)}_k$, (1.4), p. 7
u_1, u_2, (2.23), p. 13
u_1^+, u_2^+, (2.25), p. 13
$u_k(x, z)$, (1.5), p. 7
$V(\alpha_1, \ldots, \alpha_k)$, (6.2), p. 24
$\nu(z)$, (11.12), p. 45
$\nu(z_0)$, (11.8), p. 44
$\nu_\pm(z_0)$, (16.10), p. 61; (16.11), p. 61
ν_j, (13.4), p. 53
ν, (14.1–2), p. 54; (32.3–4), pp. 134–135
ν_x, (21.2), p. 84; (21.3), p. 84
$\nu^\#
u^\#$, (26.55), p. 109; (26.64), p. 110
$W(x)$, (2.26), p. 13
W_\pm, (36.16), p. 164; (36.37), p. 169
$w^\pm(x)$, (24.3)\pm, p. 92
$(w^\#)^\pm$, (26.79–80), p. 113; (26.89), p. 113
$w^\#_e(x)$, (24.5), p. 92
$X = X_{\nu, \kappa, \varepsilon}$, (26.13), p. 105
$X_\nu(z)$, (26.49), p. 109
Y_{ν}, (26.7), p. 105
Z, (8.1), p. 33; (11.6), p. 44
Z_k, (11.6), p. 44
$Z^\#$, (26.50), p. 109
Index

abstract (Volterra) model, (3.21), p. 19
α-symmetry, (9.1), p. 40
associated ordering, (2.7), p. 10
Bäcklund transformation, (37.30), p. 180
block structure, (12.11), p. 48
Boussinesq equation, (35.30), p. 158; §37, p. 180
Cauchy operator, (23.1), p. 87
center manifold, §35, p. 162
central entries, (35.17), p. 153
central roots, (35.17), p. 153
compatibility conditions, for v at $z = 0$, (13.5), p. 53
Darboux transformation, (37.14), p. 172
decomposable tensors, (7.1), p. 28
distinguished solutions, (1.2), p. 7
distinguished tensor solutions, (1.9), p. 9
(1.10), p. 9
eigenfunctions, generalized, (1.2), p. 7
eigenfunctions, normalized, (21.4), p. 85; (33.6), p. 138
extension (scattering data), (37.1), p. 170; (37.18), p. 173
forbidden regions, Fig. 5, p. 60
forward problem, §1, p. 7; (11.17), p. 45
free operator, (1.3), p. 7
fundamental matrix m, (2.13), p. 12
(2.14), p. 12
fundamental tensors, (3.1), p. 17
fundamental tensor families, (3.6), p. 18
Gelfand-Dikii flows, (35.1), p. 149;
(35.39), p. 160
generalized eigenfunctions, (1.2), p. 7
generic operator, (11.1), p. 44
generic selfadjoint operator, (16.1), p. 59
Green’s function, (10.7), p. 43
inverse problem, (11.17), p. 45
k-stable entry, (35.17), p. 154
k-stable index, (35.17), p. 154
k-unstable entry, (35.17), p. 154
k-unstable index, (35.17), p. 154
KdV equation, (35.30), p. 158
local ordering of roots, (1.7), p. 8
matrix solution ψ, §1, p. 9; §2, p. 11
modified KdV, §38, p. 193
normalized eigenfunction, (21.4), p. 85;
(33.6), p. 138
null vector, (22.1), p. 86; (26.76), p. 112;
(33.13), p. 138
ordering, associated, (2.7), p. 10
ordering of roots, local, (1.7), p. 8
reflection coefficient, §2-bis, p. 16
restriction (scattering data), (37.1), p. 170; (37.18), p. 174
S-matrix, §2-bis, p. 17
S-matrix (scattering theory), (36.17), p. 165; (36.38), p. 169
scattering data, (11.17), p. 45
scattering data, second order, (2.36), p. 15; (2.37), p. 15
scattering operator, (36.17), p. 165;
(36.38), p. 169
sine-Gordon equation, §38, p. 194
singular set, (2.4), p. 10; (2.6), p. 10
sinh-Gordon equation, §38, p. 194
stable entry, (35.17), p. 154
stable index, (35.17), p. 154
stable manifold, Fig. 15, p. 161
symmetry, α, (9.1), p. 40
tensor families, fundamental, (3.6), p. 18
tensor families, transformed, (3.16), p. 19
tensors, decomposable, (7.1), p. 28
tensors, fundamental, (3.1), p. 17
transformed tensor families, (3.16), p. 19
translated operator L_z, §21, p. 84
transmission coefficient, §2-bis, p. 16
unstable entry, (35.17), p. 154
unstable index, (35.17), p. 154
unstable manifold, Fig. 15, p. 161
vanishing lemma, (22.2), p. 86; (26.77), p. 113; (33.15), p. 138
wave operators, (36.15), p. 164; (36.37), p. 169

209