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Preface 

In 1907 Poincare showed that two real hypersurfaces in C2 are in gen
eral biholomorphically inequivalent, [Po]. That is, given two real analytic 
submanifolds of real dimension three in C there usually is no biholomor-
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phism of one open set in C to another open set in C that takes a piece 
of the first submanifold onto the second. He then raised the question of 
finding the invariants that distinguish one real hypersurface from another. 
This basic question was first completely answered by Cartan, in [Ca2]. Car-
tan remarked "Je reprends la question directement comme application de 
ma methode generate d'equivalence. La resolution complete du probleme de 
Poincare me conduit a des notions geometriques nouvelles . . . " . A second 
solution was given by Moser in 1973. In joint work with Chern [CM] this 
was generalized, along with Cartan's original solution, to dimensions greater 
than two. (At about this time, Tanaka in [Tanl] and [Tan2] gave a different 
extension of Cartan's work to higher dimensions.) 

The study of the basic problem for CR structures primarily rests on these 
two works. Thus, although most introductions to an area of mathematics are 
a synthesis from many sources, reflecting how mathematics usually develops, 
the present one, to a surprising degree, is not. Rather, it is in large measure 
an exposition of the papers of Cartan and of the joint paper of Chern and 
Moser. 

For Cartan one needs to know something of his general method of equiv
alences and of the structure of the Lie group SU(2, 1). So we have tried 
to provide this necessary background before going over the main construc
tion. This background is also important for the part of the Chern-Moser 
paper that extends Cartan's work to higher dimension. For the rest of the 
Chern-Moser paper the problem is somewhat different. Here the approach is 
more straightforward but also more technically difficult. We do the lowest-
dimensional case in detail. This should also make the higher-dimensional 
case more accessible. 

An exception to this focus on the above two works is Chapter 1. Here 
we give the basic definitions and properties and draw from many sources 
in the literature and in the "folklore." Chapter 2 uses simple facts about 

IX 
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the automorphism groups of the ball and polydisc in order to show that the 
Riemann Mapping Theorem does not hold in higher dimension. Then the 
automorphism group of the ball, SU(2, 1), is computed in enough detail 
for future needs. The next two chapters go over the Moser normal form. In 
Chapter 5, we give the background necessary to understand Cartan's work. 
Then in Chapter 6 we present Cartan's basic construction along with two 
variations, one of which is the lowest-dimensional case of the construction in 
the Chern-Moser paper. In the next three chapters we explore some aspects 
of Cartan's "new geometric ideas," and also relate his invariants to those 
found by Moser. Finally, in Chapter 10 we consider the landmark paper of 
Hans Lewy [Le2] and the realizability problem for abstract CR structures. 
Thus we end with a certain historical completeness — Professor Lewy has 
stated that his interest in the partial differential operators associated to real 
hypersurfaces arose while trying to understand the papers of Cartan. 

A number of exercises are included; some to help the reader clarify material 
for himself or herself and others to simplify the author's task. After Chapter 
10 there are Notes providing additional information for some of the chapters 
and also indicating some of the material that would have been included if 
the author had not been anxious to conclude this long delayed project. 

This book evolved from lecture notes for courses given at Rutgers Univer
sity and Universite de Grenoble. The author is grateful for these opportu
nities to lecture on this subject. The author is also grateful to the National 
Science Foundation for its support of his research, some of which has found 
its way into this book, and to Provost Walter Gordon of Rutgers-Camden 
for his support of this project. Finally, it is a pleasure to acknowledge the 
constant encouragement and support of Dalia Ritter. 



Notes 

Chapter 1 

§2. Cartan called his geometry "pseudoconformal" in order to emphasize 
that what he was studying was a generalization of the theory of one complex 
variable (conformal geometry). The term "CR manifold" was first used in 
[Gr]. A careful discussion of the basic definitions and elementary proper
ties may be found in [Ta] where the CR structures are not restricted to be 
of hypersurface type. There is little overlap between this book and ours; it 
focuses on a problem not considered here, namely, the extension problem 
for CR functions, and is a good introduction to this field. Everyone should 
know the two basic extension results: A CR function defined on the bound
ary of a bounded open set with connected complement extends to a function 
holomorphic on the open set (Bochner-Hartog Theorem) and a CR function 
on a strictly pseudoconvex hypersurface extends as a holomorphic function 
to some open set that contains the hypersurface in its boundary (Lewy The
orem). 

The proof that a real analytic almost complex structure is complex can be 
found, for instance, in [KN, volume 2]. The original Newlander-Nirenberg 
Theorem required smoothness of class C n+ for manifolds of dimension 
In . This was improved to C1+ in [NW]. There are now several very differ
ent proofs of the Newlander-Nirenberg Theorem; for instance, those of Mal-
grange [Ma], [Ni2], Kohn [FK], and Webster [We2]. The one-dimensional 
version of the Newlander-Nirenberg Theorem is the existence of conformal 
coordinates. The standard references are [Be] and [Che]. 

§3. Theorem 1 holds in a formal sense for C°° functions and hypersur-
faces. That is, if / = f(z ,~z,u) is CR on 

ImW = v(z, "z, u) 

then there exists a formal power series 

17 V ^ l k 

F = 2^aikzw 

such that the Taylor coefficients at the origin for f(z, z , u) come from 
the formal power series for F(z, u + iv(z, z, u)). This can be proved by 
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adapting to formal power series the proof of Theorem 1. 

§4. There are several proofs of Theorem 2 in the literature. The earliest 
seems to be [AH] where, however, it is remarked, "Although we were unable 
to find a proof... in the literature, (the) theorem seems to have been known 
for a long time." The present author has known each of the proofs given 
in Chapter One long enough to be unsure of their origins, but he believes 
that he learned the first from H. Rossi and the second from C. LeBrun. 
Realizability results in the absence of analyticity involve subtle questions 
of partial differential equations. Some of these can be avoided if the CR 
structure is part of a compact CR manifold: A compact strictly pseudoconvex 
CR manifold of dimension greater than three is locally realizable [BdM]. The 
restriction to dimensions greater than three is essential. The nonrealizable 
structures of dimension three constructed in Chapter Ten can, in a trivial 
manner, be extended to strictly pseudoconvex structures on the sphere. 

However, a compact CR manifold may be realizable in the neighborhood 
of each of its points without being globally realizable. There are two interest
ing and relatively simple examples of such structures on S . We have seen 
that 

r d d 

dz dw 
globally defines the CR structure on S3 c C2 . For 0 < t < 1, the operator 
L + tL also defines a CR structure on S . This structure is real analytic, 

3 3 

therefore, locally realizable. Indeed, there is a global immersion S c C that 
realizes this structure. But for t ^ 0 there is no embedding: any function 
f(z ,~z,wyW) on S that is annihilated by L + tL for some t, 0 < t < 1 , 
is even, f(z ,~z,w,w) = f(—z, - z , —w , —w). This result is due to [Bu] 
who adapted an example in [Rosl]. For a new proof and generalizations see 
[Fal]. 

This example is strictly pseudoconvex at every point of the sphere. Our 
second example is strictly pseudoconvex at no point. A CR structure is called 
Levi flat if the Levi form is identically zero. It is easy to see that any Levi 
flat CR structure is locally realizable. On the other hand, any compact hy-
persurface in a Euclidean space has a point at which it is strictly convex. 
So it follows from the proof of Lemma 4 that any compact hypersurface in 
C has a point at which it is strictly pseudoconvex. Thus it only remains to 
construct a Levi flat CR structure on S in order to have a locally, but not 
globally, realizable structure. A Levi flat structure provides a foliation of S 
with two-dimensional leaves. So we start with one such foliation. See, for 
instance, [La] for a discussion of the Reeb foliation. This foliation uses the 
decomposition of 5" into two solid tori joined along their common torus 
boundary. We use this common boundary to define an orientation on each 
leaf. We then place any metric on S3 and let the J operator on any leaf be 
rotation by ninety degrees. This gives us the desired Levi flat CR structure. 
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Note that this structure induces a complex structure on each leaf and also 
that the foliation has a compact leaf, namely, the common torus boundary. 
So any global CR map into any Cn must map this torus to a point (and 
indeed any global CR function must be a constant on all of S ) . This is a 
second reason why the CR structure is not globally realizable. 

§6. There are even strictly pseudoconvex CR structures, with the symmetry 
of Reinhardt hypersurfaces, which have the constants as the only global CR 
functions [Ba]. In Chapter Ten, we will find a CR structure on which the 
constants are even the only local CR functions. Such a structure, of course, 
is not locally realizable at any of its points. 

Chapter 3 
The basic technique in this chapter is to equate coefficients in Taylor ex

pansions. This was already outlined by Poincare who commented that to 
find the invariants of a hypersurface one could use "des calculs qui peuvent 
etre longs mais qui restent elementaires." What is surprising, besides the 
amount of careful work necessary to carry out this "elementary" computa
tion, is that, as we see in Chapter 4, this computation reveals an underlying 
geometric structure. Further, this same structure appears in a completely 
different approach to the problem (Chapters 6 to 9). 

The usefulness of weights in this computation is a reflection of the fact 
that Q is invariant under the map (z, w) —• (tz, t w) where t is any 
nonzero real number. The existence of this dilation plays an important role 
also in other analytic properties of strictly pseudoconvex structures. See, for 
instance [BFG]. 

Chapter 5 
There is a holomorphic version of the Frobenius Theorem which arises 

from the usual statement and the usual proof simply by assuming that all 
functions, vector fields, etc. are holomorphic in all their arguments. This 
version was used in Chapter 1 to establish that all Cw CR structures are 
realizable. 

There is also a complex version of the Frobenius Theorem. Here the 
functions, vector fields, etc., are complex-valued but not holomorphic. This 
is a completely different result and is patterned on the Newlander-Nirenberg 
Theorem. See [Nil] and [Ho2]. 

Chapter 6 
It follows from Cartan's construction that a sufficiently smooth diffeo-

morphism of real analytic, strictly pseudoconvex CR structures must be real 
analytic. For let M and M1 be real analytic CR structures and let (p be 
a diffeomorphism of M to Mf. If 0 is at least seven times differentiate, 
then it may be lifted to a map of the geometric bundles B and Bf. This lift 
satisfies a real analytic system of equations of Frobenius form and so is itself 



230 NOTES 

real analytic. Thus <\> is also real analytic. Much stronger results are known. 
These are related to "reflection principles." See [BR] and the references cited 
therein. 

There is a way to directly relate the constructions of Cartan and Moser. 
Let M be the hypersurface, B the bundle of initial data for the normal form 
map, and coMC the Maurer-Cartan connection for SU(2, 1). Fix some point 
p e M and some point b e B in the fiber over p . Consider the mapping to 
normal form that corresponds to b . This provides an osculation of M to Q 
and of B to SU(2, 1). The connection coMC can then be transferred from 
the fiber of SU(2, 1) over the origin to the fiber of B over p . See [Jal]. 

Chapter 7 
Every C°° complex structure is equivalent to a Cw complex structure. 

This is not the case for CR structures, as may be shown using the relative 
invariant r. For it is not difficult to construct some M that has r — 0 
on an open set without r being identically zero. In any other coordinate 
system, r would have this same property. But if the structure on M were 
analytic, then r would be analytic; and this is impossible. (M can be given 
explicitly in normal form [Fa].) However, every realizable CR structure, 
strictly pseudoconvex or not, is given by the boundary values of analytic 
functions [HJ]. This is a partial converse to the fact that any Cw structure 
is realizable. 

Chapter 8 
The chains on the Reinhardt hypersurfaces RB have another interesting 

property. Consider the chains at some point P{ = (z0, w0). For an open 
set of initial directions the projection z(t) of the chain engulfs the origin. 
Each such chain contains the point P2 = (z0, e ni wQ) which, for B not 
an integer, is different from the original point. Thus the two points P{ and 
P2 may be connected by an infinite family of distinct chains. These chains 
correspond to some subset of the chains on Q that pass through a given 
point. 

Chapter 10 
There are now in partial differential equations very general nonsolvability 

results, which are completely divorced from the several complex variables 
framework of Lewy's original example. See, for instance, [Hoi] and [NT]. 
Also, some very simple examples have been found in two dimensions [Ni2]. 
From the point of view of CR structures, the most important remaining 
soh ability question is that of realizing five-dimensional strictly pseudoconvex 
manifolds. An interesting recent result here is [NR] in which it is shown that, 
unlike in higher dimensions, there is no "homotopy operator" in dimension 
five. There is also a new class of nonrealizability results for dimension three 
[Ro]. 

Finally, time and other constraints precluded the inclusion of several ad-
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ditional topics which might belong in a book such as this. Two which would 
have been especially appropriate are the Fefferman bundle, from which the 
chains are realized as the projections of the null geodesies of a Lorentz met
ric, and Webster's construction of the Cartan curvature, in analogy with the 
construction of the Weyl conformal curvature from a Riemannian metric. 
For the first, see [Fef] and [BDS]; for the second [Wei]. Of course, there is 
also an extensive literature on the analysis of the Lewy operators. A good 
place to start would be the survey article [BFG] which, in addition, treats 
some of the topics in this book. 
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