Spectral Theory and Analytic Geometry over Non-Archimedean Fields

Vladimir G. Berkovich

MATHEMATICAL SURVEYS AND MONOGRAPHS SERIES LIST

Volume

1 The problem of moments, J. A. Shohat and J. D. Tamarkin

2 The theory of rings, N. Jacobson

3 Geometry of polynomials, M. Marden

4 The theory of valuations, O. F. G. Schilling

5 The kernel function and conformal mapping, S. Bergman

6 Introduction to the theory of algebraic functions of one variable, C. C. Chevalley
7.1 The algebraic theory of semigroups, Volume I, A. H. Clifford and G. B. Preston
7.2 The algebraic theory of semigroups, Volume II, A. H. Clifford and G. B. Preston

8 Discontinuous groups and automorphic functions, J. Lehner

9 Linear approximation, Arthur Sard

10 An introduction to the analytic theory of numbers, R. Ayoub
11 Fixed points and topological degree in nonlinear analysis, J. Cronin

12 Uniform spaces, J. R. Isbell
13 Topics in operator theory, A. Brown, R. G. Douglas, C. Pearcy, D. Sarason, A. L. Shields; C. Pearcy, Editor

14 Geometric asymptotics, V. Guillemin and S. Sternberg

15 Vector measures, J. Diestel and J. J. Uhl, Jr.

16 Symplectic groups, O. Timothy O'Meara

17 Approximation by polynomials with integral coefficients, Le Baron O. Ferguson
18 Essentials of Brownian motion and diffusion, Frank B. Knight
19 Contributions to the theory of transcendental numbers, Gregory V. Chudnovsky

20 Partially ordered abelian groups with interpolation, Kenneth R. Goodearl

21 The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors

22 Noncommutative harmonic analysis, Michael E. Taylor

23 Introduction to various aspects of degree theory in Banach spaces, E. H. Rothe

24 Noetherian rings and their applications, Lance W. Small, Editor

25 Asymptotic behavior of dissipative systems, Jack K. Hale

26 Operator theory and arithmetic in H^{∞}, Hari Bercovici

27 Basic hypergeometric series and applications, Nathan J. Fine
28 Direct and inverse scattering on the lines, Richard Beals, Percy Deift, and Carlos Tomei
29 Amenability, Alan L. T. Paterson
30 The Markoff and Lagrange spectra, Thomas W. Cusick and Mary E. Flahive

MATHEMATICAL SURVEYS AND MONOGRAPHS SERIES LIST

Volume
31 Representation theory and harmonic analysis on semisimple Lie groups, Paul J. Sally, Jr. and David A. Vogan, Jr., Editors

32 An introduction to CR structures, Howard Jacobowitz

SPECTRAL THEORY AND
 ANALYTIC GEOMETRY OVER NON-ARCHIMEDEAN FIELDS

SPECTRAL THEORY AND ANALYTIC GEOMETRY OVER NON-ARCHIMEDEAN FIELDS

VLADIMIR G. BERKOVICH

American Mathematical Society
Providence, Rhode Island

Translated by Neal I. Koblitz

1980 Mathematics Subject Classification (1985 Revision). Primary 12J25, 32K10, 14G20, 20G25, 46P05, 46J99.

Library of Congress Cataloging-in-Publication Data
Berkovich, Vladimir G.
Spectral theory and analytic geometry over non-Archimedean fields/Vladimir G. Berkovich. p. cm.-(Mathematical surveys and monographs, ISSN 0076-5376; no. 33)
Includes bibliographical references and index.
ISBN 0-8218-1534-2 (alk. paper)
1. Spectral theory (Mathematics). 2. Geometry, Analytic. I. Title. II. Series.
QA320.B44 1990
90-830
515'.7222—dc20
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0076-5376/90 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Copyright (c) 1990 by the American Mathematical Society. All rights reserved.
Printed in the United States of America
The American Mathematical Society retains all rights except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. (8)

This publication was typeset using $A_{\mathcal{M}} S-T_{\mathrm{E}} X$, the American Mathematical Society's $T_{E X}$ macro system.

Contents

Introduction 1
Chapter 1. The Spectrum of a Commutative Banach Ring 11
1.1. Banach rings 11
1.2. The spectrum 12
1.3. Properties of the spectrum 15
1.4. Examples 17
1.5. Analytic spaces over a commutative Banach ring 19
Chapter 2. Affinoid Spaces 21
2.1. Affinoid algebras 21
2.2. Affinoid domains 27
2.3. Affinoid spaces 32
2.4. The reduction map 35
2.5. The relative interior 37
2.6. Functions analytic in a neighborhood of a closed subset 44
Chapter 3. Analytic Spaces 47
3.1. Definition and general properties 47
3.2. Topological properties of analytic spaces 52
3.3. Connection with rigid analytic geometry 56
3.4. GAGA: the case of nontrivial valuation 63
3.5. GAGA: the case of trivial valuation 68
3.6. Meromorphic functions 69
Chapter 4. Analytic Curves 75
4.1. One-dimensional quasipolyhedra 75
4.2. The projective line 77
4.3. Curves of genus ≥ 1 81
4.4. Uniformization 85
4.5. Picard's Theorem 88
4.6. A characterization of curves whose Betti number is equal to the genus 89
Chapter 5. Analytic Groups and Buildings 93
5.1. Subgroups and homogeneous spaces of analytic groups 93
5.2. Peaked points and the *-multiplication 97
5.3. A class of affinoid subgroups of a Chevalley group 103
5.4. Two embeddings of the building $B(G)$ in $G^{\text {an }}$ 108
5.5. Embeddings of the building $B(G)$ into compact homogeneous spaces $(G / H)^{\text {an }}$ 111
Chapter 6. The Homotopy Type of Certain Analytic Spaces 115
6.1. Projective space and its subsets 115
6.2. Chevalley groups and their compact homogeneous spaces 118
6.3. Analytic tori 119
6.4. Analytic groups with potentially good reduction 121
6.5. Abelian varieties 124
6.6. Weak local contractibility of the two-dimensional closed disc 125
Chapter 7. Spectral Theory 127
7.1. The spectrum and the resolvent 127
7.2. The spectrum with respect to a subalgebra 131
7.3. Holomorphic functional calculus 132
7.4. Partitions of the spectrum of an algebra 135
7.5. Partitions of the spectrum of an element 136
Chapter 8. Perturbation Theory 139
8.1. The Cauchy transform of a distribution with compact support 139
8.2. Fredholm theory 145
8.3. Perturbations of operators 148
8.4. The relative multiplicity of perturbation, and the trace formula 150
Chapter 9. The Dimension of a Banach Algebra 153
9.1. Dimension and stable dimension 153
9.2. Zero-dimensional Banach algebras 155
9.3. Dimension of a subalgebra 158
References 161
Index 165

Preface

According to A. Grothendieck one really does not need a space to do geometry, all one needs is a category of sheaves on this would-be space. A nice illustration of this idea is the introduction by J. Tate of the notion of rigid analytic space, which is a p-adic analog of the notion of complex analytic space. Rigid analytic spaces are good enough for the construction of the category of sheaves, but they don't allow direct application of the geometrical intuition that is so valuable over the complex field. And so they are called spaces only conditionally. Several years ago I found that p-adic analytic spaces really exist. They are quite elegant objects possessing many topological properties of complex analytic spaces that are sufficient, for example, for applying to them the homotopy and singular homology notions in the usual sense. This book is devoted to the study of these analytic spaces. We try to show that geometrical considerations are relevant and useful over p-adic fields too. Of course, time will show better whether the lost p-adic spaces were worth finding.

In the early stages of this work, the interest and encouragement of M . Vishik were a necessary stimulus for me. I am very grateful to him for this. I am also grateful to M. Gromov for his interest, encouragement, and valuable remarks. I would like to thank V. Hinich for useful discussion.

I currently hold the Reiter Family Career Development Chair at the Weizmann Institute.

References

[I] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields I (in Russian), Preprint, Moscow, April 1986.
[II] V. G. Berkovich, Spectral theory and analytic geometry over nonArchimedean fields II, Preprint IHES/M/88/43, September 1988.
[III] V. G. Berkovich, Non-Archimedean analytic spaces and buildings of semi-simple groups, Preprint IHES/M/89/11, February 1989.
[Ba] W. Bartenwerfer, Einige Fortsetzungssätze in der p-adischen analysis, Math. Ann. 185 (1970), 191-210.
[BKKN] R. Berger, R. Kiehl, E. Kunz, and H. J. Nastold, Differentialrechnung in der analytischen geometrie, Lecture Notes in Math. vol. 38, Springer, Berlin-Heidelberg-New York, 1967.
[Bo1] S. Bosch, Orthonormalbasen in der nichtarchimedean Funktionentheorie, Manuscripta Math. 1 (1969), 35-57.
[Bo2] S. Bosch, k-affinoide tori, Math. Ann. 192 (1971), 1-16.
[Bo3] S. Bosch, Rigid analytische Gruppen mit guter Reduction, Math. Ann. 223 (1976), 193-205.
[Bo4] S. Bosch, Zur Kohomologietheorie rigid analytischer Räume, Manuscripta Math. 20 (1977), 1-27.
[Bo5] S. Bosch, Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume, Math. Ann. 229 (1977), 25-45.
[BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
[BL1] S. Bosch and W. Lütkebohmert, Stable reduction and uniformization of abelian varieties I, Math. Ann. 270 (1985), 349-79.
[BL2] S. Bosch and W. Lütkebohmert, Stable reduction and uniformization of abelian varieties II, Invent. Math. 78 (1984), 257-97.
[BL3] S. Bosch and W. Lütkebohmert, Néron models from the rigid analytic viewpoint, J. Reine Angew. Math. 364 (1986), 69-84.
[Bou1] N. Bourbaki, Algèbre commutative, Hermann, Paris, 1961.
[Bou2] N. Bourbaki, Thèories spectrales, Hermann, Paris, 1967.
[BT] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. I. Donnée radicielles valuée, Publ. Math. I.H.E.S. 41 (1972), 5-251.
[Ch] C. Chevalley, Certains schémas en groupes semi-simples, Séminaire Bourbaki 13 (1960-61), n° 219, 16 pages.
[DeG] M. Demazure and A. Grothendieck, Schémas en groupes III, Lecture Notes in Math. vol. 153, Springer, Berlin-Heidelberg-New York, 1970.
[Dr] V. G. Drinfel'd, Elliptic modules, Math. USSR-Sb. 23 (1974), 56192.
[En] R. Engelking, General topology, Warszawa, 1977.
[Es] A. Escassut, Algèbres de Banach ultramétriques et algèbres de KrasnerTate, Astérisque, 10 (1973), 1-107.
[Fi] K.-H. Fieseler, Zariski's Main Theorem für affinoide Kurven, Math. Ann. 251 (1980), 97-110.
[GRS] I. Gel'fand, D. Raikov, and G. Shilov, Commutative normed rings, Chelsea Co., New York, 1964.
[Ge] L. Gerritzen, On non-Archimedean representations of abelian varieties, Math. Ann. 196 (1972), 323-46.
[GP] L. Gerritzen and M. van der Put, Schottky Groups and Mumford curves, Lecture Notes in Math. vol. 817, Springer, Berlin-Heidelberg-NewYork, 1980.
[GR1] H. Grauert and R. Remmert, Nichtarchimedische Funktionentheorie, Weierstraß-Festschrift, Wissenschaftl. Abh. Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen 33 (1966), 393-476.
[GR2] H. Grauert and R. Remmert, Coherent analytic sheaves, Springer, Berlin-Heidelberg-New York, 1984.
[SGA] A. Grothendieck, Séminaire de géométrie algébrique. I. Revêtements étales et groupe fondemental, Lecture Notes in Math. vol. 224, Springer, Berlin-Heidelberg-New York, 1971.
[EGA] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. IV. Étude local des schémas et des morphismes de schémas, Publ. Math. I.H.E.S. 20 (1964), 25 (1965), 28 (1966), 32 (1967).
[Gr] L. Gruson, Théorie de Fredholm p-adique, Bull. Soc. Math. France 94 (1966), 67-95.
[H] R. Hartshorne, Algebraic geometry, Springer, Berlin-Heidelberg-New York, 1977.
[Ka] I. Kaplansky, The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc. 1 (1950), 356-57.
[Ki1] R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 191-214.
[Ki2] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256-73.
[Kr] M. Krasner, Prolongement analytique uniforme et multiforme dans les corps valués complets, Colloque Int. CNRS 143 (1964), 97-142.
[Li] Q. Liu, Ouverts analytiques d'une courbe algébrique en géométrie rigide, Ann. Inst. Fourier (Grenoble) 37 (1987), 39-64.
[Lu] W. Lütkebohmert, Der Satz von Remmert-Stein in der nichtarchime-
dischen Funktionentheorie, Math. Z. 139 (1974), 69-84.
[Ly] Yu. I. Lyubich, Introduction to the theory of Banach representations of groups (in Russian), Vischa Shkola, Harkov, 1985.
[M1] D. Mumford, Abelian varieties, Bombay, 1968.
[M2] D. Mumford, An analytic construction of degenerating curves over complete local fields, Compositio Math. 24 (1972), 129-74.
[P1] M. van der Put, Non-Archimedean function algebras, Indag. Math. 33 (1971), 60-77.
[P2] M. van der Put, The class group of a one-dimensional affinoid space, Ann. Inst. Fourier (Grenoble) 30 (1980), 155-64.
[P3] M. van der Put, Cohomology on affinoid spaces, Compositio Math. 45 (1982), 165-98.
[P4] M. van der Put, A note on p-adic uniformization, Indag. Math. 49 (1987), 313-18.
[Rh] G. de Rham, Variétés différentiables, Hermann, Paris, 1955.
[Ro] P. Robba, Fonctions analytiques sur les corps valués complets, Astérisque 10 (1973), 109-218.
[Se] J.-P. Serre, Endomorphismes complètement continus d'espaces de Banach p-adiques, Publ. Math. IHES 12 (1962), 69-85.
[Ta] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-89.
[Ti] J. Tits, Reductive groups over local fields, Proc. Sympos. Pure Math. 33 (1979), 29-69.
[Vi] M. M. Vishik, Non-Archimedean spectral theory, J. Soviet Math. 30 (1985), 2513-54.

Index

Abelian variety,
associated torus with, 124
existence of universal covering, 125
homotopy type of, 125
skeleton of, 125
Absolute value, 11
Action of analytic group,
by inner automorphisms, 93
left, 93
on analytic space, 93
right, 93
two-sided, 93
Acyclicity Theorem, 30
Admissible,
covering, 56
homomorphism, 11
open set, 56
Affine,
space, 19
line, 78
Affinoid algebra,
affinoid k-algebra, 21
k-affinoid algebra, 21
distinguished, 81
finite algebras over, 25, 27
finite modules over, 24
homomorphisms of, 25
Japaneseness of, 26
Shilov boundary of, 36, 37
spectral radius, 23, 26
strictly k-affinoid algebra, 21
Affinoid domain,
in affinoid space, 27
in analytic space, 48
in projective line, 78
Laurent, 28
rational, 28, 31
strictly affinoid domain, 27, 30
Weierstrass, 27, 32, 97
Affinoid space,
affinoid space over $k, 32$
k-affinoid space, 32
boundary of, 39
Cohen-Macaulay at a point, 34
coherent sheaves, 33
dimension at a point, 34
dimension of, 34
interior of, 39
irreducible at a point, 35
meromorphic functions, 33
morphism of, 33
normal at a point, 34
pure dimensional, 34
reduced at a point, 34
regular at a point, 34
rigid, 57
smooth at a point, 34
strictly k-affinoid space, 32
Affinoid torus, 119
Algebraic curve,
nonsplit, 82
(semi)stable, 81
split, 81
Algebraic torus,
action of, 101
skeleton of, 119
split, 101
Analytic curve, 81
Analytic domain, 48
affinoid domain, 48
quasiaffinoid domain, 48
Analytic group, 93
action of, 93
cosets, 95
*-multiplication, 100
Stein, 97
subgroup, 95
Analytic function, 19
with values in Banach space, 127
Analytic space, 47
analytic atlas, 47
analytic space over $k, 48$
k-analytic space, 47
boundary, 49
Cohen-Macaulay, 51
chart, 47
closed, 49
compact, 50
formal, 121
holomorphically separated, 101
interior, 49
irreducible, 50
local arcwise connectedness, 52
local connectedness, 31
morphism of, 47
normal, 51
normalization of, 51
proper, 50
reduced, 51
reduction of, 51
regular, 51
rigid, 57
separated, 50
smooth, 51
Stein, 96
strictly k-analytic space, 48
Analytic torus, 120
skeleton of, 120
split, 119
Apartment, 108
Archimedean field, 12
Arens-Calderon Lemma, 134
Banach,
module, 12
ring, 11
space of countable type, 99,129
Betti number,
of projective curve, 85,89
of abelian variety, 125
Boundary,
of affinoid space, 39
of analytic space, 49
of homomorphism, 37
of morphism, 49
Shilov, 37
Bounded,
homomorphism, 11, 133
seminorm, 12
Bounded linear operator,
completely continuous, 146
discrete spectrum of, 138
essential spectrum of, 138
resolvent of, 127
root subspace, 138
spectrum of, 127
without invariant subspace, 130
Bruhat-Tits building, 108
Cartan decomposition, 108, 118
(α-cartesian basis, 99
Cauchy transform, 139
Čech complex, 30
Center, 96
Centralizer, 96, 104

Character,
equivalent, 13
of Banach ring, 13
of topological space, 55
Chevalley group, 103
compact homogeneous space, 111
contractability of, 118
Chow's Theorem, 62
Closed,
k-analytic space, 49
k-analytic subgroup, 95
k-analytic subset, 50
immersion, 33, 49
morphism, 49
Cohen-Macaulay,
analytic space, 51
ring, 34
Compact,
analytic space, 50
homogeneous space, 111
morphism, 50
Compactification,
Stone-Čech, 14
of Bruhat-Tits building, 113
Complete tensor product, 12
Completely continuous operator, 145
Fredholm determinant, 146
Fredholm resolvent, 147
spectrum, 147
trace, 146
Contour, 142
Cosets, 95
Countability at infinity, 31, 75
Coxeter complex, 108
Density of topological space, 55
Dimension,
at a point, 34
of affinoid space, 34
of Banach algebra, 153
of topological space, 54
Disc,
closed, 78
complementary, 141
open, 78
two-dimensional, 125
Discrete spectrum, 138
Distribution, 139
Domain,
(strictly) affinoid, 27, 48
analytic, 48
formal affinoid, 81
Laurent, 28
(strictly) quasiaffinoid, 48
rational, 28
Weierstrass, 28, 32, 97

Distinguished,
formal analytic space, 121
formal covering, 81
strictly k-affinoid algebra, 81,98
Ends of quasipolyhedron, 76
Equivalent,
characters, 13
coverings, 81
(semi)norms, 11
points, 156
Essential spectrum, 138
Étale morphism, 52
Fibre of morphism at a point, 48
Fibre product, 48
Field,
Archimedean, 12
non-Archimedean, 12
maximally complete, 18
valuation, 12
Filter, 14, 43
Finite,
Banach \mathscr{A}-algebra, 26
Banach \mathscr{A}-module, 25
morphism of analytic spaces, 34,50
Formal,
analytic group, 121
analytic space, 121
covering, 81
strictly affinoid domain, 81
Fredholm,
determinant, 146
formulas, 147
resolvent, 147
Function,
analytic, 20
meromorphic, 33, 71-74
Gel' fand transform, 13, 157
Geodesic segment, 108
Good reduction, of formal analytic group, 121
Ground field extension functor, 32, 48
Holomorphic functional calculus, 133
Holomorphically convex, envelope, 44, 97, 131
set, 44, 131
Holomorphically separated, analytic space, 101
Homomorphism, admissible, 11
bounded, 11
inner, 39
Homotopy type,
abelian variety, 120,125
algebraic torus, 119
analytic torus, 120
Chevalley group, 118
compact homogeneous space, 118
differential manifold, 118
projective curve, 80,85
projective space, 117
upper half-plane, 117
Hurwitz-Weierstrass Theorem, 70
Idempotent,
associated, 136
Immediate extension, 18
Immersion, 51
closed, 33, 49
open, 49
Runge, 51
Incidence graph of curve, 81
Inner homomorphism, 39
Interior,
of affinoid space, 39
of analytic space, 49
of homomorphism, 39
of morphism, 49
Irreducible, analytic space, 50
at a point, 35
Iwasawa decomposition, 112, 118
Japaneseness of affinoid algebra, 26
Joint spectrum, 132
Kernel,
of analytic group, 96
of Gel' fand transform, 16
Kiehl's Theorem, 58
Laurent domain, 28
Levi Extension Theorem, 62
Limit point, 85
Local arcwise connectedness, of analytic spaces, 52
Local connectedness, of analytic spaces, 31
Local contractibility, of one-dimensional analytic space, 85
weak, 125
Maximal point, 101
Maximally complete field, 18
Maximum Modulus Principle, 43
Meromorphic functions, 33, 71-74
algebraically dependent, 71
analytically dependent, 71
order of pole, 137
order of zero, 137
Meromorphically convex, envelope, 44
set, 44

Morphism,
of affinoid spaces, 32
of analytic spaces, 47
closed, 49
closed immersion, 33, 49
compact, 50
étale, 52
finite, 34, 50
proper, 50
separated, 50
smooth, 51
unramified, 51
Multiplicative (semi)norm, 11
Mumford curve, 85, 90
Noether Normalization Lemma, 21
Neumann series, 128
Non-Archimedean,
field, 12
(semi)norm, 11
Norm, 11
trivial, 11
Normal analytic space, 51
Normality Criterion, 61
Normalization, 50
Normalizer, 96, 104
Normed,
module, 12
ring, 11
Orbit, 95
Peaked,
commutative Banach algebra, 97
point, 89
Perturbation,
determinant, 148
relative multiplicity of, 150
Picard's Theorem, 88
Power multiplicative(semi)-norm, 11
Principal homogeneous space,
over Tate elliplic curve, 90
Proper,
analytic space, 50
modification, 71
morphism, 50
Quasiaffinoid space, 47
Quasinilpotent element, 16, 138
Quasipolyhedron, 75-77

Radius,

 of point, 78spectral, 15
Rational domain, 28
Reduced,
analytic space, 51
ring, 34

Regular, analytic space, 51
ring, 34
Reduction,
good, 121
map, 35, 81
of analytic space, 51
of formal analytic space, 121
potentially good, 122
semiabelian, 124
\widetilde{k}-split totally degenerate, 85
with respect to formal covering, 81
Relative,
boundary, 39, 49
interior, 39, 49
multiplicity of perturbation, 150
Remmert's Mapping Theorem, 59
Remmert-Stein Theorem, 62
Residue,
algebra, 35
(semi)norm, 11
operator, 141
Resolvent,
Fredholm, 147
of element, 127
of bounded linear operator, 127
Riemann Extension Theorem, 61
Riemann's period relations, 119
Riesz projection, 138
Rigid analytic space, 57
Ritt's Lemma, 35
Root subspace, 138
Saturated subalgebra, 129
Schottky group, 86
Semicontinuity Theorem, 60
Seminorm, 11
bounded, 11
multiplicative, 11
non-Archimedean, 11
on a ring, 11
power-multiplicative, 11
residue, 11
spectral, 16
Semistable curve, 81
Separated analytic space, 50
Shilov boundary, 36
Shilov Idempotent Theorem, 135
Skeleton,
analytic of curve, 84
of abelian variety, 125
of algebraic torus, 119
of analytic torus, 120
of Mumford curve, 86
of quasipolyhedron, 76
topological of curve, 85

Smooth,
affinoid space, 34
analytic space, 51
morphism, 52
Special,
element, 140, 150
quasipolyhedron, 76
subset, 30, 141
G-topology, 30, 57
Spectral,
radius, 15,128
seminorm, 16, 26
Spectrum,
discrete, 138
essential, 138
joint, 132
of commutative Banach ring, 12
of element, 127
of homomorphism, 31
of bounded linear operator, 127
of $k\left\{r^{-1} T\right\}, 18$
of $\mathbf{Z}, 17$
with respect to subalgebra, 130
Spherical building, 108
Split,
abelian variety, 124
algebraic curve, 82
algebraic torus, 101
analytic torus, 119
Stable curve, 81
Stable dimension, 154
Stable Reduction Theorem, 82
Standard set, 78
Stein Factorization Theorem, 59
Stein space, 96
Stone-C̈ech compactification, 14
Stone-Weierstrass Theorem, 157
Strictly,
affinoid domain, 27, 30
k-affinoid algebra, 21
k-affinoid space, 32
k-analytic space, 48
Strong G-topology, 57

Subgroup, 95
affinoid, 95
closed k-analytic, 95
normal divisor, 96
thick, 96
Tate elliptic curve, 82
principal homogeneous space over, 90
twisted, 121
Thick subgroup, 96
Thin subset, 61
Topological space,
character of, 55
density of, 55
dimension of, 54
weight of, 55
G-topology, 30, 57
special, 30, 57
strong, 57
weak, 30,57
Torus,
affinoid, 119
algebraic, 101
analytic, 120
Trace Formula, 151
Transform,
Cauchy, 139
Gel'fand, 13, 157
Trivial norm, 11
Ultrafilter, 14, 45
Uniform Banach ring, 16
Uniformization, 85
Universal covering, existence of, 77, 85, 124
Unramified morphism, 51
Upper half-plane, 113, 117
Valuation, 11
Valuation field, 12
Weak G-topology, 30, 57
Weierstrass domain, 27, 32, 97
Weight of topological space, 55

