Algebraic Geometry for Scientists and Engineers

Shreeram S. Abhyankar

American Mathematical Society
MATHEMATICAL SURVEYS AND MONOGRAPHS SERIES LIST

<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The problem of moments,</td>
<td>J. A. Shohat and J. D. Tamarkin</td>
</tr>
<tr>
<td>2</td>
<td>The theory of rings,</td>
<td>N. Jacobson</td>
</tr>
<tr>
<td>3</td>
<td>Geometry of polynomials,</td>
<td>M. Marden</td>
</tr>
<tr>
<td>4</td>
<td>The theory of valuations,</td>
<td>O. F. G. Schilling</td>
</tr>
<tr>
<td>5</td>
<td>The kernel function and conformal mapping,</td>
<td>S. Bergman</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to the theory of algebraic functions of one variable,</td>
<td>C. C. Chevalley</td>
</tr>
<tr>
<td>7.1</td>
<td>The algebraic theory of semigroups, Volume I, A. H.</td>
<td>Clifford and G. B. Preston</td>
</tr>
<tr>
<td>7.2</td>
<td>The algebraic theory of semigroups, Volume II, A. H.</td>
<td>Clifford and G. B. Preston</td>
</tr>
<tr>
<td>8</td>
<td>Discontinuous groups and automorphic functions,</td>
<td>J. Lehner</td>
</tr>
<tr>
<td>9</td>
<td>Linear approximation,</td>
<td>Arthur Sard</td>
</tr>
<tr>
<td>10</td>
<td>An introduction to the analytic theory of numbers,</td>
<td>R. Ayoub</td>
</tr>
<tr>
<td>11</td>
<td>Fixed points and topological degree in nonlinear analysis,</td>
<td>J. Cronin</td>
</tr>
<tr>
<td>12</td>
<td>Uniform spaces, J. R. Isbell</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Topics in operator theory,</td>
<td>A. Brown, R. G. Douglas, C. Pearcy, D. Sarason, A. L. Shields, C. Pearcy,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Editor</td>
</tr>
<tr>
<td>14</td>
<td>Geometric asymptotics,</td>
<td>V. Guillemin and S. Sternberg</td>
</tr>
<tr>
<td>15</td>
<td>Vector measures, J. Diestel and J. J. Uhl, Jr.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Symplectic groups,</td>
<td>O. Timothy O'Meara</td>
</tr>
<tr>
<td>17</td>
<td>Approximation by polynomials with integral coefficients,</td>
<td>Le Baron O. Ferguson</td>
</tr>
<tr>
<td>18</td>
<td>Essentials of Brownian motion and diffusion,</td>
<td>Frank B. Knight</td>
</tr>
<tr>
<td>19</td>
<td>Contributions to the theory of transcendental numbers,</td>
<td>Gregory V. Chudnovsky</td>
</tr>
<tr>
<td>20</td>
<td>Partially ordered abelian groups with interpolation,</td>
<td>Kenneth R. Goodearl</td>
</tr>
<tr>
<td>21</td>
<td>The Bieberbach conjecture: Proceedings of the symposium on the</td>
<td>Albert Baernstein, David Drasin, Peter Duren, and Albert Marden,</td>
</tr>
<tr>
<td></td>
<td>occasion of the proof,</td>
<td>Editors</td>
</tr>
<tr>
<td>22</td>
<td>Noncommutative harmonic analysis,</td>
<td>Michael E. Taylor</td>
</tr>
<tr>
<td>23</td>
<td>Introduction to various aspects of degree theory in Banach spaces,</td>
<td>E. H. Rothe</td>
</tr>
<tr>
<td>24</td>
<td>Noetherian rings and their applications,</td>
<td>Lance W. Small, Editor</td>
</tr>
<tr>
<td>25</td>
<td>Asymptotic behavior of dissipative systems,</td>
<td>Jack K. Hale</td>
</tr>
<tr>
<td>26</td>
<td>Operator theory and arithmetic in H^∞,</td>
<td>Hari Bercovici</td>
</tr>
<tr>
<td>27</td>
<td>Basic hypergeometric series and applications,</td>
<td>Nathan J. Fine</td>
</tr>
<tr>
<td>28</td>
<td>Direct and inverse scattering on the lines,</td>
<td>Richard Beals, Percy Deift, and Carlos Tomei</td>
</tr>
<tr>
<td>29</td>
<td>Amenability,</td>
<td>Alan L. T. Paterson</td>
</tr>
<tr>
<td>30</td>
<td>The Markoff and Lagrange spectra,</td>
<td>Thomas W. Cusick and Mary E. Flahive</td>
</tr>
</tbody>
</table>
MATHEMATICAL SURVEYS
AND MONOGRAPHS SERIES LIST

Volume

31 Representation theory and
harmonic analysis on semisimple
Lie groups, Paul J. Sally, Jr. and
David A. Vogan, Jr., Editors

32 An introduction to CR structures,
Howard Jacobowitz

33 Spectral theory and analytic
geometry over non-Archimedean
fields, Vladimir G. Berkovich

34 Inverse source problems, Victor
Isakov
Algebraic Geometry for Scientists and Engineers
Algebraic Geometry for Scientists and Engineers

Shreeram S. Abhyankar
Dedicated to
my father, Professor S. K. Abhyankar,
who taught me algebra and geometry
and to
my master, Professor O. Zariski,
who made it into algebraic geometry
Contents

Preface.. xi
Lecture 1. Rational and Polynomial Parametrizations 1
Lecture 2. Fractional Linear Transformations ... 11
Lecture 3. Cubic Curves ... 17
Lecture 4. Cubic Surfaces and General Hypersurfaces 23
Lecture 5. Outline of the Theory of Plane Curves 33
Lecture 6. Affine Plane and Projective Plane .. 41
Lecture 7. Sphere with Handles ... 47
Lecture 8. Functions and Differentials on a Curve 57
Lecture 9. Polynomials and Power Series ... 67
Lecture 10. Review of Abstract Algebra ... 75
Lecture 11. Some Commutative Algebra .. 83
Lecture 12. Hensel’s Lemma and Newton’s Theorem 89
Lecture 13. More about Newton’s Theorem .. 95
Lecture 14. Branches and Valuations .. 99
Lecture 15. Divisors of Functions and Differentials 109
Lecture 16. Weierstrass Preparation Theorem ... 119
Lecture 17. Intersection Multiplicity ... 125
Lecture 18. Resolution of Singularities of Plane Curves 131
Lecture 19. Infinitely Near Singularities ... 145
Lecture 20. Parametrizing a Quartic with Three Double Points 159
Lecture 21. Characteristic Pairs ... 165
Lecture 22. Criterion For One Place and Jacobian Problem 177
Lecture 23. Inversion Formula and Jacobian Problem 189
Lecture 24. Surfaces ... 195
Lecture 25. Hypersurfaces .. 209
Lecture 26. Resolution of Singularities of Algebraic Surfaces 221
Lecture 27. Birational and Polyrational Transformations 235
Lecture 28. Valuations and Birational Correspondence 243
Lecture 29. Rational Cylinders through a Variety 255
Lecture 30. Resultants ... 267
Bibliography ... 275
Index .. 283
Preface

What is algebraic geometry, and what is the need for a new book on it? First, we take up the question of what is Algebraic Geometry. Long ago, to a major extent in my father's time, and to a lesser extent in my own time, in high-school and college we learned the two subjects of analytic geometry and theory of equations. Analytic geometry consists of studying geometric figures by means of algebraic equations. Theory of equations, or high school algebra, was manipulative in nature and dealt with simplifying expressions, factoring polynomials, making substitutions, and solving equations. These two subjects were later synthesized into and started being collectively called algebraic geometry. Thus, algebraic geometry, at least in its classical form, is an amalgamation of analytic geometry and the theory of equations.

But, in the last fifty years, algebraic geometry, as such, became more and more abstract, and its original two incarnations, mentioned above, gradually vanished from the curriculum. Indeed, analytic geometry first became a chapter, and then a paragraph, and finally only a footnote in books on calculus. Likewise, its sister discipline of trigonometry, with all the proving of identities, began to be downplayed. Doing all these manipulations was certainly helpful in enhancing the skills needed for solving intricate problems. Similarly, studying subjects like analytic geometry and trigonometry was very useful in developing geometric intuition.

Now, during the last ten years or so, with the advent of the high-speed computer, the need for the manipulative aspects of algebra and algebraic geometry is suddenly being felt in the scientific and engineering community. The growing and dominating abstractions of algebraic geometry notwithstanding, my approach to it remained elementary, manipulative, and algorithmic. In my 1970 poem, "Polynomials and Power Series," and my 1976 article on "Historical Ramblings," I lamented the passing of the concrete attitude and made a plea for its rejuvenation. Thus, it is with great pleasure that I see the recent rise of the algorithmic trend, albeit at the hands of the engineers, and I am happy for the company of their kindred souls.

In this book on algebraic geometry, which is based on my recent lectures to an engineering audience, I am simply resurrecting the concrete and ancient methods of Shreedharacharya (500 A.D.), Bhaskaracharya (1150 A.D.), Newton (1660), Sylvester (1840), Salmon (1852), Max Noether (1870), Kronecker (1882), Cayley (1887), and so on.
In writing this book, I found it extremely helpful to have at my disposal the original notes of these lectures which were taken down by C. Bajaj, professor of computer science at Purdue, V. Chandru, professor of industrial engineering at Purdue, and S. Ghorpade, at one time a mathematics student at Purdue and currently a professor of mathematics at IIT Bombay. My heartfelt thanks to these note-takers, especially to Ghorpade who also helped with the TeXing.

Many people, of course, have aided me in my study of mathematics, but I am particularly grateful to the two persons to whom this book is dedicated: my father, Shankar Keshav Abhyankar, who was a mathematics professor in India and who imparted geometric intuition and manipulative skills to me, and my major professor at Harvard, Oscar Zariski, who provided ample scope to use these in solving interesting problems.

Having said that, in the lectures on which this book is based I was simply resurrecting some ancient concrete material, I should correct myself by noting that this was completely true only of the three short courses, each of which was of a month’s duration and which I gave during the academic years 1986–1988. In the semester course, on which this book is mainly based and which I gave during fall 1988, in addition to presenting the concrete old stuff, I also kept motivating and explaining its links to more modern algebraic geometry based on abstract algebra. I did this partly because, for all the praise of the algorithmic ancient methods, the modern abstractions do sometimes seem to be necessary for solving, or at least clarifying, interesting problems. Moreover, even when modern abstractions are neither necessary nor better, it may be advisable to become familiar with them simply because many people choose to write in that language.

So this book is primarily meant as a textbook for a one- or two-semester course on algebraic geometry for engineers. It can, of course, also be used for independent study.

I have retained the original format of the lectures, and I have made an effort to organize the thirty lectures in such a manner that they can more or less be read in any order. This is certainly untrue of most modern writing of mathematics, including my own, in which to make any sense of what is on page 500, you must first carefully read all the previous 499 pages. At any rate, in this book I have followed the mathematical writing style that was prevalent before, say 1930.

Although mainly meant for the engineers, this book may even be found useful by those students of mathematics who are having a difficulty understanding modern algebraic geometry because the writing of it frequently lacks sufficient motivation. Such a student may find that after browsing through this book, he is in a better position to approach the modern stuff.

Now presentation of mathematics is frequently logical, but rarely is the creation of mathematics logical. Likewise, application of mathematics to science and industry is based more on heuristic understanding rather than
immediate formal precision. Following this thought, the aim of the course on which this book is based was not to give formal proofs, but rather to give heuristic ideas and suggestive arguments. In other words, the aim was not to make a legal presentation, but to help people learn. This should prepare the students to read up, or better still, make up, formal proofs if and when desired. So readability is a primary goal of this book. Preference is given to motivation over formality. Thus, this book is not meant to prepare the student for formal examinations, but to really learn the subject; not qualifiers, but original investigations.

I have tried to tell the story of algebraic geometry and to bring out the poetry in it. I shall be glad if this helps the reader to enjoy the subject while learning it.

This work was partly supported by NSF grant DMS88-16286, ONR grant N00014-88-K-0402, and ARO contract DAAG29-85-C-0018 under Cornell MSI at Purdue University. I am grateful for this support. My thanks are also due to P. Keskar, W. Li, and I. Yie for help in proofreading, and to Y. Abhyankar for everything.

Shreeram S. Abhyankar
West Lafayette
18 January 1990
Bibliography

[Ab1] N. H. Abel, Mémoire sur une propriété générale d’une classe très-
etendue de fonctions transcendantes, 1826, Oeuvres Complètes, New Edition
I (1881), 145–211.

[Ab2] N. H. Abel, Démonstration d’une propriété générale d’une certaine
classes de fonctions transcendantes, Crelle Journal 4 (1829), 200–201.

[A01] S. S. Abhyankar, On the valuations centered in a local domain, Amer.

[A02] S. S. Abhyankar, Local uniformization on algebraic surfaces over
ground fields of characteristic $p \neq 0$, Ann. of Math. 63 (1956), 491–526.

[A03] S. S. Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79
(1957), 825–56.

[A04] S. S. Abhyankar, Ramification theoretic methods in algebraic geometry,

[A05] S. S. Abhyankar, Tame coverings and fundamental groups of algebraic
varieties, Parts I to VI, Amer. J. Math. 81, 82 (1959–60).

[A06] S. S. Abhyankar, Cubic surfaces with a double line, Memoirs of the
College of Science, University of Kyoto, Series A Mathematics 32 (1960),
455–511.

[A08] S. S. Abhyankar, Uniformization in p-cyclic extensions of algebraic
surfaces over ground fields of characteristic p, Mathematische Annalen 153
(1964), 81–96.

[A09] S. S. Abhyankar, Reduction to multiplicity less than p in a p-cyclic
extension of a two dimensional regular local ring, Mathematische Annalen

[A10] S. S. Abhyankar, Resolution of singularities of arithmetical surfaces,

[A11] S. S. Abhyankar, Uniformization in a p-cyclic extension of a two di-
ensional regular local domain of residue field characteristic p, Festschrift
zur Gedächtnisfeier für Karl Weierstrass 1815–1895, Wissenschaftliche Ab-

[A12] S. S. Abhyankar, Resolution of singularities of embedded algebraic

[Ch3] C. Chevalley, *Intersections of algebraic and algebroid varieties,*

[Na3] M. Nagata, On automorphism group of $k[x, y]$, Kinokuniya Book-
store Co., Tokyo, 1972.

[Os1] A. Ostrowski, Über einige lösungen der funktionalgleichung \(\phi(x)\phi(y) = \phi(xy) \), Acta Math. 41 (1918), 271–84.

Index

A_k^1 (k^1 = affine line), 79
A_k^2 (k^2 = affine plane), 80
A_k^n (k^n = affine n-space), 80, 83, 84
Abel, 158, 194, 239
abelian group, 75
Abel's Theorem, 239
Abhyankar (S. K.), 208
Abhyankar (S. S.), 121, 153, 237, 239, 253
Abhyankar's inversion formula, 189
abstract algebra, 75, 79
addition, 75
addition process, 92, 93
additive abelian group, 75, 85, 245
additive subgroup, 77
adic expansion, 182–184
ADJ_m (set of all homogeneous adjoint polynomials of degree m), 150–152
adjoint, 150–152
adjoint condition, 151
adjoint polynomial, 150
$AF + BG$ argument (Noether’s Fundamental Theorem), 147, 208
affine, 12–13
affine chart, 212
affine coordinate, 13
affine coordinate ring (of a plane curve; usually $k[x, y]$), 65, 100, 105
affine coordinate ring (of a surface; usually $k[x, y, z]$), 72
affine coordinate ring (of a variety; usually $k[x_1, \ldots, x_n]$), 105, 106, 249
affine plane, 12, 41, 42–44, 46
affine ring, 101, 252
affine 3-space, 43
algebra, 25, 28, 31–32, 126
algebraic, 25, 27, 28
algebraic closure, 80, 180
algebraic criterion, 225
algebraic curve, 31, 45, 107, 136
algebraic dependence, 79
algebraic equation, 25
algebraic formula (for inversion), 193
algebraic function, 11, 31
algebraic function field, 101, 113, 241, 246, 251–253
algebraic genus formula, 58, 59
algebraic geometry, 19–21, 25, 31, 81, 157, 249
algebraic hypersurface, 142
algebraic independence, 79
algebraic number, 31, 107
algebraic over, 79
algebraic plane curve, 108, 131, 136, 137, 141, 143, 145
algebraic variety, 82, 105–107, 244, 246, 249
algebraically, 24, 25, 26
algebraically closed, 70, 75, 83, 88, 99, 119, 125, 246, 248, 250
algebraically dependent, 79
algebraically equivalent, 175
algebraically independent, 79
almost nonsingular, 212
ambient space, 129
ambient variety, 129
analysis, 32, 46, 87, 126, 208, 244
analysis way, 249
analytic approach, 240
analytic at, 69
analytic coordinate change, 127, 136, 207
analytic curve, 136
analytic decomposition, 136
analytic geometry, 3, 25
analytic hypersurface, 128
analytic irreducibility, 138, 141
analytic (plane) curve, 108, 126, 137, 141
analytic reducibility locus, 205
analytically unramified, 142
analyzing singularities, 236
antisymmetry, 245
aphorism, 18, 65, 123, 170, 208
approximate D^{th} root of F ($\sqrt[n]{F}$), 182
arc, 247, 248
INDEX

arithmetic genus, 258, 264
arithmeticly equivalent, 175
associated prime ideal, 86
associative, 75
asymptote, 46
automorphism of $k(X)$ over k
 (k-automorphism), 240
automorphism of $k(X, Y)$ over k
 (k-automorphism), 239
automorphism of polynomial rings, 237, 272
automorphism theorem (A'_2), 237, 239
axis (of a cylinder), 257
B_i (ith Betti number), 51
bad (point), 221–223, 228
Baker, 239
base (of a hypercylinder), 258
Beejaganit, 17, 94, 233
Bell (E. T., author of Men of mathematics), 194
Bell (R. J. T.), 208
Betti, 51
Bezout, 20, 21, 33, 45, 239, 269
Bezout Refined, 147
Bhaskaracharya, 17, 94, 233
bilinear, 235
bipolynomial, 235–236, 237
bijective, 85, 249
binary operation, 75
binary relation, 115, 245
binomial theorem, 60–62, 90, 190
birational, 236, 238, 241, 253
birational correspondence, 243, 248, 252
birational invariance, 35–36
birational transformation, 35
birational viewpoint, 113
birationally equivalent, 35–36, 249
biregular, 212
Birkhoff, 77
bivariate, 48
blow up of \tilde{W} with center I, 252
blowing-up, 131, 221–223, 252
Böcher, 32
bound, 33
box, 85, 96
branch locus, 65, 163, 170
branch points, 49, 52, 58, 170, 171
branching exponent, 53
brick, 238, 241
building block, 238, 241
Burnside, 92
\mathbb{C} (complex numbers), 28, 29
\mathbb{C}^2 (complex plane), 47
\mathcal{C} (conductor), 65, 143, 149, 150
$\mathcal{C}(P)$ (conductor of the local ring $R(P)$), 149–150
calculus, 3, 36, 72, 87
Calcutta lectures, 158
canonical desingularization, 94
can't do better, 137
Castelnuovo, 23
Castelnuovo Centenary Paper, 265
Castelnuovo-Enriques Criterion, 265
category, 26
cauhy (sequence), 143
Cauchy-Riemann differential equations, 54
Cayley, 268
center of a branch, 103–105, 122, 125, 126
center of a discrete valuation, 105, 109–113, 114, 125
center of a hypermonoid (monoidal hypersurface), 256
center of a monoidal transformation, 216, 217, 220
center of a quadratic transformation, 131, 134, 136, 145, 154, 156, 202
center of a valuation or a quasilocal ring, 247–249, 251–253
change of coordinates, 46
chain of prime ideals, 84
chain rule, 68
char (characteristic), 76, 131, 143
characteristic of a field or a ring, 75, 76, 119
characteristic pair, 143, 165–169
characteristic pairs at infinity, 181
characteristic zero, 76, 99
Chevalley, 113, 127, 142
Chinese Remainder Theorem, 263
dehord, 19, 25
Chow, 273
Christensen, 237, 254
Chrystal, 32, 89
circle, 4–8, 10–12, 14, 18, 19, 34, 36, 38, 53, 243, 255
circular cone, 197
circular cylinder, 257
Clemens, 256
clock, 85
closed (set), 205
closed surface, 48, 53
closure(d), 232
closure operation, 232
clustered, 148
codimension, 71, 106, 129
coefficient, 24, 25, 29
Cohen, 127, 129, 158
Cohen-Macaulay ring, 129, 130
coincidental points, 19, 25, 27, 238
college algebra, 28, 29, 31, 84, 100, 174
collinear, 239
INDEX 285

common component, 33
combinatorial, 240
combinatorial algebra, 83, 121, 129
combinatorial group, 75
combinatorial ring, 69, 76
compactness, 53
complete data, 235
complete intersection, 73, 129, 207
complete model, 250–252
complete proper transform, 211
completing the n^{th} power, 94
completing the square, 94
completion, 143, 207
complex affine line, 49
complex analysis, 174
complex local coordinates, 54
complex manifold, 54
complex projective line, 49
complex X-axis, 52
component, 34
composition, 241
computer science, 76
condensed formula, 193
decorator, 65, 143, 148–150
cone, 71, 72, 197, 198
configuration, 25
conic, 1, 6, 10, 18–21
conicoid, 195, 196
conic section, 1, 29, 36
conjugacy class, 96, 119
conjugate bunches, 81
continuous closed path, 162
continuous partial derivative, 54
continuously deform, 162
contour integration, 122
corvergent, 29
convergent, 121
convergent power series, 95, 99, 100, 121
convergent power series ring, 121
convex polyhedron, 50
Coolidge, 44, 269
decorator patch, 203
decorator system, 238, 240
decorator transformation, 23
coprime, 59, 90, 97
counted properly, 33, 34, 47, 123, 148, 153, 169
covering degree, 57–59
Cowick, 88
Crelle, 31
Cremona, 272
Cremona quadratic transformation, 238
Cremona quadratic transformation of first kind, 238
Cremona quadratic transformation of second kind, 238
Cremona quadratic transformation of third kind, 239
Cremona transformation, 272
Cremona transformations (Hudson), 239
criterion for one place at infinity, 181
criterion for one place at origin, 183
criterion for real polynomial parametrization of a curve, 16
criterion of rationality for a curve, 115, 117
cube, 49–51
cubic, 17, 29
cubic cone, 197
cubic curve, 17–19, 23–25
cubic hypersurface, 25
cubic surface, 23, 25, 197
Cubic surface paper, 239
cubical hole, 51
curve on a nonsingular surface, 141
curvature linear coordinate system, 238
cusp, 113, 143, 175
cuspidal cubic, 2, 35
cuspidal cubic cone, 199, 200
cuspidal cubic cylinder, 205
cuspidal line, 199
cylinder, 257
D^p (suitably iterated partial derivative), 190
θ (partial derivative), 54, 131
$\partial (f_1, \ldots, f_q)/\partial (x_1, \ldots, x_p)$ (Jacobian matrix), 178
$\mathcal{D}(K)$ (group of divisors of $K = k(C)$), 113, 114, 117
$\mathcal{D}^+(K)$ (group of positive divisors of $K = k(C)$), 114, 117
$\mathcal{D}^*(K)$ (space of differentials of $K = k(C)$), 116–117
\mathcal{D} (different), 53, 65, 149
\mathcal{D}^i (different ideal), 65
$\delta(C)$ (number of double points of C counted properly), 148, 149, 151–152
$\delta(P)$ (number of double points P accounts for), 148, 149, 169
De Moivre map, 85
De Rham, 265
De Rham's Theorem, 265
Dedekind, 32, 53, 58, 107, 173, 253
Dedekind conductor formula, 160
Dedekind domain, 173
Dedekind's Method, 172
Dedekind's Theorem, 150
defect, 47
defining polynomial, 15, 27, 57
deg (degree), 2, 10, 28, 29, 64, 108, 113-115, 117
degree, 19, 20, 24-32, 57, 64
degree form, 10, 12, 15, 17, 30, 42
degree of a divisor, 53, 64, 113, 117
degree of a divisor of a differential on a
curve, 117
degree of a divisor of a function on a curve, 114
degree of a point over k, 148
degree of a surface, 197
degree of a variety, 82, 258
degree of field extension (K'/k'), 79
degree of unfaithfulness, 271
degree-wise formal intersection multiplicity, 185
degree-wise straight, 185
dehomogenize, 12, 17, 25, 102, 103
dep$_J$ (J (depth of ideal J in ring A)), 84, 86
derivative, 3, 39
Desargue's Axiom, 240
Desargue's Theorem, 240
desingularization, 65, 219
desingularization (of plane curves), 94, 134, 138, 143
det (determinant), 54, 123
Determinantal varieties (Room), 239
d-f-fold point, 19, 27, 131, 136, 146
dichotomy, 245
Didn't Lemma, 214
different, 53, 58, 65, 149
differentiable manifold, 54
differential, 36, 37-39, 47, 49, 51, 57-61, 63, 65, 68, 81, 109, 115, 117
differential of a one-variable function field K, 115
differential of $k(C)$ of first kind, 148
differential on a curve, 37, 47, 109, 115, 116, 143
differentiate, 44
differentiation, 3
dim A (dimension of ring A), 84, 86, 106, 128, 143, 251
dim W (dimension of variety W), 179, 180
dim \overline{W} (dimension of model \overline{W}), 251
dimension of a local ring, 128-129
dimension of a variety, 82, 106, 107, 129, 258
direction cosine, 26
Disc($B^* \mid L$) (discriminant of domain B^*
in overfield L), 173
Disc$_{\ell,L^*}$(ξ_1, \ldots, ξ_n) (discriminant of
ξ_1, \ldots, ξ_n) relative to L/L^*), 173
Disc$_F$ (Y-discriminant of f), 142, 173
discrepancy between curves and surfaces, 208
discrete valuation, 104-105, 107, 109, 125, 244
discriminant, 141, 142, 170, 173
discriminant ideal, 172
discriminant locus, 65, 142, 162, 170
discriminant point, 52, 170, 171
disjoint, 96
disjoint partition, 96
disjoint union (\setminus), 96
Diskriminantensatz, 173
distinct point (or singularity), 147-149, 156
distinguished (polynomial), 120, 122, 124, 125, 127, 138, 142
distributive law, 75
divergent power series, 99, 100
division ring, 240
divisor, 53, 64, 113
divisor of a differential, 65, 109, 116
divisor of a differential w denoted by
(w), 116
divisor of a function, 64, 109, 114
divisor of a function u denoted by (u), 114
divisor of poles of a differential w denoted by $(w)_\infty$, 117
divisor of poles of a function u denoted by
$(u)_\infty$, 114
divisor of singularities, 149
divisor of zeros of a differential w denoted by
$(w)_0$, 117
divisor of zeros of a function u denoted by
$(u)_0$, 114
DOF(C) (set of differentials of $k(C)$ of
first kind), 148
domain, 69, 76, 86, 87
dominated by, 251
dominates, 251, 253, 254
domination, 251, 252
domination map, 241
domination problem, 254
Don't Lemma, 213
DOS(C) (divisor of singularities of C), 149
double point, 2, 18-24, 27, 33, 34, 47, 113, 197
double zero, 41
doughnut, 48, 51
d-f-ple point, 19, 27
ED (Euclidean Domain), 77, 78
Edge, 240
edges, 49, 51, 52, 57
Edwards, 32, 34
element, 75
element of (\in), 29
elementary transformation, 237
elimination theory, 273
eclipse, 1, 5, 6, 8, 10, 20
ellipsoid, 1, 196
embedding dimension of a local ring, 128, 143
Emmy Noether, 81, 129, 158
empty set (\(\emptyset\)), 96
encyclopedia article, 129
England, 129
equation, 25, 28
equimultiple, 218
equivalence (of parametrizations), 68
equivalence class, 115, 143
equivalence class (in a group), 85
equivalence class (of parametrizations), 63, 99, 102, 126
equivalence class (of triples), 12, 240
equivalence class (of valuations), 248
equivalence relation, 115
equivalent (cauchy sequences), 143
equivalent (elements in a group), 85
equivalent (parametrizations), 63, 99, 102
equivalent (triples), 12
equivalent (valuations), 245
Ergebnisse monograph (Zariski), 158
essential number of variables, 230
essential variable, 231
Euclid's algorithm, 77, 168
Euler, 51–52, 58, 208
Euler characteristic, 51
Europe, 129
exceptional line, 132, 133, 135, 141, 145, 146
exceptional plane, 200, 202
exceptional hyperplane, 210, 216
exceptional projective \(n - 1\) space, 211
expansion, 25, 28, 136
explicit, 26
exponent, 25
faces, 49, 52, 57
factor group, 85
factor theorem, 70
factorization domain, 78
factorization problem, 238, 241, 253
faithful, 271
faithful rational parametrization, 256
faithful parametrization, 23, 153, 157
father of algebraic geometry, 157, 272
Fermat cone, 199, 202
field, 26, 28, 29, 30, 68, 75, 78, 86
field degree (of \(K' / k'\)), 79
field of coefficients, 69
field of meromorphic series \(k((X))\) in \(X\) with coefficients in \(k\), 69
field of rational functions \(k(X)\) in \(X\) with coefficients in \(k\), 69
field of rational functions \(k(X_1, \ldots, X_N)\), 76
field of rational functions on a curve \(C\)
usually denoted \(k(x, y)\), 36, 101, 103, 105
field of rational functions on a surface \(S\)
usually denoted \(k(x, y, z)\), 248
field of rational functions on a variety \(W\)
usually denoted \(k(x_1, \ldots, x_n)\), 106
field with valuation, 92
finite transform, 235
finite (degreewise formal intersection multiplicity), 185
finitely generated, 77, 81
finitely generated field extension, 101, 113, 246
finitely generated ring extension, 101
finite philosophy, 229
finite (formal intersection multiplicity), 184
first approximation, 228
first characteristic pair, 231
first characteristic data, 219, 232
first neighborhood, 146, 238
first (significant) theorem of algebraic geometry, 239
fixed tangent direction, 239
fold, 19, 20, 25, 27
Forbidden planet, 55
formal (power series), 29, 121
formal intersection multiplicity, 184
formal power series ring, 121
forms of indeterminacy, 87
Forsyth, 32, 240
Four incarnations of Bezout's Theorem, 173
fractional linear automorphism, 239
fractional linear transformation, 11–16, 39, 89, 92, 240
fractional meromorphic series, 95
fractional power series, 62, 95
free abelian group, 113
function on a curve, 36, 57, 109, 114, 143
function field (of a curve \(C\) denoted by \(k(C)\)), 101, 103–105, 109, 110–117
function field (of a variety \(W\) denoted by \(k(W)\)), 106, 249
functor, 26
fundamental group, 162
fundamental triangle, 44, 159, 238
fundamental theorem of algebra, 273
fundamental theorem of calculus, 265
fundamental theorem of projective geometry (\(G^1\)), 240–241
fundamental theorem of projective plane, 240

\[g(C) = \text{genus}, \] 34–36, 37, 39, 47–49, 52, 58, 59, 65, 117, 148

Galois case, 178
Galois extension, 163
Galois group, 163
Galois theory, 81
Galton, 194

GCD (greatest common divisor), 90, 140
general Jacobian problem, 177, 178
general plane, 195
genus, 20, 35, 36, 37, 39, 47–49, 52, 58, 59, 65, 82, 117

genus formula, 169

genus formula refined, 148

geometric, 26, 27, 29

geometric genus, 264

geometric object, 25

geometric series, 69
g eo metri cally, 25

g eo met ri cally equivalent, 175

Géométrie Algébrique (Godeaux), 239

geometry, 25, 28, 174

g lobal parameter, 115

Godeaux, 239

g oo d canonical surface, 228

g oo d coordinate system, 136

g oo d (point), 221–225, 229

g oo d problem, 260

g oo d (variable), 230

Gordan’s problem, 82
Grace, 268

grandfather of modern algebra, 158

graph, 1, 25

Grauert, 273

Green’s Theorem, 265

Griffiths, 256
group, 26, 75

Gwaltor, 208

handle, 47–49, 51, 57

Hausdorff space, 54

height \([p]\) primes, 88, 207

Hensel, 92, 95, 120–121, 233

Hensel’s Lemma, 89–91, 92, 95, 100, 120–121, 122, 138, 140, 233

heuristically, 27

high school, 70

high school algebra, 26, 28, 32, 174

high singularity but not quite all the way, 208

high tacnode, 60

higher cusp, 143

higher dimension, 25

higher dimensional variety, 235

Hilbert, 82

Hilbert Basis Theorem, 81

Hilbert function, 81, 128, 259

Hilbert Nullstellensatz, 81, 83

Hilbert polynomial, 81, 128

Hilbert Zero-Theorem, 81

Hironaka, 253

Hirzebruch, 265

Historical ramblings, 65

Hodge, 240, 265

hole, 51

holomorphic at, 69

homogeneous coordinates, 12, 13, 42–43, 259

homogeneous component, 31

homogeneous equation, 25

homogeneous linear equation, 45

homogeneous linear transformation, 14, 238, 241

homogeneous polynomial, 7, 14, 23, 24, 29

homogenize, 12, 13, 14, 42, 44, 102 103, 124

homomorphism, 85

horizontal tangent, 38, 111

ht_{J} \,(height \,of \,ideal \,J \,in \,ring \,A), \,84, 86

Hudson, 239, 240

Hurwitz, 58

hyperbola, 1, 5, 6, 8, 9, 10, 17, 20, 45, 267

hyperboloid, 196, 243, 244, 249

hypercone, 209

hypercylinder, 257, 263

hypermonoid, 256–258

hypersurface, 23, 25–27, 29, 83, 105, 124, 128, 141, 142, 286, 258

hypotenuse, 110

I \,(intersection multiplicity), 27, 30, 41–42, 61, 122, 125, 126, 127, 133

\(I(E, W)\) \,(ideal \,of \,subvariety \,E \,on \,variety \,W), \,107, 250

\(I(P, W)\) \,(ideal \,of \,point \,P \,on \,variety \,W), \,107, 250

ideal, 26, 28, 65, 69–75, 77, 81, 115

ideal of a curve, 100

ideal on a model, 253

ideal generated by, 71, 77, 126

identity element, 75

iff \,(if \,and \,only \,iff), \,115

im \,(image), 85

implicit differentiation, 38, 39

implicit equation, 2, 4, 26

Implicit Function Theorem, 38, 111, 131, 178

inclusion diagram, 69

independent, 239

indeterminate form, 132, 243, 244, 248

indicatrix, 54

Indore, 208

induced function, 105, 109, 125

induced homomorphism, 103
inductive argument, 214
infinitely near, 21, 145, 146–151, 153, 154, 156, 157
infinitely near point, 146–151, 153, 156, 157
infinitely near singularity, 145, 148
infinity, 30
initial form, 145, 154, 200, 209
injective, 85
inner product $\langle \ , \ \rangle$, 190
integral, 36, 222
integral closure, 143
integral dependence, 79
integral magnitude, 138
integral over, 79, 143
integral part, 136
integrand, 3, 4, 11, 34
intersect, 30
intersection \cap, 54
intersection locus, 124
intersection multiplicity, 27, 30, 32, 41, 61, 82, 122, 123, 125, 126–128, 268, 270
intersection multiplicity of hypersurfaces, 128
intersection semigroup, 166
intrinsic section, 198, 206
Introduction to algebraic geometry (Semple and Roth), 240
invariant theory, 82, 268
inverse, 75, 190
inverse function theorem, 178
inversion theorem, 169
irreducible, 2, 31, 34–36, 41, 47, 61, 83, 88, 97, 125, 143, 253
irreducible analytic component, 126
irreducible component, 106, 107, 129, 258
irreducible curve, 72, 125
irreducible factor, 126
irreducible factorization domain (IFD), 78
irreducible hypersurface, 105
irreducible plane curve, 51, 105
irreducible space curve, 129
irreducible subvariety, 106, 129, 250, 252
irreducible variety, 105–107, 129, 179, 261
irreducibility criterion, 185
irredundant (parametrization), 63, 97, 99, 102, 126
irredundant (premodel), 251
isolated point, 128
isomorphic, 36, 245–246
isotopic, 175
iterated monoidal, 237
iterated monoidal transform, 253, 254
its own neighborhood, 207
$J(f)$ (Jacobian of f), 189
$J(f_1, \ldots, f_n)/J(X_1, \ldots, X_n)$ (Jacobian of f_1, \ldots, f_n), 177
Jacob, 149, 194
Jacobian (Jacobi determinant), 177
Jacobian determinant, 54
Jacobian problem, 193, 272
Jacobi's genus formula, 150
Jung, 237
ker (kernel), 85
Kneser, 88
knot, 174
Kodaira, 265
Kronecker, 88, 107
Krull, 84, 127, 129
Krull dimension, 84
Krull-Dedekind procedure, 172
Kulk, 237
Kyoto paper, 268
$L_{(a,b,c)}$ (line joining the origin to point (a, b, c)), 198
L_∞ (line at infinity), 43
$\mathcal{O}(E, W)$ (local ring of subvariety E on variety W), 107, 129, 142, 250
$\mathcal{O}(P, W)$ (local ring of point P on variety W), 107, 129, 142, 250
Lagrange Interpolation, 160
law of cancellation, 76
leading coefficient, 67
least Galois extension, 163
Lefschetz, 154, 158
length$_R J$ (length of ideal J in ring R), 127, 128, 129
less singular, 235
lexicographically ordered m-tuples, 245
L'Hospital's rule, 87, 248
lim (limit), 132
limit, 19, 25, 244, 249
line, 18, 26, 30, 36, 41, 79, 240, 244
line at infinity, 12, 43
linear, 235, 236
linear combination, 77
linear dependence, 78
linear independence, 78
linear space, 19
linear transformation, 7, 9, 15–17, 138
linearization, 7
lines on a cone, 73
Liouville, 273
Local analytic geometry, 95, 98, 121, 122, 273
local coordinate system, 137
local coordinates, 54
local parametrization, 102, 137
local ring, 28, 69, 87, 128, 129, 142, 249–251, 253
local ring of a variety in affine space, 106
local space, 129, 142
localization A_N of A at N, 70, 87, 101, 142
locus, 25
long division process for finding GCD, 77
long formula, 193
long-division, 72
Lüroth, 24, 115, 256
$M(\cdot)$ (the unique maximal ideal in the
quasilocal ring \cdot), 87, 128, 143, 207
$M(B)^f$ (set of all (f_1, \ldots, f_n) with
$f_i \in M(A)^f$), 189
m-sequence, 166
Mac Lane, 77
Macaulay, 88, 129
magnitude, 138, 143
manifold, 53, 54
map (map $\Phi : \Omega \rightarrow
\Omega'$ of set Ω into set Ω'), 85, 249
matrix, 123
Max Noether, 146, 148, 150, 157, 253, 272
maximal ideal, 29, 70–72, 77, 78, 83, 86,
88, 101, 250
Maxspec (maximal spectrum), 78
MDT (monoidal transformation), 200, 205,
206, 221–223, 241
meet normally, 222
Men of mathematics, 194
meridians, 174
meromorphic series, 68, 69
minimal prime ideal, 70–73, 83, 84, 87, 88
Möbius strip, 53, 55
model, 113, 241, 250–251, 254
module, 77
monic, 30, 31, 67, 68, 75, 79, 90, 97
monodromy group, 171
monodromy theorem, 171
monoid, 256
monoidal hypersurface, 256
monoidal transform, 252, 253
monoidal transformation, 200, 204, 206,
216, 236
monomial, 25
Montreal notes, 88, 269
most, 201
mult p (multiplicity at a point P), 27, 109,
110, 131, 133–135, 146, 197, 199
mult p^f (multiplicity of ideal J in ring
R_f), 128, 129
mult ν (multiplicity at a discrete valuation
ν), 110, 111
multiple component, 33, 136, 137, 141, 142
multiple line, 198
multiple point, 21
multiplication, 75
multiplication process, 92, 93
multiplicative inverse, 76
multiplicity, 19, 27, 37, 47, 64, 113, 131,
134–136, 138, 141, 143, 218
multiplicity sequence, 167
multiplicity tree, 167
multi-valued function, 11
multivariate resultant, 129, 271–273
my first teacher, 208
n-dimensional affine space (k^n or A^n_k), 84
n-space, 25–26, 29–30, 105–106
n-valued function, 142
Nagata, 237, 239
Nagpur, 208
near identity, 190
neighborhood, 100, 129, 146
negative exponent, 68
negative term, 68
net, 238
Never Lemma, 215
Newton, 89, 95, 105
Newton polygon, 185
Newton’s Method, 172
Newton’s Theorem, 62, 63, 65, 67, 68, 75,
89–90, 92, 94, 95, 99, 104–105, 114,
119, 137
nilpotent, 86, 142
nodal cubic, 2, 35, 36
nodal cubic cone, 199, 204
nodal cubic cylinder, 205
nodal line, 199
node, 2, 113, 230
Noether Normalization Lemma, 260
Noetherian, 81, 101, 251–252
Noether’s Factorization Theorem (G_2),
238–239
Noether’s Fundamental Theorem, 149, 150
Noether’s Fundamental Theorem Refined,
147
nonorientable surface, 53, 54
nonregular, 11, 12, 15
nonsingular, 19, 129, 235, 241, 253, 254
nonstability, 228
nontangential, 141
nontangential parameter, 141
nonunit, 76, 126–128, 137, 142
nonzero divisor, 129
Nori, 88
normal (J domain), 143
normal crossing, 137, 165
normal extension, 163
normality, 143
Nth neighborhood, 146
null ring, 76
number of characteristic pairs, 165
number of edges, 50
INDEX 291

number of faces, 50
number of generators for prime ideal of
erspace curve, 129
number of handles, 47, 82
number of poles, 36, 37, 38, 39, 47, 59–61,
114
number of vertices, 50
number of zeros, 36, 37, 38, 39, 47, 59–61,
62, 114
object, 25
one-parameter family, 160
one place at a point at finite distance, 182
operation, 75
ord (order), 27–29, 64, 65, 68, 69, 102–105,
116, 122–125, 126, 131, 134, 136, 197
order, 27–29, 64, 65, 68, 69, 131
order along a subvariety, 218
order at a branch, 64–65, 102–105, 116, 125
order function, 64
order isomorphism, 245–247
order of meromorphic series, 68
order of pole, 37–39, 114, 117
order of zero, 37–39, 61, 64, 114, 117
ordered abelian group, 244–245
ordinary point, 21, 147–149, 150, 151
orientable, 54
orientability, 53
Ostrowski, 107, 254
over (reverse of sub, e.g., overring), 86
\(\mathbb{P}^2\) (projective plane), 43, 238, 240
\(\mathbb{P}^n\) (projective \(n\)-space), 259, 273
\(P_a\) (arithmetic genus), 259, 264
\(P_g\) (geometric genus), 264
\(P_j\) (\(J^{th}\) plurigenus), 265
Panton, 92
parabola, 1, 5, 6, 9, 10, 11, 17, 35, 36
parabolic cylinder, 205
parallel lines, 12
parallels, 174
parametric equation, 26, 34, 243, 244
parametrizability, 236
parametrization (of a curve at a point), 63,
64, 68, 97, 99, 102
parametrization (of an analytic curve), 126
parametrization (rational etc.), 1, 3, 4–6, 9,
10, 14, 24, 34, 59, 243, 271
parametrize, 17, 18, 23, 24, 34
partial derivative, 54, 111
partial fraction, 3, 4, 11
Pedoe, 240
pencil, 238
permissibility criterion, 217
perpendicular, 225
Perron, 88
perspectivity, 240
PID (principal ideal domain), 77, 78
pinch point, 204
pitaji (father), 208
place, 10, 16, 125, 126
place at infinity, 10, 16
plane, 19, 30, 80, 196, 239, 240
plane coordinate geometry, 208
plane Cremona transformation, 238
plane curve, 1, 33, 35, 36, 41, 47, 87, 106,
108, 125, 131, 141
plane Jacobian problem, 177, 178
ple, 27
point, 19, 83, 88
point at finite distance, 43
point at infinity, 8, 10, 12, 15, 17, 39, 42,
43, 52, 57, 65
point of intersection, 26, 33, 45
poles, 36, 42, 47, 59–63
poles of a differential, 37–39, 47, 117
poles of a function, 36, 41, 114, 117
polygonal division, 51
polynomial, 1, 3, 10, 24–26, 28–31, 41, 52,
67, 68, 235, 236
polynomial function (of \(X\) etc.), 34
polynomial function (on a curve), 36, 100
polynomial parametrization, 1, 4, 10, 16
polynoma ring \(k[X_1,\ldots,X_n]\), 76
polyrational, 236–237, 239, 241, 252, 253
positive divisor, 113, 114
power series, 28–29, 38, 46, 62, 63, 67–69,
93, 97
power series ring \(k[[X_1,\ldots,X_n]]\), 76,
121, 128
precursor to the supreme theorem, 237
preideal, 252
pregood (point), 223
premodel, 251
primary (for), 86, 128, 207
primary ideal, 86, 128, 129, 207
prime ideal, 69, 78, 86, 101, 129, 250
prime number, 86, 107
primitive root, 88, 90
primitive element, 258
Princeton book, 84
principal ideal, 77, 126
principal prime, 83, 126
principalized total resolution of plane
curves, 227

Principles of geometry (Baker), 239

product formula for discriminants, 142
project, 240
projection of intersection, 123
projection of singular locus, 65
projective line, 18, 20, 240
projective model, 250, 251–254
projective plane, 12, 15, 41–45, 239–240
projective space, 18, 239, 259
INDEX

292

projective transformation, 239–241
proper map, 273
proper subvariety, 106, 249
proper transform, 132, 133, 135, 141
proportional, 240
proportional triple, 43
proportionality, 8
Puiseux, 89
Purdue thesis, 237
pure, 106
pure codimension one, 258
Q (rational numbers), 28, 29, 245
q-sequence, 166
QDT (quadratic transformation), 131, 133,
134–136, 145, 154–157, 202–204,
quadratic equation, 194, 161
quadratic transform, 253
quadratic transformation, 131, 133, 134,
137, 141, 145, 147, 236
quadric cone, 197
quartic, 3, 159–160, 162
quarticate, 48
quasilocal ring, 87, 245, 250, 251
quotient field, 69, 70, 76, 101
quotient ring A_N of A with respect to N,
70, 87
R_m^r (set of all homogeneous polynomials
of degree m), 150
R_V (valuation ring of V), 245, 248, 251
R (real numbers), 28, 29, 245
R^2 (real plane), 47
R^4 (real 4-space), 47
$\mathcal{P}(K)$ (set of discrete valuations of
$K = k(C)$), 113, 114, 117, 248
r-sequence, 166
radical ($\sqrt{\cdot}$), 73, 86
ramification exponent, 172
ramification index, 53, 58
rank (of Jacobian matrix), 217
rational, 1, 11, 20, 35, 59, 65, 115, 153, 236
rational function (of X etc.), 3, 10, 11, 15,
24, 34, 57, 69
rational function (on a curve), 36, 37, 41,
59, 60, 64, 100–102, 109
rational parametrization, 1, 4–6, 10, 11, 14,
18–20, 24, 115, 243, 247, 249, 256
rational plane, 30
rational rank, 245–246
rational surface, 255
real and imaginary parts, 47, 54
real 4-space, 48
real linear transformation, 15, 16
real place at infinity, 16
real plane, 30
real point at infinity, 16
real polynomial parametrization, 16
real rank, 245–246
rectangle, 53
reduced form, 70
reducible variety, 261
reduction formulae, 34
redundant (parametrization), 63, 99, 102
reflexive, 115
regular (in a variable), 8
regular (local ring), 128, 143, 179, 207, 253
regular map, 252
regular sequence, 129
Remmert remainder theorem, 70, 71, 80
Roth, 240, 269
Ruled surfaces (Edge), 239
resolution book, 254
resolution of singularities of analytic plane
curves, 137
resolution of singularities of plane curves,
131, 137, 141, 147, 223
Resolution Problem, 253
Resolution Theorem, 137
residue (of V over k), 246
resultant, 123, 124, 267–268, 271–272
reverse characteristic pairs, 168
Riemann, 51, 53, 58, 158, 253
Riemann-Roch Theorem, 117
Riemann’s method, 172
Riemann sphere, 49, 52, 57
Riemann surface, 48, 51, 54–58, 113, 142
ring, 26, 28, 69, 75, 76, 78
ring of polynomial functions (on a plane
curve), 100
ring of polynomial functions (on a variety),
106
ring of polynomials $k[X]$ in X with coefficients in
k, 69
ring of power series $k[[X]]$ in X with coefficients in
k, 69
Room, 239
rotation, 127, 134, 142, 145
Roth, 240, 269
Rule surfaces (Edge), 239
INDEX

\(\Theta(\widetilde{W}) \) (singular locus of \(\widetilde{W} \)), 251
\(\sum_{(a, \beta)} \), 153
\(\sum_{\infty} \), 149, 153
\(\sum_{P} \), 148, 153, 169
s-sequence, 166
Salmon, 208, 269
Samuel, 31, 261
scalar multiplication, 77
SDT (Shreedharacharya transformation = completing the square operation), 215–217, 221, 224, 229
second approximation, 228
second neighborhood, 146
second (significant) theorem of algebraic geometry, 239
Seifert, 55
semicontinuity of order, 218
semifactorization problem, 254
semigroup, 166
Semple, 240, 269
sending to infinity, 12
sense of direction, 54
separable, 163
separably generated, 222
separating transcendence, 115, 116
separating transcendence basis, 260
set, 75
set-theoretic complete intersection, 88
set minus (\(\setminus \)), 70
set theoretically, 153
Severi, 88, 115, 158, 265
Shannon, 237, 254
sheet, 53
Shreedharacharya, 17, 89, 94, 138
Shreedharacharya expansion, 94
shrink, 244
simple, 27
simple domination map, 241
simple point, 19, 20, 25, 27, 111–112, 128, 131, 136, 146, 179, 180, 197, 207, 217
simple singularity, 235
Sing (singular locus), 180, 199
Sing_{d} (d-fold locus), 198, 199
single valued function, 11
single zero, 42
singular, 19, 23, 27
singular locus, 65, 129, 131, 251
singular point, 19, 25, 27, 112, 129, 131, 146, 197
singularity, 21, 33, 47, 65, 71, 137, 236
singularity bound, 33, 148, 151–152
singularity tree, 131, 154–157
skew field, 240
slope, 18, 132
slope-axis, 132
slow SDT, 229, 232
Smith (C.), 208
Smith (H. J. S.)—introduced characteristic pairs, 166
solid, 25, 71, 106, 258
solid arrow (\(\rightarrow \)), 83
solution ray, 45
solvable, 163
space, 1, 25, 48, 73
space curve, 88, 263
space curve thought of as a line, 207
Spec (spectrum), 78, 250
special d-fold locus, 223
special d-fold point, 223
special domination map, 241
special hypermonoidal, 257
special monoidal hypersurface, 257
special permissibility criterion, 217
Spencer, 265
sphere, 2, 19, 29, 47–51, 53, 57, 58, 195
sphere with handles, 47–48, 51, 53, 57
Springer lecture notes (on desingularization), 94
Springer notes (on space curves), 88
Stahl, 55
Steinitz, 261
Stokes’ Theorem, 265
straight, 184
subdomain, 76
subfield, 76
subgroup, 75
submodule, 77
subring, 76
subset (\(\subset \)), 69, 75
subspace, 77
substitution in power series, 69, 126
subvariety, 106–107, 253
supermultiplicity, 219, 232
supp (support), 29
support, 29
Supreme Theorem, 236
surface resolution, 228
surjective, 85
surjective group homomorphism, 86
surjective ring homomorphism, 86
Sylvester, 268
symbolic algebra package, 129
symmetric, 115
synthetic approach, 240
tacnodal quartic, 3
tacnode, 3, 60
tame transformation, 237
tangent, 3, 19, 24, 25–27, 41, 133, 134, 135, 139, 141, 145, 146, 154, 161
INDEX

294

trigonometry, 208
triple point, 20, 25, 27, 197
trivial (valuation), 244, 245
trivial valuation ring, 248
tubular knot, 174

UFD (unique factorization domain), 78, 83, 87, 120
uncle of algebraic geometry, 272
unequicharacteristic case, 127
uniformizing coordinate, 38, 39, 59, 111
uniformizing parameter, 38, 39, 53, 58–60
uniformizing parameter at a discrete valuation, 104, 109, 111, 112, 116
unirational, 115, 256
unit, 76, 120, 121, 122, 124, 125, 126
unit circle, 86
unit disc, 54
unit ideal, 77, 143
unitangency, 140
univariate, 75
university algebra, 26
\(\mathfrak{W}(A)\) (set of all quasilocal domains \(A_N\) as \(N\) varies over \(\text{Spec}(A)\)), 250, 252

Vahlen, 88
valuation, 64, 87, 107, 125, 243–246, 248, 249, 251, 254
valuation way, 250
valuation ring, 87, 245, 248
value group, 244, 246
value semigroup, 167
valued field, 92, 100
variable, 25
variety, 258
vector space, 43, 77
vector space basis, 79
vector space dimension \([_______]\), 78
vertex of a cone, 71, 197
vertical projection, 267
vertical tangent, 38
vertices (of a triangulation etc.), 49, 51, 52, 57
vertices of the fundamental triangle, 238
very bad (point), 223
\(\mathfrak{W}(I)\) (blow up of \(\mathfrak{W}\) with center \(I\)), 252
\(\mathfrak{W}(A, J)\) (projective model defined by \(A\)-module \(J\) over \(A\)), 251, 252
\(\mathfrak{W}(k; x_0, x_1, \ldots, x_n)\) (projective model defined by \(x_1, \ldots, x_n\) over \(k\)), 250, 252

Waerden, 31, 77, 115, 158, 261
Walter Pigeon (Dr. Möbius), 55
WDT (Weierstrass Division Theorem), 124
web, 238
Weber, 31
weekly calendar, 85
Weierstrass, 119–121, 122, 124, 158
Weierstrass’ M-test, 92, 95, 120
weighted initial form, 230–232
well ordered, 247
Weyl, 113
wideg (Weierstrass degree), 124
worse point, 229
worst point, 229
WPT (Weierstrass Preparation Theorem), 98, 119–121, 122–125, 126, 138, 142, 215
X (homogeneous coordinate X), 12–15, 42–46, 102
Y (homogeneous coordinate Y), 12–15, 42–46, 102
Young, 268
Z (integers), 75, 244, 245
Z^m (lexicographically ordered m-tuples of integers), 246
Z (homogeneous coordinate Z), 12–15, 42–46, 102
$3(I)$ (zero set of I), 252, 253
Zariski, 31, 129, 158, 163, 237, 239, 253, 254, 261, 265
zero divisor, 113
zero ideal, 70, 77, 78
zerodivisor, 76
zeros, 36, 37, 41, 42, 47, 59, 63, 64, 267
zeros of a differential, 36, 37–40, 47, 58, 65
zeros of a function, 36, 38, 41, 58, 63, 64, 109, 114
Zeuthen, 58
This book is intended as an algebraic geometry textbook for engineers and scientists. In addition to providing an elementary, manipulative, and algorithmic approach to the subject, the author also attempts to motivate and explain its link to more modern algebraic geometry based on abstract algebra. The book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities. The emphasis is on presenting heuristic ideas and suggestive arguments rather than formal proofs. Readers will gain new insight into the subject of algebraic geometry in a way that should increase appreciation of modern treatments of the subject, as well as enhance its utility in applications in science and industry.